Conservation of the Amazonian Aquatic Biota

Abstract

In the Amazonian waters there are about three thousand known species of fish alongside several other aquatic species, including aquatic mammals such as manatees. It is possible that many species are yet to be described by science. The fish in this region face extreme natural conditions in their environments, such as low levels of oxygen, acidic and poor water in ions, high temperatures, intense droughts and floods. Global climate change is further exacerbating these environmental challenges. In addition, man-made environmental changes involving organic and inorganic pollutants are occurring in many parts of the region. These environmental conditions pose challenges for all fish species that exhibit adjustments at all levels of the biological organization. Knowing the adaptive capacity of these animals allows the design of aquatic biota conservation strategies, as well as more appropriate environmental interventions. Finally, it is fundamental to consider the importance of aquatic biota for the full implementation of the objectives of sustainable development in the Amazon.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Almeida- Val, V. M. F., Val, A. L. & Walker, I. (1999). Long- and short-term adaptation of Amazon fishes to varying O2-levels: intra-specific phenotypic plasticity and inter-specific variation. Em Val, A. L., Almeida-Val, V. M. F. (Eds). Biology of Tropical Fishes. Manaus: INPA.

Araújo, J. D., Ghelfi, A. & Val, A. L. (2017). Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity?. Frontiers in Genetics, 8, 114. https://doi.org/10.3389/fgene.2017.00114

Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J. W., Schöngart, J., Espinoza, J. C. & Pattnayak, K. C. (2018). Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, 4. https://doi.org/10.1126/sciadv.aat8785

Brauner, C. J., Ballantyne, C. L., Randall, D. J. & Val, A. L. (1995). Air breathing in the armoured catfish (Hoplosternum littorale) as an adaptation to hypoxic, acid, and hydrogen sulphide rich waters. Canadian Journal of Zoology, 73, 739-744. https://doi.org/10.1139/z95-086

Brauner, C. J., Ballantyne, C. L., Vijayan, M. M. & Val, A. L. (1999). Crude oil affects air-breathing frequency, blood phosphate levels and ion regulation in an air-breathing teleost fish, Hoplosternum littorale. Comparative Biochemistry and Physiology, 123C, 127-134. https://doi.org/10.1016/S0742-8413(99)00018-3

Campos, D., Almeida-Val, V. M. F. & Val, A. L. (2018). The influence of lifestyle and swimming behavior on metabolic rate and thermal tolerance of twelve Amazon forest stream fish species. Journal of Thermal Biology, 72, 148-154. https://doi.org/10.1016/j.jtherbio.2018.02.002

Crutzen, P. J. (2002). Geology of manking. Nature, 415, 23. https://doi.org/10.1038/415023a

Dasmann, R. F. (1968). A different kind of country. New York: MacMillan Company.

Duarte, R. M., Menezes, A. C. L., Rodrigues, L., Almeida-Val, V. M. F. & Val, A.L. (2009). Copper sensitivity of wild ornamental fish of the Amazon. Ecotoxicology and Environmental Safety, 72, 693-698. https://doi.org/10.1016/j.ecoenv.2008.10.003

Duarte, R. M., Scott Smith, D. S., Val, A. L. & Wood, C. M. (2016). Dissolved organic carbon from the upper Rio Negro protects zebrafish (Danio rerio) agains ionoregulatory disturbances caused by low pH exposure. Scientific Reports, 6, 20377-20386. https://doi.org/10.1038/srep20377

Duponchelle, F. et al. (2016). Trans-Amazonian natal homing in giant catfish. Journal of Applied Ecology, 53, 1511-1520. https://doi.org/10.1111/1365-2664.12665

Fearnside, P. M. (2014). Impacts of Brazil's Madeira River dams: Unlearned lessons for hydroelectric development in Amazonia. Environmental Science & Policy, 38, 164-172. https://doi.org/10.1016/j.envsci.2013.11.004

Fé-Gonçalves, L. M., Paula-Silva, M. N., Val, A. L. & Almeida-Val, V. M. F. (2018). Differential survivorship of congeneric ornamental fishes under forecasted climate changes are related to anaerobic potential. Genetics and Molecular Biology, 41,107-118. https://doi.org/10.1590/1678-4685-gmb-2017-0016

Franco, J. L. A. (2013). The concept of biodiversity and the history of conservation biology: from wilderness preservation to biodiversity conservation. História (Sao Paulo), 32, 21-48. https://doi.org/10.1590/S0101-90742013000200003

