Integral Support Predictive Platform for Industry 4.0


Currently, companies in the industrial sector are focusing their efforts on incorporating the advances contained in the Industry 4.0 model, to continue competing in an increasingly high-tech market. These advances, in addition to productivity, have a remarkable impact on the working environment of workers and on the measures adopted to maintain a healthy workspace. Thus, for example, there are projects to develop augmented reality technologies for maintenance and industrial training, advanced modelling tools for additive manufacturing, or Big Data analysis platforms for industrial data. However, the solutions designed are too specific to a particular industry problem or the platforms proposed are too generalist and not easily adaptable to the industries. This work seeks to provide a reference software architecture at the service of the connected industry that allows the provision of new capacities for process optimisation, predictive maintenance and real-time visualisation, integrating all the relevant information generated by the existing systems, incorporating new sources of data resulting from the digital society, and ensuring future compatibility with the new sources of information, solutions and Industrial Internet of Things (IIoT) devices that may be implemented.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Bajo, J., De Paz, J. F., Villarrubia, G., and Corchado, J. M., 2015. Self-organizing architecture for information fusion in distributed sensor networks. International Journal of Distributed Sensor Networks, 11(3):231073. Bokor, Z., 2012. Integrating logistics cost calculation into production costing. Acta Polytechnica Hungarica, 9(3):163-181.

Boyes, H., Hallaq, B., Cunningham, J., and Watson, T., 2018. The industrial internet of things (IIoT): An analysis framework. Computers in industry, 101:1-12.

Canizes, B., Pinto, T., Soares, J., Vale, Z., Chamoso, P., and Santos, D., 2017. Smart city: A GECAD-BISITE energy management case study. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 92-100. Springer.

Casado-Vara, R., de la Prieta, F., Prieto, J., and Corchado, J. M., 2018. Blockchain framework for IoT data quality via edge computing. In Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, pages 19-24.

Chamoso, P., De Paz, J. F., Bajo, J., and Villarrubia, G., 2016. Intelligent control of energy distribution networks. In International Conference on Practical Applications of Agents and Multi-Agent Systems, pages 99-107. Springer.

Chamoso, P., González-Briones, A., Rivas, A., De La Prieta, F., and Corchado, J. M., 2019. Social computing in currency exchange. Knowledge and Information Systems, 61(2):733-753.

Chamoso Santos, P., Prieta Pintado, F. d. l., Paz Santana, J. F. d., Bajo Pérez, J., Corchado Rodríguez, J. M. et al., 2016. Agreement Technologies Applied to Transmission Towers Maintenance.

Chen, Z.-Y. and Kuo, R., 2017. Evolutionary algorithm-based radial basis function neural network training for industrial personal computer sales forecasting. Computational Intelligence, 33(1):56-76.

Clifton, C., Kantarciog?lu, M., Doan, A., Schadow, G., Vaidya, J., Elmagarmid, A., and Suciu, D., 2004. Privacy- preserving data integration and sharing. In Proceedings of the 9th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pages 19-26.

Corchado, J. M. Blockchain and its applications on Edge Computing, Industry 4.0, IOT and Smart Cities. Dieleman, S., 2014. Recommending music on Spotify with deep learning. Sander Dieleman.

Dong, X. L. and Srivastava, D., 2013. Big data integration. In 2013 IEEE 29th international conference on data engineering (ICDE), pages 1245-1248. IEEE.

Gabriel, K. J., El-Halwagi, M. M., and Linke, P., 2016. Optimization across the water-energy nexus for integrating heat, power, and water for industrial processes, coupled with hybrid thermal-membrane desalination. Industrial & Engineering Chemistry Research, 55(12):3442-3466.

García, Ó., Alonso, R. S., Prieto, J., and Corchado, J. M., 2017. Energy efficiency in public buildings through context-aware social computing. Sensors, 17(4):826.

Heras, S., De la Prieta, F., Julian, V., Rodríguez, S., Botti, V., Bajo, J., and Corchado, J. M., 2012. Agreement technologies and their use in cloud computing environments. Progress in Artificial Intelligence, 1(4):277-290.

