Aprendizaje a partir de maneras complementarias de desarrollar capacidades experimentales
Resumen La educación en ingeniería tiene sólidas necesidades de desarrollo de competencias experimentales. Hoy en día estas competencias pueden desarrollarse no solo en los laboratorios tradicionales (hands-on), sino también a través de simulaciones y laboratorios remotos. El uso de métodos diversificados en la educación y la exploración de nuevos recursos y técnicas en el aula puede permitir que los maestros motiven a más estudiantes y capten su atención. El objetivo principal de este diseño es comprender mejor los efectos sobre los resultados de aprendizaje de los estudiantes en diferentes contextos (país, tipo de institución, etc.), cuando están sujetos a enfoques de diseño similares utilizando una metodología de enseñanza y aprendizaje basada en la investigación. Esta metodología emplea el uso simultáneo de recursos experimentales (handson, simulaciones y laboratorios remotos) junto con cálculo, en clase y en evaluación. Para lograr este objetivo, hay que tener en cuenta varios puntos de vista, como la mediación de los profesores en cada caso y las adaptaciones didácticas, además de factores externos, como por ejemplo los factores socioculturales y/o políticos.
- Referencias
- Cómo citar
- Del mismo autor
- Métricas
Alves, G., Fidalgo, A., Marques, M. A., Viegas, C., Felgueiras, M., Costa, R., . . . Kulesza, W. (2016). Spreading remote labs usage: A System – A Community – A Federation. Proceedings of the 2nd International Conference of the Portuguese Society for Engineering Education (CISPEE2016). Vila Real, Portugal.
Alves, G., Marques, M., Viegas, C., Costa Lobo, M. C., Barral, R., Couto, R., . . . Gustavsson, I. (2011). Using VISIR in a large undergraduate course: Premiminary assessments results. Global Engineering Education Conference (EDUCON).
Alves, G., Viegas, C., Lima, N., & Gustavsson, I. (2016). Simultaneous Usage of Methods for the Development of Experimental Competences. International Journal of Human Capital and Information Technology Professionals 7(1), 48-63.
Brinson, J. R. (2015). Learning outcome achievment in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical reserach. Computers & Education, 87, 218-237. http://dx.doi.org/10.1016/j.compedu.2015.07.003
Claesson, L., & Hakansson, L. (2012). Using an Online Remote Laboratory for Electrical Experiments in Upper Secondary Education. International Journal of Online Engineering (iJOE), 8 (S2).
Cohen, L., Manion, L., & Morrison, K. (2007). Research Methods in Education, 6th Edition. London and New York: Routledge, Taylor & Francis Group.
Corter, J. E., Nickerson, J. V., Esche, S., Chassapis, C., Im, S., & Ma, J. (2007).Constructing reality: A study of remote, hand-on and simulated laboratories. ACM Transactions on Computer Human Interaction, 14(2).
Corter, J., Esche, S., Chassapis, C., Ma, J., & Nickeson, J. (2011). Process and learning outcomes from remotely-operated, simulated and hands-on student laboratories. Computers & Education, 57, 2054-2067.
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches, 4th Edition. SAGE.
Felder, R., & Silverman, L. (1988). Learning and Teaching Styles in Engineering Education. Engineering Education, 78 (7), 674-681.
Froyd, J. E., Wankat, P. C., & Smith, K. A. (2012). Five Major Shifts in 100 Years of Engineering Education. Proceedings of the IEEE, 100, 1344-1360.
Gustavsson, I., Alves, G., R., C., Nilsson, K., Zackrisson, J., Hernandez-Jayo, U., & Garcia_Zubia, J. (2011). The VISIR Open Lab Platfrom 5.0 - an architecture for a federation of remote laboratories. REV 2011: 8th International Conference on Remote Engineering and Virtual Instrumentation. Brasov, Romania.
Jara, C., Candelas, F., Puentes, S., & Torres, F. (2011). Hands-on experiences of undergraduate students in Automatics and Robotics. Computer and Education, 57, 2451-2461.
Lima, N., Alves, G., Viegas, C., & Gustavsson, I. (2015). Combined Efforts to develop students experimental competences. Proceedings Exp.at'15 3rd International Experimental Conference. Ponta Delgada, Azores: ACM.