Furch, K. & Junk, W. J. (1997). Physicochemical conditions in the floodplains. In: Junk, W. J. (ed). The Central Amazon floodplain. Ecology of a pulsing system, pp. 69-108. Heidelberg: Springer Verlag. https://doi.org/10.1007/978-3-662-03416-3_4

Gonzalez, R. J., Wilson, R. W., Wood, C. M., Patrick, M. L. & Val, A. L. (2002). Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiological and Biochemical Zoology, 75, 37-47. https://doi.org/10.1086/339216

Groff, A. et al. (2009). UVA/UVB induced lesion repair and genotoxicity in the Amazonian fishes Colossoma macropomum and Arapaima gigas. Aquatic Toxicology, 99, 93-99. https://doi.org/10.1016/j.jphotobiol.2010.02.011

Hrbek, T., Silva, V. M. F., Dutra, N., Gravena, W., Martin, A. R. & Farias, I. P. (2014). A new species of river dolphin from Brazil or: How little do we know our biodiversity. Plos One 9. https://doi.org/10.1371/journal.pone.0083623

Junk, W. J. (2000). Neotropical floodplains: A continental-wide view. In Junk, W. J., Ohly, J. J., Piedade, M. T. F. & Soares, M. G. M. (eds). The Central Amazon Floodplain: Actual use and options for a sustainable management, pp. 5-24. Leiden: Backhuys Publishers.

Junk, W. J., Bayley, P. B. & Sparks, R. E. (1989). The flood pulse concept in River-Floodplain Systems. In Dodge, D. P. (ed). Proceedings of the International Large River Symposium, pp 110-127.Canada: Can. Spec. Publ. Fish. Aquat. Sci.

Kochhann, D., Campos, D. F. & Val, A. L. (2015). Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii. Comparative Biochemistry and Physiology, part A, 190, 54- 60. https://doi.org/10.1016/j.cbpa.2015.09.006

Lara, L. B. L. S., Fernandes, E. A. N., Oliveira, H., Bacchi, M. A. & Ferraz. E. S. B. (1997). Amazon estuary - assessment of trace elements in seabed sediments. Journal of Radioanalytical and Nuclear Chemistry, 216, 279-284. https://doi.org/10.1007/BF02033790

Matsuo, A. Y. O & Val, A. L. (2003). Fish adaptations to Amazonian blackwaters. In Val, A. L. & Kapoor, B. G. (eds). Fish Adaptations. Science Publishers, pp. 1-36. USA: Enfield (NH).

Matsuo, A. Y. O. & Val, A. L. (2007). Acclimation to humic substances prevents whole body sodium loss and stimulates branchial calcium uptake capacity in cardinal tetras Paracheirodon axelrodi (Schultz) subjected to extremely low pH. Journal of Fish Biology, 70, 989-1000. https://doi.org/10.1111/j.1095-8649.2007.01358.x

Oliveira, A. M. & Val, A. L. (2017). Effects of climate scenarios on the growth and physiology of the Amazonian fish tambaqui (Colossoma macropomum) (Characiformes: Serrasalmidae). Hydrobiologia, 789, 167-178. https://doi.org/10.1007/s10750-016-2926-0

Piedade, M. T., Lopes, A., Demarchi, L. O., Junk, W., Wittmann, F., Schöngart, J. & Cruz, J. (2017). Guia de campo de herbáceas aquáticas: várzea Amazônica. Manaus: INPA.

Prado-Lima, M. & Val, A. L. (2016). Transcriptomic characterization of tambaqui (Colossoma macropomum, Cuvier, 1818) exposed to three climate change scenarios. Plos one. https://doi.org/10.1371/journal.pone.0152366

Prance, G. T. & Arias, J. R. (1975). A study of the Floral Biology of Victoria amazonica (Poepp.) Sowerby (Nymphaeaceae). Acta Amazonica, 5, 109-139. https://doi.org/10.1590/1809-43921975052109

Ragazzo, M. T. P. (2002). Fishes of the rio Negro. Alfred Russel Wallace. São Paulo: EDUSP. Imprensa Oficial do Estado.

Sadauskas- Henrique, H., Braz- Mota, S., Duarte, R. M. & Almeida- Val, V. M. F. (2016). Influence of the natural Rio Negro water on the toxicological effects of a crude oil and its chemical dispersion to the Amazonian fish Colossoma macropomum. Environmental Science and Pollution Research, 23, 19764-19775. https://doi.org/10.1007/s11356-016-7190-3

Saint- Paul, U. & Soares, G. M. (1988). Ecomorphological adaptation to oxygen deficiency in Amazon floodplains by serrasalmid fish of the genus Mylossoma. Journal of Fish Biology, 32, 231-236. https://doi.org/10.1111/j.1095-8649.1988.tb05356.x

Salvo- Souza, R. H. & Val, A. L. (1990). Pirarucu - o gigante das aguas amazônicas. Ciência Hoje, 11, 9-12.

