Awjedni: A Reverse-Image-Search Application
Isi Artikel Utama
Vol. 9 No. 3 (2020), Articles, pages 49-68
Abstract
The abundance of photos on the internet, along with smartphones that could implement computer vision technologies allow for a unique way to browse the web. These technologies have potential used in many widely accessible and globally available reverse-image search applications. One of these applications is the use of reverse-image search to help people finding items which they're interested in, but they can’t name it. This is where Awjedni was born. Awjedni is a reverse-image search application compatible with iOS and Android smartphones built to provide an efficient way to search millions of products on the internet using images only. Awjedni utilizes a computer vision technology through implementing multiple libraries and frameworks to process images, recognize objects, and crawl the web. Users simply upload/take a photo of a desired item and the application returns visually similar items and a direct link to the websites that sell them.
Keywords:
Reverse-image search, Deep learning, Localization algorithm
Downloads
Download data is not yet available.
Rincian Artikel
References
Wiley, Victor, and Thomas Lucas. «Computer vision and image processing: a paper review.» International Journal of Artificial Intelligence Research 2.1 (2018): 29-36.
Patel, P., & Thakkar, A. (2020). The upsurge of deep learning for computer vision applications. International Journal of Electrical and Computer Engineering, 10(1), 538.
Hatcher, William Grant, and Wei Yu. «A survey of deep learning: Platforms, applications and emerging research trends.» IEEE Access 6 (2018): 24411-24432.
F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang, H. Kiapour, and R. Piramuthu, “Visual search at ebay,» in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’17. New York, NY, USA: ACM, 2017, pp. 2101-2110.
H. Hu, Y. Wang, L. Yang, P. Komlev, L. Huang, X. S. Chen, J. Huang, Y. Wu, M. Merchant, and A. Sacheti, “Web-scale responsive visual search at bing,» in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’18. New York, NY, USA: ACM, 2018, pp. 359-367.
Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue, and S. Tavel, “Visual search at pinterest,» in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’15. New York, NY, USA: ACM, 2015, pp. 1889-1898.
Y. Zhang, P. Pan, Y. Zheng, K. Zhao, Y. Zhang, X. Ren, and R. Jin, “Visual search at alibaba,» in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’18. New York, NY, USA: ACM, 2018, pp. 993-1001.
Patel, P., & Thakkar, A. (2020). The upsurge of deep learning for computer vision applications. International Journal of Electrical and Computer Engineering, 10(1), 538.
Hatcher, William Grant, and Wei Yu. «A survey of deep learning: Platforms, applications and emerging research trends.» IEEE Access 6 (2018): 24411-24432.
F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang, H. Kiapour, and R. Piramuthu, “Visual search at ebay,» in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’17. New York, NY, USA: ACM, 2017, pp. 2101-2110.
H. Hu, Y. Wang, L. Yang, P. Komlev, L. Huang, X. S. Chen, J. Huang, Y. Wu, M. Merchant, and A. Sacheti, “Web-scale responsive visual search at bing,» in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’18. New York, NY, USA: ACM, 2018, pp. 359-367.
Y. Jing, D. Liu, D. Kislyuk, A. Zhai, J. Xu, J. Donahue, and S. Tavel, “Visual search at pinterest,» in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’15. New York, NY, USA: ACM, 2015, pp. 1889-1898.
Y. Zhang, P. Pan, Y. Zheng, K. Zhao, Y. Zhang, X. Ren, and R. Jin, “Visual search at alibaba,» in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’18. New York, NY, USA: ACM, 2018, pp. 993-1001.