Lima, N., Viegas, C., & Garcia-Peñalvo, F. (2016). VISIR’s Usage as a Learning Resource: a Review of the Empirical Research. Proceedings TEEM2016 - Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16). Salamanca, Spain.
Ma, J., & Nickerson, J. (2006). Hands-on, Simulated and Remote Laboratories: A Comparative Literature Review. ACM Computer Surveys, 38 (3).
Marques, A., Viegas, C., Costa-Lobo, C., Fidalgo, A., Alves, G., Rocha, J., & Gustavsson, I. (2014). How Remote Labs Impact on Course Outcomes: Various Practises Using VISIR. IEEE-Transactions on Education.
Richardson, J. (2011). Approaches to studying, conceptions of learning and learning styles in higher education. Learning and Individual Differences, 21, 288-293.
Sticker, D., Lookabaugh, T., Santos, J., & Barnes, F. (2005). Assessing the effectiveness of remote networking laboratories. 35th ASEE/IEEE Frontiers in Education Conference. Indianapolis: IN.
Tawfik, M., Sancristobal, E., Martin, S., Gil, C., Pesquera, A., Losada, P., . . . Alves, G. (2011). VISIR deployment in undergraduate engineering practises. Frontiers in Education Conference.
Viegas, C., Lima, N., Alves, G., & Gustavsson, I. (2014). Improving students experimental competences using simultaneous methods in class and assessments. TEEEM'14 Proceedings of the second International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 125-132). Salamanca, Spain: ACM New York.
Williams, C. (2007). Research Methods. Journal of Business & Economic Research, Volume 5, Number 3.
Alves, G., Marques, M., Viegas, C., Costa Lobo, M. C., Barral, R., Couto, R., . . . Gustavsson, I. (2011). Using VISIR in a large undergraduate course: Premiminary assessments results. Global Engineering Education Conference (EDUCON).
Alves, G., Viegas, C., Lima, N., & Gustavsson, I. (2016). Simultaneous Usage of Methods for the Development of Experimental Competences. International Journal of Human Capital and Information Technology Professionals 7(1), 48-63.
Brinson, J. R. (2015). Learning outcome achievment in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical reserach. Computers & Education, 87, 218-237. http://dx.doi.org/10.1016/j.compedu.2015.07.003
Claesson, L., & Hakansson, L. (2012). Using an Online Remote Laboratory for Electrical Experiments in Upper Secondary Education. International Journal of Online Engineering (iJOE), 8 (S2).
Cohen, L., Manion, L., & Morrison, K. (2007). Research Methods in Education, 6th Edition. London and New York: Routledge, Taylor & Francis Group.
Corter, J. E., Nickerson, J. V., Esche, S., Chassapis, C., Im, S., & Ma, J. (2007).Constructing reality: A study of remote, hand-on and simulated laboratories. ACM Transactions on Computer Human Interaction, 14(2).
Corter, J., Esche, S., Chassapis, C., Ma, J., & Nickeson, J. (2011). Process and learning outcomes from remotely-operated, simulated and hands-on student laboratories. Computers & Education, 57, 2054-2067.
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches, 4th Edition. SAGE.
Felder, R., & Silverman, L. (1988). Learning and Teaching Styles in Engineering Education. Engineering Education, 78 (7), 674-681.
Froyd, J. E., Wankat, P. C., & Smith, K. A. (2012). Five Major Shifts in 100 Years of Engineering Education. Proceedings of the IEEE, 100, 1344-1360.
Gustavsson, I., Alves, G., R., C., Nilsson, K., Zackrisson, J., Hernandez-Jayo, U., & Garcia_Zubia, J. (2011). The VISIR Open Lab Platfrom 5.0 - an architecture for a federation of remote laboratories. REV 2011: 8th International Conference on Remote Engineering and Virtual Instrumentation. Brasov, Romania.
Jara, C., Candelas, F., Puentes, S., & Torres, F. (2011). Hands-on experiences of undergraduate students in Automatics and Robotics. Computer and Education, 57, 2451-2461.
Lima, N., Alves, G., Viegas, C., & Gustavsson, I. (2015). Combined Efforts to develop students experimental competences. Proceedings Exp.at'15 3rd International Experimental Conference. Ponta Delgada, Azores: ACM.
