A Semantic Social Recommender System Using Ontologies Based Approach For Tunisian Tourism

  • Mohamed Frikha
    University of Sfax - MIRACL Laboratory med.frikha[at]gmail.com
  • Mohamed Mhiri
    University of Sfax - MIRACL Laboratory
  • Faiez Gargouri
    University of Sfax - MIRACL Laboratory


Tunisia is well placed in terms of medical tourism and has highly qualified and specialized medical and surgical teams. Integrating social networks in Tunisian medical tourism recommender systems can result in much more accurate recommendations. That is to say, information, interests, and recommendations retrieved from social networks can improve the prediction accuracy. This paper aims to improve traditional recommender systems by incorporating information in social network; including user preferences and influences from social friends. Accordingly, a user interest ontology is developed to make personalized recommendations out of such information. In this paper, we present a semantic social recommender system employing a user interest ontology and a Tunisian Medical Tourism ontology. Our system can improve the quality of recommendation for Tunisian tourism domain. Finally, our social recommendation algorithm is implemented in order to be used in a Tunisia tourism Website to assist users interested in visiting Tunisia for medical purposes.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Adomavicius, G., Tuzhilin A., 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. In: IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749.

Ambite, J.L., Barish, G., Knoblock, C.A., Muslea, M., Minton, S., 2002. Getting from here to there: interactive planning and agent execution for optimizing travel. In: 14th Innovative Applications of Artificial Intelligence Confe-rence. Edmonton, Alberta, Canada.

Barta, R., Feilmayr, C., Pro¨ ll, B., Gru¨ n, C., Werthner, H., 2009. Covering the semantic space of tourism: an approach based on modularized ontologies. In: 1st Workshop on Context, Information and Ontologies, CIAO, Greece.

Basiri J., Shakery A., Moshiri B., Zi Hayat M.,2010. Alleviating the cold-start problem of recommender systems using a new hybrid approach. In: 5th International Symposium on elecommunications, IST 2010 Tehran, Iran; pp. 962– 967.

Ben Cheikh A, Bakini FE, Triki A, 2015. Medical Tourism in Tunisia: Building Relational Loyalty, Operations Re-search eJournal, Vol. 8, No. 3: Jan 19, 2015.

Borràs J., Moreno A, Valls. A, 2014. Intelligent tourism recommender systems: A survey. Expert Systems with Appli-cations Journal 41, 7370-7389. Online publication date: 1-Nov-2014.

Burke, R., 2000. Knowledge-based recommender systems. Encycl. Lib. Inf. Syst., 69.

Camacho, D., Aler, R., Borrajo, D., Molina, J.M., 2005. A multi-agent architecture for intelligent gathering systems. AI Commun. 18, 15–32.

Cardoso, J.,2006. Developing an OWL Ontology for E-Tourism. In Semantic Web Services, Processes and Applications, Springer.

Castillo, L., Armengol, E., Onaind?a, E., Sebastia , L., Gonzalez-Boticario, J., Rodr?guez, A., Fernandez, S., Arias, J.D., Borrajo, D., 2008. SAMAP: an user-oriented adaptive system for planning tourist visits. Expert Syst. Appl. 34, 1318–1332.

Chanda, Rupa, 2001. “Trade in health services”, Working Paper, No. 70, Indian Council for Research on International Economic Relations, New Delhi, India, November.

Christakou, C., Vrettos, S., Stafylopatis, A., 2007. A hybrid movie recommender system based on neural networks. Int. J. Artif. Intell. Tools 16, 771–792.

Correa, C.D., Ma K.L., 2011. Visualizing social networks. In: Aggarwal C.C. (eds.) Social Network Data Analytics, pp 307-326, Springer- 1st Edition

Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H., 2002. Harmonise: a Solution for Data Interoperability. In J.L. Mon-teiro, P.M.C. Swatman, and L.V. Tavares (eds.), Proceedings of Second IFIP Conference on E-Commerce, E-Business, E-Government 433-445). Kluwer, Boston.

Fellah, A., Malki, M., ZAHAF, A., 2008. : Alignement des ontologies : utilisation de WordNet et une nouvelle mesure structurelle. In: Conférence en Recherche d'Information et Applications, CORIA, p 401-408.

