Main Article Content

Christian Paulo Villavicencio
ISISTAN, UNICEN
Argentina
Silvia Schiaffino
ISISTAN, UNICEN
Argentina
J. Andrés Díaz-Pace
ISISTAN, UNICEN
Argentina
Ariel Monteserin
ISISTAN, UNICEN
Argentina
Vol. 5 No. 3 (2016), Articles, pages 1-12
DOI: https://doi.org/10.14201/ADCAIJ201653112
Accepted: Nov 15, 2016
Copyright

Abstract

Providing recommendations to groups of users has become popular in many applications today. Although several group recommendation techniques exist, the generation of items that satisfy all group members in an even way still remains a challenge. To this end, we have developed a multi-agent approach called PUMAS-GR that relies on negotiation techniques to improve group recommendations. We applied PUMAS-GR to the movies domain, and used the monotonic concession protocol to reach a consensus on the movies proposed to a group.

Downloads

Download data is not yet available.

Article Details

References

Blanco-Fernandez, Y. et al., 2004. AVATAR: An Advanced Multi-agent Recommender System of Personalized TV Contents by Semantic Reasoning. s.l., s.n., pp. 415-421.

Cantador, I. & Castells, P., 2012. Group Recommender Systems: New Perspectives in the Social Web. In: Recommender Systems for the Social Web. s.l.:Springer Berlin Heidelberg, pp. 139-157.

Christensen, I. & Schiaffino, S., 2014. A hybrid approach for group profiling in recommender systems. J. of Universal Computer Science, 20(4), pp. 507-533.

Endriss, U., 2006. Monotonic Concession Protocols for Multilateral Negotiation. New York, NY, USA, ACM, pp. 392-399. https://doi.org/10.1145/1160633.1160702

Garcia, I. & Sebastia, L., 2014. A negotiation framework for heterogeneous group recommendation. Expert Systems with Applications , 41(4,1), pp. 1245-1261.

Garcia, I., Sebastia, L. & Onaindia, E., 2009. A Negotiation Approach for Group Recommendation. s.l., s.n., pp. 919-925.

Jameson, A. & Smyth, B., 2007. The Adaptive Web. In: P. Brusilovsky, A. Kobsa & W. Nejdl, eds. s.l.:Springer-Verlag, pp. 596-627.

Lee, W.-P., 2004. Towards agent-based decision making in the electronic marketplace: interactive recommendation and automated negotiation. s.l.:Elsevier {BV}.

Lopes, J. S., Alvarez-Napagao, S., Confalonieri, R. & Vázquez-Salceda, J., 2009. USE: a Multi-Agent User-Driven Recommendation System for Semantic Knowledge Extraction.

Marivate, V. N., Ssali, G. & Marwala, T., 2008. An Intelligent Multi-Agent Recommender System for Human Capacity Building. s.l., IEEE, pp. 909-915. https://doi.org/10.1109/melcon.2008.4618553

Masthoff, J., 2011. Recommender Systems Handbook. In: F. Ricci, L. Rokach, B. Shapira & P. Kantor, eds. s.l.:Springer Science+Business Media, pp. 677-702.

Morais, J., Oliveira, E. & Jorge, A., 2012. Distributed Computing and Artificial Intelligence. In: s.l.:Springer, pp. 281-288.

Ricci, F., Rokach, L., Shapira, B. & Kantor, P., 2010. Recommender Systems Handbook. s.l.:Springer.

Sebastiá, L., Giret, A. & García, I., 2011. A Multi Agent Architecture for Single User and Group Recommendation in the Tourism Domain.

Skocir, P., Marusic, L., Marusic, M. & Petric, A., 2012. Agent and Multi-Agent Systems. Technologies and Applications. In: s.l.:Springer, pp. 104-113.

Villavicencio, C., Schiaffino, S., Diaz-Pace, J. A. & Monteserin, A., 2016. PUMAS-GR: A Negotiation-Based Group Recommendation System for Movies. In: Y. Demazeau, T. Ito, J. Bajo & M. J. Escalona, eds. Advances in Practical Applications of Scalable Multi-agent Systems. The PAAMS Collection: 14th International Conference, PAAMS 2016, Sevilla, Spain, June 1-3, 2016, Proceedings. Cham: Springer International Publishing, pp. 294-298. https://doi.org/10.1007/978-3-319-39324-7_34

Wooldridge, M., 2009. An Introduction to MultiAgent Systems. Second Edition ed. s.l.:John Wiley & Sons.

Zeuthen, F. L. B., 1930. Problems of Monopoly and Economic Warfare. London, UK: Routledge and Sons.