Efectos fisiológicos en un ambiente de microgravedad
Horizonte Final (1997)
- Referencias
- Cómo citar
- Del mismo autor
- Métricas
Domínguez-Vías G. The Disaster of 96: An educational way of explaining the physiological reactions produced as a consequence of exposure to low oxygen pressure at high altitude using the film Everest (2015). J. Med. Mov. 2018;14(4):227–236.
Domínguez-Vías G. Dive bomber (1941): a study model of aviation physiology. J Med Mov. 2020;16(4):261–277.
Domínguez Vías G, Marín Amieva B, López Martín E. Cinema Seminar as a guidance resource in the election of undergraduate dissertation in the subject of physiology. J. Med. Mov. 2018;14(2):103-113.
Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: Effects on human physiology. CMAJ [Internet]. 2009;180(13):1317–1323.
Iwasaki K, Levine BD, Zhang R, Zuckerman JH, Pawelczyk JA, Diedrich A, et al. Human cerebral autoregulation before, during and after spaceflight. J Physiol [Internet]. 2007;579(3):799–810.
Marshall-Goebel K, Laurie SS, Alferova I v., Arbeille P, Auñón-Chancellor SM, Ebert DJ, et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Netw Open [Internet]. 2019;2(11):e1915011.
Shackelford LC. Musculoskeletal response to space flight. In: Barrat MR, Pool SL, editors. Principles of Clinical Medicine for Space Flight. New York (NY): Springer New York; 2008. p. 293–306.
Tobinick E, Vega CP. The cerebrospinal venous system: Anatomy, physiology, and clinical implications. MedGenMed. 2006;8(1):53.
Kim DH, Parsa CF. Space flight and disc edema. Ophthalmology. 2012;119(11):2420–2421.
Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–2069.
West JB. Historical perspectives: Physiology in microgravity. J. App. Physiol [Internet]. 2000;89(1):379–384.
Yates BJ, Kerman IA. Post-spaceflight orthostatic intolerance: Possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res. Rev. 1998;28(1-2):73–82.
Hellweg CE, Baumstark-Khan C. Getting ready for the manned mission to Mars: The astronauts’ risk from space radiation. Naturwissenschaften. 2007;94(7):517–526.
Fukunaga H. The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int. J. Mol. Sci. 2020;21:6349.
Bellesi M, Bushey D, Chini M, Tononi G, Cirelli C. Contribution of sleep to the repair of neuronal DNA double-strand breaks: Evidence from flies and mice. Sci. Rep. 2016;6:36804.
Andersen ML, Ribeiro DA, Bergamaschi CT, Alvarenga TA, Silva A, Zager A, et al. Distinct effects of acute and chronic sleep loss on DNA damage in rats. Prog Neuropsychopharmacol. Biol. Psychiatry. 2009;33(3):562–567.
Squire T, Ryan A, Bernard S. Radioprotective effects of induced astronaut torpor and advanced propulsion systems during deep space travel. Life Sci. Space. Res. 2020;26:105–113.
Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, et al. Hibernation for space travel: Impact on radioprotection. Life Sci. Space. Res. 2016;11:1-9.
Jones H. «Starship life support». In: SAE Technical Paper. SAE International; 2009-01-2466. International Conference On Environmental Systems. 2009. e-ISSN: 2688-3627.
Dakup PP, Porter KI, Cheng Z, Gaddameedhi S. Circadian clock protects against radiation-induced dermatitis and cardiomyopathy in mice [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res. 2018;78(13 Suppl):Abstract nr 4159.
Dakup PP, Porter KI, Gaddameedhi S. The circadian clock protects against acute radiation-induced dermatitis. Toxicol. Appl. Pharmacol. 2020;399:115040.
Cockett TK, Beehler CC. Protective Effects of Hypothermia in Exploration of Space. JAMA. 1962;182(10):977–979.
Nordeen CA, Martin SL. Engineering human stasis for long-duration spaceflight. Physiology. 2019;34(2):101–111.
Swaffield TP, Neviaser AS, Lehnhardt K. Fracture risk in spaceflight and potential treatment options. Aerosp. Med. Hum. Perform. 2018;89(12):1060-1067.
LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos. Int. 2013;24(7):2105–2114.
Sibonga J, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone. 2019;128:112037.
Kleiven S. Why Most Traumatic Brain Injuries are Not Caused by Linear Acceleration but Skull Fractures are. Front. Bioeng. Biotechnol. 2013;1:15.