Ferraro P., Lo Re, G., 2014. Designing Ontology-Driven Recommender Systems for Tourism. In: Advances onto the Internet of Things, Volume 260, pp 339-352.

Frikha, M., Mhiri, M., Gargouri, F.,2014. Toward a User Interest Ontology to Improve Social Network-Based Recom-mender System. In: Studies in Computational Intelligence Vol. 551, p 255-264. DOI: 10.1007/978-3-319-05503-9_25, Springer.

Frikha M, Mhiri M, Gargouri F, 2015. "Designing a user interest ontology-driven social recommender system: Appli-cation for Tunisian Tourism", 13th Conference on Practical Applications of Agents and Multi-Agent Systems, In: series Advances in Intelligent Systems and Computing, Vol. 372, pp 159-166, DOI: 10.1007/978-3-319-19629-9_18, Springer.

Garcia, I., Sebastia, L., Onaindia, E., 2011. On the design of individual and group recommender systems for tourism. Expert Syst. Appl. 38, 7683–7692.

Gerani, S., Carma, M.J., Crestani, F.,2010. Proximity Based Opinion Retrieval. In: 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 403–410. ACM, New York.

Gruber, T., 1993. A translation approach to portable ontologies, Knowledge Acquisition, 5 , 199–220.

He, J., Chu, W.W., 2010. A Social Network-Based Recommender System (SNRS). In: Memon, N., Xu, J.J., Hicks, D.L., Chen, H. (eds.) Data Mining for Social Network Data. Annals of Information Systems Volume 12, 2010, pp 47-74.

Hepp, M., Siorpaes, K., Bachlechner, D., 2006. Towards the semantic Web in e-Tourism: can annotation do the trick? In: 14th European Conference on Information Systems, ECIS 2006. Gothenburg, Sweden; pp. 2362–2373.

Höpken W., Clissmann C., 2006. “Final Ontology Report” of the Project “Tourism Harmonisation Trans-European Network”.

Huang, Y., Bian, L.A., 2009. Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet. Expert Syst. Appl. 36, 933–943.

Jiang X., Tan A.-H.: Ontosearch, 2006. A full-text search engine for the semantic web. In: Proceedings of the 21 National Conference on Artificial Intelligence, pp.1325-1330.

Kacem, A., Boughanem M., Faiz R, 2014. Time-Sensitive User Profile for Optimizing Search Personlization. In: 22nd International Conference on User Modeling, Adaptation and Personalization (UMAP 2014), Aalborg, Den-mark, July 7-11, Lecture Notes in Computer Science, Volume 8538, pp 111-121.

Kathrin Prantner, Ying Ding, Mchael Luger, Zhixian Yan, Christoph Herzog, 2007. Tourism ontology and semantic management system : state-of-the-arts analysis.

Knublauch, H., Musen, M., Noy, N., 2003. Tutorial: Creating Semantic Web (OWL) Ontologies with Protégé, 2nd International Semantic Web Conference (ISWC2003), Sanibel, Island, Florida, U.S.A.

Lautier, Marc, 2008. “Export of health services from developing countries: The case of Tunisia”, Social Science & Medicine, vol. 67, Issue 1, pp. 101-110, Elsevier Ltd, England, July.

Lee, C.-S., Chang, Y.-C., Wang, M.-H., 2009. Ontological recommendation multi-agent for Tainan City travel. Expert Syst. Appl. 36, 6740–6753.

Lv, Y., Zhai, C., 2009. Positional language models for information retrieval. In: 32nd International ACM SIGIR Con-ference on Research and Development in Information Retrieval, pp. 299–306. ACM, New York.

Middleton S.E., Shadbolt N.R., Roure D.C.D., 2004. Ontological user profiling in recommender systems. In: ACM Transactions on Information Systems, Vol. 22, No. 1, pp.54-88.

Middleton, S.E., Roure D.C.D., Shadbolt, N.R., 2009. Ontology-based Recommender Systems. In: Staab, S., Studer, R. (eds.) Handbook on ontologies. Springer, Second Edition.

Montaner, M., Lo´ pez, B., de la Rosa, J.L., 2003. A taxonomy of recommender agents on the internet. Artif. Intell. Rev. 19, 285–330.

