Main Article Content

Xian Wang
Universidad Politécnica de Madrid
Spain
Paula Tarrío
Universidad Politécnica de Madrid
Spain
Ana María Bernardos
Universidad Politécnica de Madrid
Spain
Eduardo Metola
Universidad Politécnica de Madrid
Spain
José Ramón Casar
Universidad Politécnica de Madrid
Spain
Vol. 1 No. 3 (2012), Articles, pages 11-25
DOI: https://doi.org/10.14201/ADCAIJ20121311125
Accepted: Jul 1, 2013
Copyright

Abstract

Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone

Downloads

Download data is not yet available.

Article Details

References

CHAMBERS, G.S.; VENKATESH, S.; WEST, G.A.W. & BUI, H.H. Segmentation of Intentional Human Gestures for Sports Video Annotation, in: MMM '04 Proceedings of the 10th International Multimedia Modeling Conference, Brisbane, Australia, 2004, pp. 124-129.

CHO, S.J.; OH, J.K.; BANG, W.C.; CHANG, W.; CHOI, E.; JING, Y.; CHO, J. & KIM, D.Y. Magic wand: a hand-drawn gesture input device in 3-D space with inertial sensors, in: Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on, Kokubunji, Tokyo, Japan, 2004, pp. 106-111.

GONZALEZ-SANCHEZ, T. & PUIG, D. Real-time body gesture recognition using depth camera, Electronics Letters 47 (12) (2011) 697-698.

HOFMANN, F.G.; HEYER, P. & HOMMEL, G. Velocity profile based recognition of dynamic gestures with discrete Hidden Markov Models, in: International Gesture Workshop, Bielefeld, Germany, 1998, pp. 81-95.

JOSELLI, M. & CLUA, E. gRmobile: A Framework for Touch and Accelerometer Gesture Recognition for Mobile Games, in: Games and Digital Entertainment (SBGAMES), 2009 VIII Brazilian Symposium on, Rio de Janeiro, Brazil, 2009, pp. 141-150.

KAUPPILA, M.; PIRTTIKANGAS, S.; SU, X. & RIEKKI, J. Accelerometer Based Gestural Control of Browser Application, in: International Workshop on Real Field Identification (RFId2007), Tokyo, Japan, 2007, pp. 25-28.

KAUPPILA, M.; INKEROINEN, T.; PIRTTIKANGAS, S.; & RIEKKI, J. Mobile phone controller based on accelerative gesturing, in: Pervasive 2008, the Sixth International Conference on Pervasive Computing, Sydney, Australia, 2008, pp. 130-133.

KELA, J.; KORPIPÄÄ, P.; MÄNTYJÄRVI, J.; KALLIO, S.; SAVINO, G.; JOZZO, L. & MARCA, S.D. Accelerometer-based gesture control for a design environment, Personal and Ubiquitous Computing 10 (5) (2006) 285-299.

Kinect website, http://www.xbox.com/kinect, 2012

KO, M.H.; WEST, G.; VENKATESH, S. & KUMAR, M. Using dynamic time warping for online temporal fusion in multisensor systems, Information Fusion 9 (3) (2008) 370-388.

LIU, J.; WANG, Z.; ZHONG, L.; WICKRAMASURIYA, J. & VASUDEVAN, V. uWave: Accelerometer-based Personalized Gesture Recognition and its Applications, in: Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on, Galveston, TX, USA, 2009, pp. 1-9.

MÄNTYJÄRVI, J.; KELA, J.; KORPIPÄÄ, P. & KALLIO, S. Enabling fast and effortless customisation in accelerometer based gesture interaction, in: MUM '04: Proceedings of the 3rd international conference on Mobile and ubiquitous multimedia, College Park, MD, USA, 2004, pp. 25-31.

MYERS, C.; RABINER, L.R. & ROSENBERG, A.E. Performance tradeoffs in dynamic time warping algorithms for isolated word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing 28 (6) (1980) 623-635.

Niezen, G. & Hancke, G.P. Gesture Recognition as Ubiquitous Input for Mobile Phones, in: UbiComp ’08 Workshop W1 – Devices that Alter Perception (DAP 2008), Seoul, South Korea, 2008.

NIEZEN, G. & HANCKE, G.P. Evaluating and Optimising Accelerometer-based Gesture Recognition Techniques for Mobile Devices, in: AFRICON 2009, Nairobi, South Africa, 2009, pp. 1-6.

Nintendo's Wii website, http://www.nintendo.com/wii, 2012

PYLVÄNÄINEN, T. Accelerometer Based Gesture Recognition Using Continuous HMMs, in: Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, 2005, pp. 639-646.

SAKOE, H. & CHIBA, S. Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech and Signal Processing 26 (1) (1978) 43-49.

SATO, E.; YAMAGUCHI, T. & HARASHIMA, F. Natural Interface Using Pointing Behavior for Human–Robot Gestural Interaction, Industrial Electronics, IEEE Transactions on, 54 (2) (2007) 1105-1112.

SCHLÖMER, T.; POPPINGA, B.; HENZE, N. & BOLL, S. Gesture recognition with a Wii controller, in: TEI '08: Proceedings of the 2nd international conference on Tangible and embedded interaction, Bonn, Germany, 2008, pp. 11-14.

SERAFIMOV, K.; ANGELKOV, D.; KOCESKA, N. & KOCESKI, S. Using Mobile-phone Accelerometer for Gestural Control of Soccer Robots, in: Embedded Computing (MECO), 2012 Mediterranean Conference on, Bar, Montenegro, 2012, pp. 140-143.

SHAH, D.; SCHNEIDER, J. & CAMPBELL, M. A Sketch Interface for Robust and Natural Robot Control, Proceedings of the IEEE 100 (3) (2012) 604-622.

WANG, X.; TARRÍO, P.; METOLA, E,; BERNARDOS, A.M. & CASAR, J.R. Gesture recognition using mobile phone’s inertial sensors, in: 9th International Conference on Distributed Computing and Artificial Intelligence, Salamanca, Spain, 2012, Advances in Intelligent and Soft Computing, Volume 151, pp. 173-184.

WESTEYN, T.; BRASHEAR, H.; ATRASH, A. & STARNER, T. Georgia Tech Gesture Toolkit: Supporting Experiments in Gesture Recognition, in: ICMI '03: Proceedings of the 5th international conference on Multimodal interfaces, Vancouver, British Columbia, Canada, 2003, pp. 85-92.

WU, J.; PAN, G.; ZHANG, D.; QI, G.& LI, S. Gesture recognition with a 3-d accelerometer, in: 6th International Conference, Ubiquitous Intelligence and Computing (UIC) 2009, Brisbane, Australia, 2009, pp. 25-38.

YAN, R.; TEE, K.P.; CHUA, Y.; LI, H. & TANG, H. Gesture Recognition Based on Localist Attractor Networks with Application to Robot Control, Computational Intelligence Magazine, IEEE 7 (1) (2012) 64-74.

YANG, H.D.; PARK, A.Y. & LEE, S.W. Gesture Spotting and Recognition for Human–Robot Interaction, Robotics, IEEE Transactions on 23 (2) (2007) 256-270.