An Intelligent Multi-Resolutional and Rotational Invariant Texture Descriptor for Image Retrieval Systems
Main Article Content
Abstract
Keywords:
Downloads
Article Details
References
Alaei, F., Alaei, A., Pal, U., & Blumenstein, M. (2018). AC PT US CR. Expert Systems With Applications. https://doi.org/10.1016/j.eswa.2018.12.007.
Chamasemani, F. F. (2011). Multi-class Support Vector Machine ( SVM ) classifiers - An Application in Hypothyroid detection and Classification, 353-358. https://doi.org/10.1109/BIC-TA.2011.51.
Chorowski, J., Wang, J., & Zurada, J. M. (2014). Neurocomputing Review and performance comparison of SVM and ELM-based classifiers $, 128, 507-516. https://doi.org/10.1016/j.neucom.2013.08.009.
Das, R., Dash, J. K., & Mukhopadhyay, S. (2013). Rotation invariant textural feature extraction for image retrieval using eigen value analysis of intensity gradients and multi-resolution analysis, 46, 3256-3267. https://doi.org/10.1016/j.patcog.2013.05.026
Ding, S., & Xu, X. (2013). Extreme learning machine: algorithm, theory and applications, (August 2014). https://doi.org/10.1007/s10462-013-9405-z.
Fadaei, S., Amirfattahi, R., & Ahmadzadeh, M. R. (2017). Local derivative radial patterns: A new texture descriptor for content-based image retrieval. Signal Processing, 137, 274-286. https://doi.org/10.1016/j.sigpro.2017.02.013.
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Neurocomputing Deep learning for visual understanding: A review, 187, 27-48. https://doi.org/10.1016/j.neucom.2015.09.116.
Haralick, R. M., & Shanmugam, K. (1973). Textural Features for Image Classification.
Hemachandran, K., Paul, A., & Singha, M. (2012). Content-based image retrieval using the combination of the fast wavelet transformation and the colour histogram. IET Image Processing, 6(9), 1221-1226. https://doi.org/10.1049/iet-ipr.2011.0453.
Huang, D., Member, S., Shan, C., & Ardabilian, M. (2011). Local Binary Patterns and Its Application to Facial Image Analysis: A Survey, (November). https://doi.org/10.1109/TSMCC.2011.2118750.
Huang, G., Member, S., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme Learning Machine for Regression and Multiclass Classification, 42(2), 513-529.
Jain, A. K., & Vailaya, A. (1995). Image Retrieval using Color and Shape. Pattern Recognition, 29, 1233-1244. https://doi.org/10.1016/0031-3203(95)00160-3.
Karthikeyan, T., & Manikandaprabhu, P. (2014). A Study on Discrete Wavelet Transform based Texture Feature Extraction for Image Mining, 5(5), 1805-1811.
Kastrati, Z., & Imran, A. S. (2019). Performance Analysis of Machine Learning Classifiers on Improved Concept Vector Space Models. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2019.02.006.
Kokare, M., Biswas, P. K., & Chatterji, B. N. (2005). Complex Wavelet Filters, 35(6), 1168-1178.
Kumar, Y., Aggarwal, A., Tiwari, S., & Singh, K. (2018). An efficient and robust approach for biomedical image retrieval using Zernike moments. Biomedical Signal Processing and Control, 39, 459-473. https://doi.org/10.1016/j.bspc.2017.08.018.
Liao, S., Law, M. W. K., & Chung, A. C. S. (2009). for Texture Classification, 18(5), 1107-1118.
Liu, S., Wang, H., Wu, J., & Feng, L. (2015). Incorporate Extreme Learning Machine to content-based image retrieval with relevance feedback, (March). https://doi.org/10.1109/WCICA.2014.7052854.
Lu, B., Duan, X., & Wang, C. (n.d.). A Novel Approach for Image Classification Based on Extreme Learning Machine.
Maheshwari, S. M. R. P., & Balasubramanian, R. (2012). Directional local extrema patterns: a new descriptor for content based image retrieval, 191-203. https://doi.org/10.1007/s13735-012-0008-2.
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012). Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval, (May). https://doi.org/10.1109/TIP.2012.2188809.
Naghashi, V. (2018). Optik Co-occurrence of adjacent sparse local ternary patterns: A feature descriptor for texture and face image retrieval. Optik - International Journal for Light and Electron Optics, 157, 877-889. https://doi.org/10.1016/j.ijleo.2017.11.160.
Pavithra, L. K., & Sharmila, T. S. (2017).An efficient framework for image retrieval using color, texture and edge features R. Computers and Electrical Engineering, 0, 1-14. https://doi.org/10.1016/j.compeleceng.2017.08.030.
Pham, M. (2017). Color Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance. https://doi.org/10.3390/jimaging3040043.
Prakasa, E. (2016). Ekstraksi Ciri Tekstur dengan Menggunakan Local Binary Pattern Texture Feature Extraction by Using Local Binary Pattern, 9(2), 45-48. https://doi.org/10.14203/j.inkom.420.
Puviarasan, N., Bhavani, R., & Vasanthi, A. (2014). Image Retrieval Using Combination of Texture and Shape Features, 3(3), 5873-5877.
R, J. V. C. I., Murala, S., & Wu, Q. M. J. (2014). Expert content-based image retrieval system using robust local patterns. Journal Of Visual Communication And Image Representation, 25(6), 1324-1334. https://doi.org/10.1016/j.jvcir.2014.05.008.
Raghuwanshi, G., & Tyagi, V. (2015). Texture image retrieval using adaptive tetrolet transforms. Digital Signal Processing, 1(3), 1-8. https://doi.org/10.1016/j.dsp.2015.09.003.
Ricardo, A., Joaci, J., & Sá, D. M. (2017). Neurocomputing LBP maps for improving fractal based texture classification, 266, 1-7. https://doi.org/10.1016/j.neucom.2017.05.020.
Sreena, P. H., & George, D. S. (2013). Content Based Image Retrieval System with Fuzzified Texture Similarity Measurement, (Iccc), 80-85.
Srivastava, P., & Khare, A. (2017). Utilizing multiscale local binary pattern for content-based image retrieval. https://doi.org/10.1007/s11042-017-4894-4.
Wang, H., Feng, L., Zhang, J., & Liu, Y. (2016). Semantic discriminative metric learning for image similarity measurement. IEEE Transactions on Multimedia, 18(8), 1579-1589. https://doi.org/10.1109/TMM.2016.2569412.
Zhao, R., & Grosky, W. I. (2000). From features to semantics: some preliminary results. Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, 2(c), 679-682 vol.2. https://doi.org/10.1109/ICME.2000.871453.