Multi-agent system for anomaly detection in Industry 4.0 using Machine Learning techniques
Main Article Content
Abstract
Keywords:
Downloads
Article Details
References
Azzaoui, H., Mansouri, I., and Elkihel, B., 2019. Methylcyclohexane Continuous Distillation Column Fault Detection Using Stationary Wavelet Transform and Fuzzy C-means. Materials Today: Proceedings, 13:597- 606. ISSN 2214-7853. doi:https://doi.org/10.1016/j.matpr.2019.04.018. International Conference on Materials and Environmental Science, ICMES2018, Mohammed Premier University, Oujda, Morocco, April 26-28, 2018. - https://doi.org/10.1016/j.matpr.2019.04.018
Cabrera, D., Guamán, A., Zhang, S., Cerrada, M., Sánchez, R.-V., Cevallos, J., Long, J., and Li, C., 2020. Bayesian approach and time series dimensionality reduction to LSTM-based model-building for fault diagnosis of a reciprocating compressor. Neurocomputing, 380:51-66. ISSN 0925-2312. doi:https: //doi.org/10.1016/j.neucom.2019.11.006. - https://doi.org/10.1016/j.neucom.2019.11.006
Carvalho, A., Mahony, N. O., Krpalkova, L., Campbell, S., Walsh, J., and Doody, P., 2019. At the Edge of Industry 4.0. Procedia Computer Science, 155:276-281. ISSN 1877-0509. doi:https://doi.org/10.1016/j.procs. 2019.08.039. The 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2019),The 14th International Conference on Future Networks and Communications (FNC-2019),The 9th International Conference on Sustainable Energy Information Technology. - https://doi.org/10.1016/j.procs.2019.08.039
Ceruti, A., Marzocca, P., Liverani, A., and Bil, C., 2019. Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing. Journal of Computational Design and Engineering, 6(4):516-526. ISSN 2288-4300. doi:https://doi.org/10.1016/j.jcde.2019.02.001. - https://doi.org/10.1016/j.jcde.2019.02.001
Chen, H., Jiang, B., Zhang, T., and Lu, N., 2019. Data-driven and deep learning-based detection and diagnosis of incipient faults with application to electrical traction systems. Neurocomputing. ISSN 0925-2312. doi:https://doi.org/10.1016/j.neucom.2018.07.103. - https://doi.org/10.1016/j.neucom.2018.07.103
Diez-Olivan, A., Ser, J. D., Galar, D., and Sierra, B., 2019. Data fusion and machine learning for industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion, 50:92-111. - https://doi.org/10.1016/j.inffus.2018.10.005
Han, J., Kamber, M., and Pei, J., 2012. 3 - Data Preprocessing. In Data Mining (Third Edition), The Morgan Kaufmann Series in Data Management Systems, pages 83-124. Morgan Kaufmann, Boston, third edition edition. ISBN 978-0-12-381479-1. doi:https://doi.org/10.1016/B978-0-12-381479-1.00003-4. - https://doi.org/10.1016/B978-0-12-381479-1.00003-4
Hanga, K. M. and Kovalchuk, Y., 2019. Machine learning and multi-agent systems in oil and gas industry applications: A survey. Computer Science Review, 34:100191. ISSN 1574-0137. doi:https://doi.org/10. 1016/j.cosrev.2019.08.002. - https://doi.org/10.1016/j.cosrev.2019.08.002
Hasan, M. J., Islam, M. M., and Kim, J.-M., 2019. Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions. Measurement, 138:620-631. ISSN 0263-2241. doi:https://doi.org/10.1016/j.measurement.2019.02.075. - https://doi.org/10.1016/j.measurement.2019.02.075
Hernandez-Leal, P., Kartal, B., and Taylor, M. E., 2019. A survey and critique of multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33:750-797. - https://doi.org/10.1007/s10458-019-09421-1
Lade, P., Ghosh, R., and Srinivasan, S., 2017. Manufacturing Analytics and Industrial Internet of Things. IEEE Intelligent Systems, 32:74-79. - https://doi.org/10.1109/MIS.2017.49
Liu, Q., Dong, M., Chen, F., Lv, W., and Ye, C., 2019. Single-machine-based joint optimization of predictive maintenance planning and production scheduling. Robotics and Computer-Integrated Manufacturing, 55:173-182. ISSN 0736-5845. doi:https://doi.org/10.1016/j.rcim.2018.09.007. Extended Papers Selected from FAIM2016. - https://doi.org/10.1016/j.rcim.2018.09.007