Abrahamyan MG. On the Physics of the Bone Fracture. International Journal of Clinical and Experimental Medical Sciences. 2017;3(6):74–77.
Tacker WA, Balldin UI, Burton RR, Glaister DH, Gillingham KK, Mercer JR. Induction and prevention of acceleration atelectasis. Aviat. Space. Environ. Med. 1987;58(1):69–75.
Haswell MS, Tacker WA, Balldin UI, Burton RR. Influence of inspired oxygen concentration on acceleration atelectasis. Aviat. Space. Environ. Med. 1986;57(5):432–437.
Brinckmann E. Biology in Space and Life on Earth. In: Brinckmann E, editor. Biology in Space and Life on Earth: Effects of Spaceflight on Biological Systems. Wiley; 2007. P.1–277.
Messerotti Benvenuti S, Bianchin M, Angrilli A. Effects of simulated microgravity on brain plasticity: A startle reflex habituation study. Physiol. Behav. 2011;104(3):503–506.
Rasmussen SA, Mazurek MF, Rosebush PI. Catatonia: Our current understanding of its diagnosis, treatment and pathophysiology. World J. Psychiatry. 2016;6(4):391-398.
Walther S, Strik W. Catatonia. CNS Spectr. 2016;21(4):341–348.
Domínguez-Vías G. Dive bomber (1941): a study model of aviation physiology. J Med Mov. 2020;16(4):261–277.
Domínguez Vías G, Marín Amieva B, López Martín E. Cinema Seminar as a guidance resource in the election of undergraduate dissertation in the subject of physiology. J. Med. Mov. 2018;14(2):103-113.
Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: Effects on human physiology. CMAJ [Internet]. 2009;180(13):1317–1323.
Iwasaki K, Levine BD, Zhang R, Zuckerman JH, Pawelczyk JA, Diedrich A, et al. Human cerebral autoregulation before, during and after spaceflight. J Physiol [Internet]. 2007;579(3):799–810.
Marshall-Goebel K, Laurie SS, Alferova I v., Arbeille P, Auñón-Chancellor SM, Ebert DJ, et al. Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight. JAMA Netw Open [Internet]. 2019;2(11):e1915011.
Shackelford LC. Musculoskeletal response to space flight. In: Barrat MR, Pool SL, editors. Principles of Clinical Medicine for Space Flight. New York (NY): Springer New York; 2008. p. 293–306.
Tobinick E, Vega CP. The cerebrospinal venous system: Anatomy, physiology, and clinical implications. MedGenMed. 2006;8(1):53.
Kim DH, Parsa CF. Space flight and disc edema. Ophthalmology. 2012;119(11):2420–2421.
Mader TH, Gibson CR, Pass AF, Kramer LA, Lee AG, Fogarty J, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology. 2011;118(10):2058–2069.
West JB. Historical perspectives: Physiology in microgravity. J. App. Physiol [Internet]. 2000;89(1):379–384.
Yates BJ, Kerman IA. Post-spaceflight orthostatic intolerance: Possible relationship to microgravity-induced plasticity in the vestibular system. Brain Res. Rev. 1998;28(1-2):73–82.
Hellweg CE, Baumstark-Khan C. Getting ready for the manned mission to Mars: The astronauts’ risk from space radiation. Naturwissenschaften. 2007;94(7):517–526.
Fukunaga H. The Effect of Low Temperatures on Environmental Radiation Damage in Living Systems: Does Hypothermia Show Promise for Space Travel? Int. J. Mol. Sci. 2020;21:6349.
Bellesi M, Bushey D, Chini M, Tononi G, Cirelli C. Contribution of sleep to the repair of neuronal DNA double-strand breaks: Evidence from flies and mice. Sci. Rep. 2016;6:36804.
Andersen ML, Ribeiro DA, Bergamaschi CT, Alvarenga TA, Silva A, Zager A, et al. Distinct effects of acute and chronic sleep loss on DNA damage in rats. Prog Neuropsychopharmacol. Biol. Psychiatry. 2009;33(3):562–567.
Squire T, Ryan A, Bernard S. Radioprotective effects of induced astronaut torpor and advanced propulsion systems during deep space travel. Life Sci. Space. Res. 2020;26:105–113.
Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, et al. Hibernation for space travel: Impact on radioprotection. Life Sci. Space. Res. 2016;11:1-9.
Jones H. «Starship life support». In: SAE Technical Paper. SAE International; 2009-01-2466. International Conference On Environmental Systems. 2009. e-ISSN: 2688-3627.
