Main Article Content

Daniel Hernández De La Iglesia
Gabriel Villarrubia González
ACM Member
United States
Alberto López Barriuso
ACM Member
United States
Álvaro Lozano Murciego
ACM Member
United States
Jorge Revuelta Herrero
ACM Member
United States
Vol. 4 No. 3 (2015), Articles, pages 19-30
Accepted: Jun 6, 2016


In the medical environment, the clinical study of the most basic vital signs of a patient represents the simplest and most effective way to detect and monitor health problems. There are many diseases that can be diagnosed and controlled through regular monitoring of these medical data. The purpose of this study is to develop a monitoring and tracking system for the various vital signs of a patient. In particular, this work focuses on the design of a multi-agent architecture composed of virtual organizations with capabilities to integrate different medical sensors on an open, low-cost hardware platform. This system integrates hardware and software elements needed for the routine measurement of vital signs, performed by the patient or caregiver without having to go to a medical center.


Download data is not yet available.

Article Details


Aquilano, N. J., & Smith, D. E. (1980). A formal set of algorithms for project scheduling with critical path scheduling/material requirements planning. Journal of Operations Management, 1(2), 57–67.

Busse, R., Blümel, M., Scheller-Kreinsen, D., & Zentner, a. (2010). Tackling chronic disease in Europe: Strategies, interventions and challenges. Observatory Studies, 20, 111.

Chris Rorden’s Neuropsychology Lab?» Open source multi-channel EEG/ECG/EMG. (n.d.). Retrieved January 20, 2016, from

Cooking Hacks - Electronic Kits, tutorials and guides for Makers and Education. (n.d.). Retrieved February 8, 2016, from

Corchado, J. M., Bajo, J., & Abraham, A. (2008). GerAmi: Improving Healthcare Delivery in Geriatric Residences. IEEE Intelligent Systems, 23(2), 19–25.

Fezari, M., Rasras, R., & Emary, I. M. M. El. (2015). Ambulatory Health Monitoring System Using Wireless Sensors Node. Procedia Computer Science, 65, 86–94.

Fraile, J. A., De Paz, Y., Bajo, J., De Paz, J. F., & Pérez-Lancho, B. (2013). Context-aware multiagent system: Planning home care tasks. Knowledge and Information Systems.

Howe, A., & Anderson, J. (2003). Involving patients in medical education. BMJ (Clinical Research Ed.), 327(7410), 326–8.

Huang, F.-H. (2015). Explore Home Care Needs and Satisfaction for Elderly People with Chronic Disease and their Family Members. Procedia Manufacturing, 3, 173–179.

Knai, C., Brusamento, S., Legido-Quigley, H., Saliba, V., Panteli, D., Turk, E., … Busse, R. (2012). Systematic review of the methodological quality of clinical guideline development for the management of chronic disease in Europe. Health Policy (Amsterdam, Netherlands), 107(2-3), 157–67.

Koutkias, V. G., Chouvarda, I., & Maglaveras, N. (2003). Multi-agent System Architecture for Heart Failure Management in a Home Care Environment. Computers in Cardiology, 2003, 383–386.

Preuveneers, D., Berbers, Y., & Joosen, W. (2013). The Future of Mobile E-health Application Development: Exploring HTML5 for Context-aware Diabetes Monitoring. Procedia Computer Science, 21, 351–359.

Raspberry Pi - Teach, Learn, and Make with Raspberry Pi. (n.d.). Retrieved January 20, 2016, from

van den Berg, N., Schumann, M., Kraft, K., & Hoffmann, W. (2012). Telemedicine and telecare for older patients--a systematic review. Maturitas, 73(2), 94–114.

Varma, D., Shete, V. V, & Somani, S. B. (2015). Development of Home Health Care Self Monitoring System, 4(6), 252–255.

Varshney, U. (2014). Mobile health: Four emerging themes of research. Decision Support Systems, 66, 20–35.

Virone, G., Wood, A., Selavo, L., Cao, Q., Fang, L., Doan, T., … Stankovic, J. a. (2006). An Advanced Wireless Sensor Network for Health Monitoring. Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare (D2H2), 2–5.

Wimmer, N. J., Scirica, B. M., & Stone, P. H. (2013). The clinical significance of continuous ECG (ambulatory ECG or Holter) monitoring of the ST-segment to evaluate ischemia: a review. Progress in Cardiovascular Diseases, 56(2), 195–202.

Wood, A., Stankovic, J., Virone, G., Selavo, L., He, Z., Cao, Q., … Stoleru, R. (2008). Context-aware wireless sensor networks for assisted living and residential monitoring. IEEE Network, 22(4), 26–33.

Zato, C., Villarrubia, G., Sánchez, A., Bajo, J., & Manuel Corchado, J. (2013). PANGEA: A new platform for developing virtual organizations of agents. International Journal of Artificial Intelligence, 11(13 A), 93–102. Retrieved from