Lenzerini, M., 2002. Data integration: A theoretical perspective. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 233-246.

Lozano, Á., Gil, A. B., and Li, T., 2014. Integration of Different ERP Systems on Mobile Devices. In Trends in Practical Applications of Heterogeneous Multi-agent Systems. The PAAMS Collection, pages 27-35. Springer.

Manan, Z. A., Tea, S. Y., and Alwi, S. R. W., 2009. A new technique for simultaneous water and energy minimisation in process plant. Chemical Engineering Research and Design, 87(11):1509-1519.

Mobley, R. K., 2002. An introduction to predictive maintenance. Elsevier.

Van den Oord, A., Dieleman, S., and Schrauwen, B., 2013. Deep content-based music recommendation. Advances in neural information processing systems, 26:2643-2651.

Porter, M. E. and Heppelmann, J. E., 2015. How smart, connected products are transforming companies. Harvard business review, 93(10):96-114.

Prieta, F. de la, Gil, A. B., Rodríguez-González, S., and Corchado, J. M., 2014. Cloud Computing and Multi Agent System to improve Learning Object Paradigm. IxD&A, 23:38-49.

Prieta, F. de la, Rodríguez, S., Bajo, J., and Batista, V. F. L., 2013. Data integration in Cloud Computing environment. In Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support. Atlantis Press.

Puig Ramírez, J., 2010. Asset optimization and predictive maintenance in discrete manufacturing industry. Riverola, F. F. and Corchado, J. M., 2000. Sistemas híbridos neuro-simbólicos: una revisión. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 4(11):12-26.

Rodríguez, S., De Paz, J. F., Villarrubia, G., Zato, C., Bajo, J., and Corchado, J. M., 2015. Multi-agent information fusion system to manage data from a WSN in a residential home. Information Fusion, 23:43-57.

Satyanarayanan, M., 2017. The emergence of edge computing. Computer, 50(1):30-39.

Shang, Y., Lu, S., Gong, J., Shang, L., Li, X., Wei, Y., and Shi, H., 2017. Hierarchical prediction of industrial water demand based on refined Laspeyres decomposition analysis. Water Science and Technology, 76(11):2876-2887.

Shi, W. and Dustdar, S., 2016. The promise of edge computing. Computer, 49(5):78-81.

Theoleyre, F. and Pang, A.-C., 2013. Internet of Things and M2M Communications. River Publishers. Villarrubia, G., De Paz, J. F., Bajo, J., and Demazeau, Y., 2014. Context-Aware Module for Social Computing Environments. In Ambient Intelligence-Software and Applications, pages 183-191. Springer.

Von Ahn, L., Blum, M., Hopper, N. J., and Langford, J., 2003. CAPTCHA: Using hard AI problems for security. In International conference on the theory and applications of cryptographic techniques, pages 294-311. Springer.

Wang, D., Luo, H., Grunder, O., Lin, Y., and Guo, H., 2017. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Applied Energy, 190:390-407.

Yao, B., Zhou, Z., Xu, W., Fang, Y., Shao, L., Wang, Q., and Liu, A., 2015. Service-oriented predictive maintenance for large scale machines based on perception big data. In International Manufacturing Science and Engineering Conference, volume 56833, page V002T04A015. American Society of Mechanical Engineers.

Zhang, X., Hug, G., Kolter, J. Z., and Harjunkoski, I., 2016. Model predictive control of industrial loads and energy storage for demand response. In 2016 IEEE Power and Energy Society General Meeting (PESGM), pages 1-5. IEEE.
Márquez Sánchez, S. (2020). Integral Support Predictive Platform for Industry 4.0. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9(4), 71–82.

Most read articles by the same author(s)


Download data is not yet available.

Author Biography

Sergio Márquez Sánchez

University of Salamanca
ETSII de Béjar, Universidad de Salamanca Departamento de informática y automática Industrial Engineer