Lima, N., Viegas, C., & Garcia-Peñalvo, F. (2016). VISIR’s Usage as a Learning Resource: a Review of the Empirical Research. Proceedings TEEM2016 - Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16). Salamanca, Spain.
Ma, J., & Nickerson, J. (2006). Hands-on, Simulated and Remote Laboratories: A Comparative Literature Review. ACM Computer Surveys, 38 (3).
Marques, A., Viegas, C., Costa-Lobo, C., Fidalgo, A., Alves, G., Rocha, J., & Gustavsson, I. (2014). How Remote Labs Impact on Course Outcomes: Various Practises Using VISIR. IEEE-Transactions on Education.
Richardson, J. (2011). Approaches to studying, conceptions of learning and learning styles in higher education. Learning and Individual Differences, 21, 288-293.
Sticker, D., Lookabaugh, T., Santos, J., & Barnes, F. (2005). Assessing the effectiveness of remote networking laboratories. 35th ASEE/IEEE Frontiers in Education Conference. Indianapolis: IN.
Tawfik, M., Sancristobal, E., Martin, S., Gil, C., Pesquera, A., Losada, P., . . . Alves, G. (2011). VISIR deployment in undergraduate engineering practises. Frontiers in Education Conference.
Viegas, C., Lima, N., Alves, G., & Gustavsson, I. (2014). Improving students experimental competences using simultaneous methods in class and assessments. TEEEM'14 Proceedings of the second International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 125-132). Salamanca, Spain: ACM New York.
Williams, C. (2007). Research Methods. Journal of Business & Economic Research, Volume 5, Number 3.
Lima, N. M., Viegas, M. C., & García-Peñalvo, F. J. (2017). Aprendizaje a partir de maneras complementarias de desarrollar capacidades experimentales. Education in the Knowledge Society (EKS), 18(1), 63–74. https://doi.org/10.14201/eks20171816374
Artículos más leídos del mismo autor/a
- Francisco José García-Peñalvo, La percepción de la Inteligencia Artificial en contextos educativos tras el lanzamiento de ChatGPT: disrupción o pánico , Education in the Knowledge Society (EKS): Vol. 24 (2023)
- Francisco José García-Peñalvo, Alfredo Corell, Víctor Abella-García, Mario Grande, La evaluación online en la educación superior en tiempos de la COVID-19 , Education in the Knowledge Society (EKS): Vol. 21 (2020)
- Francisco José García-Peñalvo, Antonio Miguel Seoane Pardo, Una revisión actualizada del concepto de eLearning. Décimo Aniversario , Education in the Knowledge Society (EKS): Vol. 16 Núm. 1 (2015)
- Francisco José García-Peñalvo, Desarrollo de estados de la cuestión robustos: Revisiones Sistemáticas de Literatura , Education in the Knowledge Society (EKS): Vol. 23 (2022)
- Francisco José García-Peñalvo, Inteligencia artificial generativa y educación , Education in the Knowledge Society (EKS): Vol. 25 (2024)
- Francisco José García-Peñalvo, Transformación digital en las universidades: Implicaciones de la pandemia de la COVID-19 , Education in the Knowledge Society (EKS): Vol. 22 (2021)
- Francisco José García-Peñalvo, Estado actual de los sistemas e-learning , Education in the Knowledge Society (EKS): Vol. 6 Núm. 2 (2005)
- Francisco José García-Peñalvo, Identidad digital como investigadores. La evidencia y la transparencia de la producción científica , Education in the Knowledge Society (EKS): Vol. 19 Núm. 2 (2018)
- Francisco José García-Peñalvo, Mapa de tendencias en Innovación Educativa , Education in the Knowledge Society (EKS): Vol. 16 Núm. 4 (2015)
- Francisco Michavila, Jorge M. Martínez, Martín Martín-González, Francisco José García-Peñalvo, Juan Cruz-Benito, Empleabilidad de los titulados universitarios en España. Proyecto OEEU , Education in the Knowledge Society (EKS): Vol. 19 Núm. 1 (2018)
Descargas
Los datos de descargas todavía no están disponibles.
+
−