Main Article Content

Sergio Miguel Tomé
Universidad de Salamanca
Spain
Vol. 8 No. 4 (2019), Articles, pages 83-96
DOI: https://doi.org/10.14201/ADCAIJ2019848396
Accepted: Apr 22, 2020
Copyright How to Cite

Abstract

Semantics is one of the most challenging aspects of cognitive architectures. Mathematical logic, or linguistics, highlights that semantics is essential to human cognition. The Cognitive Theory of True Conditions (CTTC) is a proposal to implement cognitive abilities and to describe the semantics of symbolic cognitive architectures based on model-theoretic semantics. This article focuses on the concepts supporting the mathematical formulation of the CTTC, its relationship to other proposals, and how it can be used as a framework for designing cognitive abilities in agents.

Downloads

Download data is not yet available.

Article Details

References

Barsalou, L., 2008. Grounded Cognition. Annual Review of Psychology, 59(1):617-645. - https://doi.org/10.1146/annurev.psych.59.103006.093639

Barsalou, L., 2010. Grounded Cognition: Past, Present, and Future. Topics in Cognitive Science, 2(4):716-724. Brachman, R. and Levesque, H., 2004. Knowledge Representation and Reasoning. Morgan Kaufmann. - https://doi.org/10.1111/j.1756-8765.2010.01115.x

Davidson, D., 1967. Truth and Meaning. Synthese, 17(3):304-323. Davidson, D., 2005. Truth and Predication. Harvard University Press. - https://doi.org/10.1007/BF00485035

Gödel, K., 1931. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. - https://doi.org/10.1007/BF01700692

Monatshefte für Mathematik und Physik, 38(1):173-198.

Jacques, P. et al., 2018. Remembering and imagining alternative versions of the personal past. Neuropsychologia, 110:170-179. - https://doi.org/10.1016/j.neuropsychologia.2017.06.015

Johnson-Laird, P., 1980. Mental Models in Cognitive Science. Cognitive Science, 4(1):71-115. - https://doi.org/10.1207/s15516709cog0401_4

Kotseruba, I. and Tsotsos, J., 2020. 40 years of cognitive architectures: core cognitive abilities and practical applications. Artificial Intelligence Review, (53):17-94. - https://doi.org/10.1007/s10462-018-9646-y

Langley, P. et al., 2009. Cognitive architectures: Research issues and challenges. Cognitive Systems Research, 10(2):141-160. - https://doi.org/10.1016/j.cogsys.2006.07.004

Manzano, M., 1999. Model Theory. Oxford University Press.

Merrick, K., 2017. Value systems for develpmental cognitive robotics: A survey. Cognitive Systems Research, 41:38 - 55. - https://doi.org/10.1016/j.cogsys.2016.08.001

Miguel-Tomé, S., 2006. Principios matemáticos del pensamiento natural: Teoría cognitiva de condiciones de verdad. Gráficas Quintanilla.

Miguel-Tomé, S., 2017. Principios matemáticos del comportamiento natural. Ph.D. thesis, Universidad de Salamanca.

Miguel-Tomé, S., 2018a. Decision-making processes in the Cognitive Theory of True Conditions. ArXiv:1803.02476.

Miguel-Tomé, S., 2018b. Multi-optional Many-sorted Past Present Future structures and its description. ArXiv:1801.08212.

Miguel-Tomé, S., 2018c. Navigation through unknown and dynamic open spaces using topological notions. Connection Science, 30(2):160-185. - https://doi.org/10.1080/09540091.2016.1277691

Miller, G., 1956. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information. Psychological Review, 63(2):81-97. - https://doi.org/10.1037/h0043158

Mira-Mira, J. and García-Delgado, A., 2007. On how the computational paradigm can help us to model and interpret the neural function. Nat. Comput., 6(3):211-240. - https://doi.org/10.1007/s11047-006-9008-6

Mueller, E., 2015. Commonsense Reasoning: An Event Calculus Based Approach. Morgan Kaufmann, 2nd edition edition. - https://doi.org/10.1016/B978-0-12-801416-5.00002-4

Newell, A., 1973. You can't play 20 questions with nature and win. In Visual Information Processing, pages 283-308. Academic Press. - https://doi.org/10.1016/B978-0-12-170150-5.50012-3

Newell, A., 1990. Unified theories of cognition. Harvard University Press.

Pezzulo, G. et al., 2013. Computational Grounded Cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology, 3:612. - https://doi.org/10.3389/fpsyg.2012.00612

Samsonovich, A., 2010. Toward a unified catalog of implemented cognitive architectures. In Proceeding of the 2010 conference on biologically inspired cognitive architectures, pages 195-244.

Sescousse, G. et al., 2013. Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4):681 - 696. - https://doi.org/10.1016/j.neubiorev.2013.02.002

Targon, V., 2016. Learning the Semantics of Notational Systems with a Semiotic Cognitive Automaton. Cognitive Computation, 8(4):555-576. - https://doi.org/10.1007/s12559-015-9378-0

Thielscher, M., 2005. Reasoning Robots:The Art and Science of Programming Robotic Agents. Springer Netherlands.

Wang, P., 2005. Experience-grounded semantics: a theory for intelligent systems. Cognitive Systems Research, 6(4):282-302. - https://doi.org/10.1016/j.cogsys.2004.08.003

Wang, P., 2009. Analogy in a general-purpose reasoning system. Cognitive Systems Research, 10(3):286-296. - https://doi.org/10.1016/j.cogsys.2008.09.003