Main Article Content

Jesús Ángel Román Gallego
University of Salamanca
Spain
Sara Rodríguez González
University of Salamanca
Spain
Vol. 4 No. 3 (2015), Articles, pages 31-46
DOI: https://doi.org/10.14201/ADCAIJ2015433146
Accepted: Jun 22, 2016
Copyright

Abstract

The distribution of services on multi-agent systems allows it to reduce to the agents their computational load. The functionality of the system does not reside in the agents themselves, however it is ubiquitously distributed so that allows you to perform tasks in parallel avoiding an additional computational cost to the elements in the system. The distribution of services that offers SCODA (Distributed and Specialized Agent Communities) allows an intelligent management of these services provided by agents of the system and the parallel execution of threads that allow to respond to requests asynchronously, which implies an improvement in the performance of the system at both the computational level as the level of quality of service in the control of these services. The comparison carried out in the case of study that is presented in this paper demonstrates the existing improvement in the distribution of services on systems based on SCODA.

Downloads

Download data is not yet available.

Article Details

References

Atiya, A., El-Shoura, S., Shaheen, S., & El-Sherif, M. (1999). A comparison between neural network forecasting techniques-case study: river flow forecasting, Neural Networks. IEEE Transactions on Neural Networks , 2 (10), 402-409.

Balaji, P., Bhagvat, S., Jin, H.-W., & Panda, D. K. (2006). Asynchronous Zero-copy Communication for Synchronous Sockets in the Sockets Direct Protocol (SDP) over InfiniBand. International Parallel and Distributed Processing Symposium (IPDPS 2006).

Belousov, A., Verzakov, S., & Von Frese, J. (2002). A flexible classification approach with optimal generalisation performance: support vector machines. Chemometrics and Intelligent Laboratory Systems (64), 15-25.

Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery , 2 (2), 121-167.

Camarinha-Matos, L. M., & Afsarmanesh, H. (2007). A Comprehensive Modeling Framework for Collaborative Networked Organizations. Journal of Intelligent Manufacturing , 5 (18), 529-542.

Cerami, E. (2002). Web Services Essentials Distributed Applications with XML-RPC, SOAP, UDDI & WSDL (1st ed.). O'Reilly & Associates, Inc.

Corchado, J., & Aiken, J. (2002). Hybrid Artificial Intelligence Methods in Oceanographic Forecasting Models. IEEE SMC Transactions Part C (32), 307-313.

Corchado, J., & Lees, B. (2001). A hybrid case-based model for forecasting. Applied Artificial Intelligence: An International Journal (15), 105-127.

Douglas, C., & Pai, V. (2006). Seekable sockets: a mechanism to reduce copy overheads in TCP-based messaging. International Parallel and Distributed Processing Symposium (IPDPS 2006).

FIPA. (2005). Foundation for Intelligent Physical Agents. Retrieved 7 14, 2006, from http://www.fipa.org

Leymann, F., Roller, D., & Schmidt, M.-T. (2002). Web services and business process management. IBM Systems Journal , 2 (41), 198-211.

López, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory (12), 227-250.

Martín-Merino, M., & Román, J. (2006a). A New SOM Algorithm for Electricity Load Forecasting. ICONIP, (págs. 995-1003).

Martín-Merino, M., & Román, J. (2006b). Electricity Load Forecasting Using Self Organizing Maps. ICANN. 4132, págs. 709-716. LNCS.

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-Oriented Computing: State of the Art and Research Challenges. Computer , 11 (40), 38-45.

Papazoglou, M., & Georgakapoulos, G. (2003). Introduction to the Special Issue about Service-Oriented Computing. 10 (46), 24-29.

Papazoglou, M., & van den Heuvel, W. (2006). Service-Oriented Design and Development Methodology. In Proc. Int. J. of Web Engineering and Technology (IJWET).

Pokahr, A., Braubach, L., & Lamersdorf, W. (2003). Jadex: Implementing a BDI-Infrastructure for JADE Agents. En In EXP - in search of innovation (Special Issue on JADE) (págs. 76-85).

Pokahr, A., Braubach, L., Walczak, A., & Lamersdorf, W. (2007). Jadex - Engineering Goal-Oriented Agents. En In Developing Multi-Agent Systems with JADE (págs. 254-258). Wiley & Sons Eds.

RFC 2616. (1999). Hypertext Transfer Protocol -- HTTP/1.1.The Internet Society 1999.

Ricci, A., Buda, C., & Zaghini, N. (2007). An agent-oriented programming model for SOA & web services. In 5th IEEE International Conference on Industrial Informatics (INDIN'07), (págs. 1059-1064). Viena.

Román, J., Rodríguez, S., & Corchado, J. (2013). Distributed and Specialized Agent Communities. Trends in Practical Applications of Agents and Multiagents Systems, 221, págs. 33-40.

Román, J., Tapia, D., & Corchado, J. (2011). SCODA para el Desarrollo de Sistemas Multiagente. Revista Ibérica de Sistemas y Tecnologías de Información (8), 25-38.

Rosen, M., Lublinsky, B., Smith, K., & Balcer, M. (2008). Applied SOA: Service-Oriented Architecture and Design Strategies. Wiley.

Schölkopf, B., & Smola, A. (2002). Learning with Kernels. Cambridge, MA.: MIT Press.

Shen, W., & Norrie, D. H. (1998). An agent-based approach for distributed manufacturing and supply chain management. En Globalization of manufacturing in the digital communications era of the 21st century (págs. 579–590).

Sunwook, K., Chanho, P., Seongwoon, K., & Yongwha, C. (2009). The offloading of socket information for TCP/IP offload engine. In 11th International Conference on Advanced Communication Technology (ICACT 2009), 1, págs. 826-831.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. N.Y.: Springer.

Vapnik, V., Golowich, S., & Smola, A. (1996). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems (9), 281-287.

Velásquez, J., Olaya, Y., & Franco, C. (2010). Predicción de Series Temporales usando Máquinas de Vectores Soporte. Ingeniare. Revista chilena de ingeniería (18), 64-75.

Voos, H. (2006). Agent-Based Distributed Resource Allocation in Technical Dynamic Systems. In Proceedings of the IEEE Workshop on Distributed intelligent Systems: Collective intelligence and Its Applications (págs. 157-162). IEEE Computer Society.

Zimmermann, O., Schlimm, N., Waller, G., & Pestel, M. (2005). Analysis and Design Techniques for Service-Oriented Development and Integration. INFORMATIK , 606-611.