Luo, X., Fong, K., Sun, Y., and Leung, M., 2019. Development of clustering-based sensor fault detection and diagnosis strategy for chilled water system. Energy and Buildings, 186:17-36. ISSN 0378-7788. doi:https://doi.org/10.1016/j.enbuild.2019.01.006. - https://doi.org/10.1016/j.enbuild.2019.01.006
Ma, S., Cheng, B., Shang, Z., and Liu, G., 2018. Scattering transform and LSPTSVM based fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 104:155-170. ISSN 0888-3270. doi:https://doi.org/10.1016/j.ymssp.2017.10.026. - https://doi.org/10.1016/j.ymssp.2017.10.026
Martins, H., Januario, F., Brito Palma, L., Cardoso, A., and Gil, P., 2015. A machine learning technique in a multi-agent framework for online outliers detection in Wireless Sensor Networks. pages 000688-000693. doi:10.1109/IECON.2015.7392180. - https://doi.org/10.1109/IECON.2015.7392180
Pang, S., Yang, X., Zhang, X., and Lin, X., 2019. Fault diagnosis of rotating machinery with ensemble kernel extreme learning machine based on fused multi-domain features. ISA Transactions. ISSN 0019-0578. doi:https://doi.org/10.1016/j.isatra.2019.08.053. - https://doi.org/10.1016/j.isatra.2019.08.053
Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., and Loncarski, J., 2018. Machine Learning approach for Predictive Maintenance in Industry 4.0. pages 1-6. doi:10.1109/MESA.2018.8449150. - https://doi.org/10.1109/MESA.2018.8449150
Peres, R. S., Rocha, A. D., Leitao, P., and Barata, J., 2018. IDARTS-Towards intelligent data analysis and real-time supervision for industry 4.0. Computers in Industry, 101:138-146. ISSN 0166-3615. doi:https://doi.org/10.1016/j.compind.2018.07.004. - https://doi.org/10.1016/j.compind.2018.07.004
Ramchandran, A. and Sangaiah, A. K., 2018. Chapter 11 - Unsupervised Anomaly Detection for High Dimensional Data-an Exploratory Analysis. In Sangaiah, A. K., Sheng, M., and Zhang, Z., editors, Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, Intelligent Data-Centric Systems, pages 233-251. Academic Press. ISBN 978-0-12-813314-9. doi: https://doi.org/10.1016/B978-0-12-813314-9.00011-6. - https://doi.org/10.1016/B978-0-12-813314-9.00011-6
Ruiz-Sarmiento, J.-R., Monroy, J., Moreno, F.-A., Galindo, C., Bonelo, J.-M., and Gonzalez-Jimenez, J., 2020. A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Engineering Applications of Artificial Intelligence, 87:103289. ISSN 0952-1976. doi:https://doi.org/10.1016/j.engappai. 2019.103289. - https://doi.org/10.1016/j.engappai.2019.103289
Shafiee, M. and Sørensen, J. D., 2019. Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies. Reliability Engineering and System Safety, 192:105993. ISSN 0951-8320. doi:https://doi.org/10.1016/j.ress.2017.10.025. Complex Systems RAMS Optimization: Methods and Applications. - https://doi.org/10.1016/j.ress.2017.10.025
Tsang, C.-H. and Kwong, S., 2006. Multi-agent intrusion detection system in industrial network using ant colony clustering approach and unsupervised feature extraction. pages 51-56. ISBN 0-7803-9484-4. doi:10.1109/ICIT.2005.1600609. - https://doi.org/10.1109/ICIT.2005.1600609
Wolfert, S., Ge, L., Verdouw, C., and Bogaardt, M.-J., 2017. Big Data in Smart Farming-A review. Agricultural Systems, 153:69-80. ISSN 0308-521X. doi:https://doi.org/10.1016/j.agsy.2017.01.023. - https://doi.org/10.1016/j.agsy.2017.01.023
Zhang, H., Chen, H., Guo, Y., Wang, J., Li, G., and Shen, L., 2019. Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering. Applied Thermal Engineering, 160:114098. ISSN 1359-4311. doi:https://doi.org/10.1016/j.applthermaleng. 2019.114098. - https://doi.org/10.1016/j.applthermaleng.2019.114098
Zheng, J., Wang, H., Song, Z., and Ge, Z., 2019. Ensemble semi-supervised Fisher discriminant analysis model for fault classification in industrial processes. ISA Transactions, 92:109-117. ISSN 0019-0578. doi:https://doi.org/10.1016/j.isatra.2019.02.021. - https://doi.org/10.1016/j.isatra.2019.02.021