Llegada de las ideas de la didáctica de la matemática francesa a los documentos oficiales de la municipalidad de Buenos Aires
Contenido principal del artículo
Resumen
Palabras clave:
Descargas
Detalles del artículo
Citas
Biel, C., Cierniak, G., D. Johnson, M., Bull, S., & Hesse, F. W. (2016). Influencing Cognitive Density and Enhancing Classroom Orchestration. En P. Reimann, S. Bull, M. Kickmeier-Rust, R. Vatrapu, & B. Wasson (Eds.), Measuring and Visualizing Learning in the Information-Rich Classroom. doi:https://doi.org/10.4324/9781315777979
Corbett, A. T., & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253-278. doi:https://doi.org/10.1007/BF01099821
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. doi:https://doi.org/10.2307/249008
Djoub, Z. (2017). Assessment for learning: Feeding back and feeding forward. En E. Cano & G. Ion (Eds.), Innovative Practices for Higher Education Assessment and Measurement (pp. 19-35). Hershey PA, USA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-0531-0
Dunlap, K., & Piro, J. S. (2016). Diving into data: Developing the capacity for data literacy in teacher education. Cogent Education, 3(1), 1132526. doi:https://doi.org/10.1080/2331186X.2015.1132526
Garrison, D. R., & Vaughan, N. D. (2007). Blended Learning in Higher Education: Framework, Principles, and Guidelines. San Francisco, CA, USA: John Wiley & Sons, Inc. doi:https://doi.org/10.1002/9781118269558
Gómez-Aguilar, D. A., García-Peñalvo, F.-J., & Therón, R. (2014). Analítica visual en e-learning. El Profesional de la Informacion, 23(3), 236-245. doi:https://doi.org/10.3145/epi.2014.may.03
Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60-67. doi:https://doi.org/10.1016/j.chb.2014.11.001
Guàrdia, L., Crisp, G., & Alsina, I. (2017). Trends and Challenges of E-Assessment to Enhance Student Learning in Higher Education. En E. Cano & G. Ion (Eds.), Innovative Practices for Higher Education Assessment and Measurement (pp. 36-56). Hershey PA, USA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-0531-0.ch003
Hattie, J. (2008). Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement. Abingdon, UK: Routledge.
Henri, M., Johnson, M. D., & Nepal, B. (2017). A Review of Competency-Based Learning: Tools, Assessments, and Recommendations: A Review of Competency-Based Learning. Journal of Engineering Education, 106(4), 607-638. doi:https://doi.org/10.1002/jee.20180
Idrissi, M. K., Hnida, M., & Bennani, S. (2017). Competency-Based Assessment: From Conceptual Model to Operational Tool. En E. Cano & G. Ion (Eds.), Innovative Practices for Higher Education Assessment and Measurement (pp. 55-78). Hershey PA, USA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-0531-0.ch004
Kay, J., & Bull, S. (2015). New Opportunities with Open Learner Models and Visual Learning Analytics. En C. Conati, N. Heffernan, A. Mitrovic, & M. F. Verdejo, (Eds.), Artificial Intelligence in Education. AIED 2015 (pp. 666-669). Cham: Springer. doi:https://doi.org/10.1007/978-3-319-19773-9_87
Miller, H. G., & Mork, P. (2013). From Data to Decisions: A Value Chain for Big Data. IT Professional, 15(1), 57-59. doi:https://doi.org/10.1109/MITP.2013.11
Pardo, A., & Dawson, S. (2016). Learning Analytics: How can Data be used to Improve Learning Practice. En P. Reimann, S. Bull, M. Kickmeier-Rust, R. Vatrapu, & B. Wasson (Eds.), Measuring and Visualizing Learning in the Information-Rich Classroom (pp. 41-55). New York, USA: Routledge. doi:https://doi.org/10.4324/9781315777979
Romero, C., Romero, J. R., & Ventura, S. (2014). A Survey on Pre-Processing Educational Data. En A. Peña-Ayala (Ed.), Educational Data Mining (Vol. 524, pp. 29-64). Cham: Springer. doi:https://doi.org/10.1007/978-3-319-02738-8_2
Shields, M. (2005). Information Literacy, Statistical Literacy, Data Literacy. IASSIST Quarterly, 28(2), 7-14. doi:https://doi.org/10.29173/iq790
Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960-967. doi:https://doi.org/10.1016/j.promfg.2018.03.137
Vaughan, N. (2014). Student Engagement and Blended Learning: Making the Assessment Connection. Education Sciences, 4(4), 247-264. doi:https://doi.org/10.3390/educsci4040247
Villamañe, M., Alvarez, A., & Larrañaga, M. (2018). Supporting competence-based learning with visual learning analytics and recommendations. 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1572-1575). USA: IEEE. doi:https://doi.org/10.1109/EDUCON.2018.8363421
Wahdain, E. A., & Ahmad, M. N. (2014). User Acceptance of Information Technology: Factors, Theories and Applications. Journal of Research and Innovation in Information Systems, 6, 17-25.
Yudelson, M. V., Koedinger, K. R., & Gordon, G. J. (2013). Individualized Bayesian Knowledge Tracing Models. En H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial Intelligence in Education. AIED 2013, (pp. 171-180). Berlin: Springer. doi:https://doi.org/10.1007/978-3-642-39112-5_18