An Information Recognition System for Complex Images
Main Article Content
Abstract
Keywords:
Downloads
Article Details
References
Abdullaeva, G.G. & Alizadeh, U.M. (2015). Recognition of complex images on a plane. Scientific journal “Achievements and problems of modern science”, 65-70.
Abdullayeva, G.G. & Kazim-Zada, A.K. Recognition and identification of Plane Color Images in the Case of Carpet Designs. Automatic Control and Computer sciences, Allerton Press, Inc., division of Pl. Publ. 2008, № 6, pp 288-294
Abdullayeva, G.G., Ali-zadeh, C.A. & Hajiyev, Z.A. (2004). Intelligent system of optimization of choice of sort of operating interference. USA, CA: SPIE, Medical Imaging. URL: http://www.spie.org/vol.5371.
Alizade, U.M. (2018). Software package for recognition and identification of closed circuits in complex images (on the example of ultrasound images). The scientific heritage, № 20, Vol. 1, 39-42.
Buy, T.T.C. & Spitsyn V.G. (2010). Analysis of edge detection methods for digital images. Proceedings of TUSUR, N.º 2 (22), Part 2.pp 221-223 [in Russian].
Gonzalez, R. & Woods, R. (2012). Digital Image Processing (3rd Edition). M.:Technosfera, 1104 p.
Huseynov, A.Z. & Huseynov, T.A. (2016). Modern diagnosis of liver tumors. Electronic Journal of New Medical Technologies, No 4. 19 p. [in Russian].
Kazakevich, V.I., Mitina, L.A., Stepanov, S.O. & Vostrov, A.N. (2016). Ultrasound diagnosis of tumors of the main localizations: general principles and approaches. Analytical review, personal observations. Department of Ultrasound Diagnostics, P.A. Hertsen Moscow Oncology Research Center, Moscow. [in Russian].
Longacre, A. Jr., Hawley, T. & Pankow, M. (2016). System and method to manipulate an image. Patent number: 9477867.
Nikolsky, Y.Y., Chekhonatskaya, M.L., Zuyev, V.V. & Zakharova, N.B. (2016). The possibilities of the ultrasound method in the diagnosis of tumors of the renal parenchyma. Bulletin of Medical Internet Conferences, Vol. 6, Is. 2. [in Russian]. pp. 282-284
Ognev, I.V. & Sidorova, N.A. (2007). Image processing by mathematical morphology methods in an associative oscillatory environment. Tekhnicheskiye nauki. Informatika i vychislitel’naya tekhnika, No 4, 87-97. [in Russian].
Shapiro, L. & Stockman, G. (2001). Computer Vision. Pearson.
Sinyukova, G.T., Gudilina, Y.A., Danzanova, T.Y., Sholokhov, V.N., Lepedatu, P.I., Allakhverdiyeva, G.F. & Kostyakova, L.A., Berdnikov S.N. (2016). Modern technologies of ultrasound imaging in the diagnosis of local recurrence of thyroid cancer. Medical Sciences, No 9(51). [in Russian]. pp. 81-84
Skouroliakou, C., Lyra, M., Antoniou, A. & Vlahos, L. (2006). Quantitative image analysis in sonograms of the thyroid gland. Nuclear Instruments and Methods in Physics Research A, v.569, 606-609.
Sukhareva, Y.A. & Ponomareva, L.A. (2013). Characteristics of diseases of the mammary glands in adolescent girls visiting the mammology clinic. Tumors of the female reproductive system, (1-2), 40-4. [in Russian].
Zoph, B., Vasudevan, V., Shlens, J. & Le, V.Q. (2018). Learning Transferable Architectures for Scalable Image Recognition. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8697-8710.