Real Time Analytics for Characterizing the Computer User's State
Main Article Content
Abstract
Keywords:
Downloads
Article Details
References
Aiello, J. R. and Kolb, K. J., 1995. Electronic performance monitoring and social context: impact on productivity and stress. Journal of Applied Psychology, 80(3):339. https://doi.org/10.1037/0021-9010.80.3.339
Bertino, E., Bernstein, P., Agrawal, D., Davidson, S., Dayal, U., Franklin, M., Gehrke, J., Haas, L., Halevy, A., Han, J. et al., 2011. Challenges and Opportunities with Big Data. https://doi.org/10.14778/2367502.2367572
Cattell, R., 2011. Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4):12–27. https://doi.org/1978915.1978919.
Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E., 2006. Bigtable: A Distributed Storage System for Structured Data. In Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation - Volume 7, OSDI '06, pages 15–15. USENIX Association, Berkeley, CA, USA.
Chaudhuri, S. and Dayal, U., 1997. An overview of data warehousing and OLAP technology. ACM Sigmod record, 26(1):65–74. https://doi.org/10.1145/248603.248616
Dyrbye, L. N., Thomas, M. R., and Shanafelt, T. D., 2006. Systematic review of depression, anxiety, and other indicators of psychological distress among US and Canadian medical students. Academic Medicine, 81(4):354–373. https://doi.org/10.1097/00001888-200604000-00009
Gantz, J. and Reinsel, D., 2011. Extracting value from chaos. IDC iview, (1142):9–10.
Goebert, D., Thompson, D., Takeshita, J., Beach, C., Bryson, P., Ephgrave, K., Kent, A., Kunkel, M., Schechter, J., and Tate, J., 2009. Depressive symptoms in medical students and residents: a multischool study. Academic Medicine, 84(2):236–241. https://doi.org/10.1097/ACM.0b013e31819391bb
Hwang, K.-A. and Yang, C.-H., 2009. Automated Inattention and Fatigue Detection System in Distance Education for Elementary School Students. Educational Technology & Society, 12(2):22–35.
Kejariwal, A., Kulkarni, S., and Ramasamy, K., 2015. Real time analytics: algorithms and systems. Proceedings of the VLDB Endowment, 8(12):2040–2041. https://doi.org/10.14778/2824032.2824132.
Khazaei, H., Fokaefs, M., Zareian, S., Beigi-Mohammadi, N., Ramprasad, B., Shtern, M., Gaikwad, P., and Litoiu, M., 2015. How do I choose the right NoSQL solution? A comprehensive theoretical and experimental survey. Submitted to Journal of Big Data and Information Analytics (BDIA). https://doi.org/10.3934/bdia.2016004
Lourenço, J. R., Cabral, B., Carreiro, P., Vieira, M., and Bernardino, J., 2015. Choosing the right NoSQL database for the job: a quality attribute evaluation. Journal of Big Data, 2(1):1–26. https://doi.org/10.1186/s40537-015-0025-0
Mayer-Schönberger, V. and Cukier, K., 2013. Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt. ISBN 978-0544227750.
McEwen, B. S., 2012. Brain on stress: how the social environment gets under the skin. Proceedings of the National Academy of Sciences, 109(Supplement 2):17180–17185. https://doi.org/10.1073/pnas.1121254109
Pritchett, D., 2008. Base: An acid alternative. Queue, 6(3):48–55. https://doi.org/10.1145/1394127.1394128
Soares, J. M., Sampaio, A., Ferreira, L. M., Santos, N., Marques, F., Palha, J. A., Cerqueira, J., and Sousa, N., 2012. Stress-induced changes in human decision-making are reversible. Translational psychiatry, 2(7):e131. https://doi.org/10.1038/tp.2012.59
Stonebraker, M., 2010. SQL databases v. NoSQL databases. Communications of the ACM, 53(4):10–11. https://doi.org/10.1145/1721654.1721659
Strous, R. D., Shoenfeld, N., Lehman, A., Wolf, A., Snyder, L., and Barzilai, O., 2012. Medical students' self-report of mental health conditions. International journal of medical education, 3:1. doi:10.5116/ijme.4ed1.d1e0.