Santos, G. M. & Val, A. L. (1998). Ocorrência do peixe-serra (Pristis perotteti) no rio Amazonas e comentários sobre sua história natural. Ciência Hoje, 23, 66-67.

Sioli, H. (1984). The Amazon. Limnology and landscape ecology of a might tropical river and its basin. Dordrecht: Dr. W. Junk Publishers. https://doi.org/10.1007/978-94-009-6542-3

Soulé, M. E. & Wilcox, B. A. (1980). Conservation Biology: An Evolutionary-Ecological Perspective. Sunderland, Massachusetts: Sinauer Associates.

Sundland, O. T., Hindar, K. & Brown, A. (1992). Conservation of Biology for Sustainable Development. Oslo: Scandinavian University Press.

Val, A. L. & Almeida- Val, V. M. F. (1995). Fishes of the Amazon and their environments. Physiological and biochemical features. Heidelberg: Springer Verlag. https://doi.org/10.1007/978-3-642-79229-8

Val, A. L., Fearnside, P. M. & Almeida-Val, V. M. F. (2016). Environmental disturbances and fishes of the Amazon. Journal of Fish Biology, 89, 192-193. https://doi.org/10.1111/jfb.12896

Val, A. L., Gomes, K. R. M. & Almeida- Val, V. M. F. (2015). Rapid regulation of blood parameters under acute hypoxia in the Amazonian fish Prochilodus nigricans. Comparative Biochemistry and Physiology, 125-131. https://doi.org/10.1016/j.cbpa.2015.02.020

Val, A. L., Silva, M. N. P & Almeida- Val, V. M. F. (1998). Hypoxia adaptation in fish of the Amazon: a never-ending task. South African Journal of Zoology, 33, 107-114. https://doi.org/10.1080/02541858.1998.11448459

Vogt, R. C. (2008). Tartarugas da Amazônia. Lima: Biblos.

Walker, I. (1995). Amazonian streams and small rivers. In Tundisi, J. G., Bicudo, C. E. & Matsumura- Tundisi, T. (eds). Limnology in Brazil, pp. 167-193. Rio de Janeiro: Academia Brasileira de Ciências.

Wood, C. M., Matsuo, A. Y. O., Gonzalez, R. J., Wilson, R. W., Patrick, M. L. & Val, A. L. (2002). Mechanisms of ion transport in Potamotrygon, a stenohaline freshwater elasmobranch native to the ion-poor blackwaters of the Rio Negro. The Journal Experimental Biology, 205, 3039-3054.

Wood, C. M., Matsuo, A. Y. O., Wilson, R. W., Gonzalez, R. J., Patrick, M. L., Playle, R. C. & Val, A. L. (2003). Protection by natural blackwater against disturbances in ion fluxes caused by low pH exposure in freshwater stingrays endemic to the Rio Negro. Physiological and Biochemical Zoology, 76, 12-27. https://doi.org/10.1086/367946

Wood, C. M., Wilson, R. W., Gonzalez, R. J., Patrick, M. L., Bergman, H. L., Narahara, A. & Val, A. L. (1998). Responses of an Amazonian teleost, the tambaqui (Colossoma macropomum) to low pH in extremely soft water. Physiological Zoology, 71, 658-670. https://doi.org/10.1086/515977

Worbes, M. (1997). The forest ecosystem of the floodplains. Em Junk, W. J. (Ed). The Central Amazon Flodplain: Ecology of a pulsating system. Berlin: Springer Verlag. https://doi.org/10.1007/978-3-662-03416-3_11

Zalasiewicz, J., Williams, M., Steffen, W. & Crutzen, P. J. (2010). The New World of the anthropocene. Environmental Scence and Technology, 44, 2228- 2231. https://doi.org/10.1021/es903118j
Val, A. L. (2019). Conservation of the Amazonian Aquatic Biota. Revista De Estudios Brasileños, 6(11), 79–89. https://doi.org/10.14201/reb20196117989

Downloads

Download data is not yet available.

Author Biography

Adalberto Luis Val

,
Instituto Nacional de Pesquisas da Amazônia
Researcher of the National Institute of Amazonian Research (MCTI/INPA, Brazil).
+