Dakup PP, Porter KI, Cheng Z, Gaddameedhi S. Circadian clock protects against radiation-induced dermatitis and cardiomyopathy in mice [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res. 2018;78(13 Suppl):Abstract nr 4159.
Dakup PP, Porter KI, Gaddameedhi S. The circadian clock protects against acute radiation-induced dermatitis. Toxicol. Appl. Pharmacol. 2020;399:115040.
Cockett TK, Beehler CC. Protective Effects of Hypothermia in Exploration of Space. JAMA. 1962;182(10):977–979.
Nordeen CA, Martin SL. Engineering human stasis for long-duration spaceflight. Physiology. 2019;34(2):101–111.
Swaffield TP, Neviaser AS, Lehnhardt K. Fracture risk in spaceflight and potential treatment options. Aerosp. Med. Hum. Perform. 2018;89(12):1060-1067.
LeBlanc A, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos. Int. 2013;24(7):2105–2114.
Sibonga J, Matsumoto T, Jones J, Shapiro J, Lang T, Shackelford L, et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone. 2019;128:112037.
Kleiven S. Why Most Traumatic Brain Injuries are Not Caused by Linear Acceleration but Skull Fractures are. Front. Bioeng. Biotechnol. 2013;1:15.
Abrahamyan MG. On the Physics of the Bone Fracture. International Journal of Clinical and Experimental Medical Sciences. 2017;3(6):74–77.
Tacker WA, Balldin UI, Burton RR, Glaister DH, Gillingham KK, Mercer JR. Induction and prevention of acceleration atelectasis. Aviat. Space. Environ. Med. 1987;58(1):69–75.
Haswell MS, Tacker WA, Balldin UI, Burton RR. Influence of inspired oxygen concentration on acceleration atelectasis. Aviat. Space. Environ. Med. 1986;57(5):432–437.
Brinckmann E. Biology in Space and Life on Earth. In: Brinckmann E, editor. Biology in Space and Life on Earth: Effects of Spaceflight on Biological Systems. Wiley; 2007. P.1–277.
Messerotti Benvenuti S, Bianchin M, Angrilli A. Effects of simulated microgravity on brain plasticity: A startle reflex habituation study. Physiol. Behav. 2011;104(3):503–506.
Rasmussen SA, Mazurek MF, Rosebush PI. Catatonia: Our current understanding of its diagnosis, treatment and pathophysiology. World J. Psychiatry. 2016;6(4):391-398.
Walther S, Strik W. Catatonia. CNS Spectr. 2016;21(4):341–348.
Prieto-Gómez, I., Ramirez-Sánchez, M., & Domínguez-Vías, G. (2021). Efectos fisiológicos en un ambiente de microgravedad: Horizonte Final (1997). Revista De Medicina Y Cine, 17(4), 337–350. https://doi.org/10.14201/rmc2021174337350
Artículos más leídos del mismo autor/a
- Nora Suleiman-Martos, Rubén García-Lara, Isaac Narbona-Sánchez, Germán Domínguez-Vías, Proyecto lázaro (2016): de la criopreservación celular a humana. Mito y realidad para la formación docente en el área de ciencias de la salud , Revista de Medicina y Cine: Vol. 18 Núm. 3 (2022)
- Germán Domínguez-Vías, Bombarderos en picado (1941): un modelo de estudio de la fisiología de la aviación , Revista de Medicina y Cine: Vol. 16 Núm. 4 (2020)
- Isabel Prieto-Gómez, Manuel Ramírez-Sánchez, Ana Belén Segarra-Robles, Nora Suleiman-Martos, Francisco García-Cózar, Germán Domínguez-Vías, The Thing (1982): un primer modelo de prediagnóstico para las infecciones y alteraciones de la fisiología , Revista de Medicina y Cine: Vol. 19 Núm. 4 (2023)
- Carmen Fernández-Martos, Nora Suleiman-Martos, José Luis Gómez-Urquiza, Isabel Prieto-Gómez, Manuel Ramírez-Sánchez, Ana Belén Segarra-Robles, Francisco García-Cózar, Germán Domínguez-Vías, La serpiente y el arco iris (1988): un modelo fisiopatológico por sobredosis de tetrodotoxina , Revista de Medicina y Cine: Vol. 20 Núm. 3 (2024)
Descargas
Los datos de descargas todavía no están disponibles.
+
−