Moreno A., Valls A. , Isern D. , Marin L. , Borra's J., 2013. SigTur/E-Destination: Ontology-based personalized re-commendation of Tourism and Leisure Activities, Engineering Applications of Artificial Intelligence Journal 26,pp 633–651

Noy, N and McGuinness, D., 2003. Ontology Development 101: A Guide to Creating Your First Ontology, jour-nal.dajobe.org/journal/posts/2003/03/17/ ontology-development-101-a-guide-to-creating-your-first-ontology/

Ou, S., Pekar, V., Orasan, C., Spurk, C., Negri, M., 2008. Development and alignment of a domain-specific ontology for question answering. In: International Conference on Language Resources and Evaluation, LREC 2008. Marrakech, Morocco; pp. 2221–2228.

Pazzani, M.J., Billsus, D., 2007. Content-Based Recommendation Systems, The Adaptive Web: Methods and Strategies of Web Personalization. Springer Verlag, pp. 325–341.

Prantner, P., Ding, Y., Luger, M., Yan, Z., Herzog, C., 2007. Tourism ontology and semantic management system: state-of-the-arts analysis. In: IADIS International Conference WWW/Internet 2007. Vila Real, Portugal; pp. 111–115.

Pretschner A., Gauch,S., 1999. Ontology based personalized search. In: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, pp.391-398.

Ru?z-Mart?nez, J.M., Minarro-Gimenez, J.A., Castellanos-Nieves, D., Garc?a-Sanchez,F., Valencia-Garc?a, R., 2011. Ontology population: an application for the e-tourism domain. Int. J. Innovative Comput. Inf.Control 7, 6115–6134.

Schiaffino, S., Amandi, A., 2009. Building an expert travel agent as a software agent. Expert Syst. Appl. 36, 1291–1299.

Salter, J., Antonopoulus, N., 2006. CinemaScreen recommender agent: comgining collaborative filtering and content-based filtering. IEEE Intell. Syst. 21, 35–41.

Salton G., Wong A., Yang C. S., 1975. A Vector Space Model for Automatic Indexing. In: Communications of the ACM, vol. 18, nr. 11, pp. 613-620.

Sarwar B., Karypis G., Konstan J., and Riedl J., 2001. Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, New York, NY, pp.285-295.

Sieg, A., Mobasher, B., Burke, R., 2010. Improving the effectiveness of collaborative recommendation with ontology-based user profiles. In: Proc. of Intl. WIHFR, pp. 39–46.

Su, Z., Yan, J., Chen, H., Zhang J., 2011. Improving the preformance of personalized recommendation with ontological user interest model. In: Seventh International Conference on Computational Intelligence and Security.

Subramani, M. R., Rajagopalan, B., 2003. Knowledge-sharing and influence in online social networks via viral mar-keting. Communications of the ACM, 46(12):300–307.

Sulieman, D., 2014. Towards Semantic-Social Recommender Systems, Thèse de doctorat, Université de Cergy Ponto-ise.

Susan Gauch, Mirco Speretta, Aravind Chandramouli, and Alessandro Micarelli. 2007. User Profiles for Personalized Information Access The Adaptive Web. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web, volume 4321 of Lecture Notes in Computer Science, chapter 2, pages 54-89. Springer Berlin / Heidelberg, Berlin, Heidelberg.

Tan, A.-H., Teo, C. , 1998. Learning user profiles for personalized information dissemination. In: Proceedings of In-ternational Joint Conference on Neural Networks. pp.183–188.

White, L., 2010. Facebook, friends and photos: A snapshot into social networking for generating travel ideas. In: Sharda, N. (ed.) Tourism Informatics: Visual Travel Recommender Systems, Social Communities, and User Interface Design, pp. 115–129. IGI Global.

Yang, S., Allenby, G.M., 2003. Modeling interdependent consumer preferences. In: Journal of Marketing Research 40: 282–294.

Zhou, X., Xu, Y., Li, Y. , Josang, A., Cox, L., 2012. The state-of-the-art in personalized recommender systems for social networking. In: Artificial Intelligence Review, February 2012, Volume 37, Issue 2, pp 119-132.
Frikha, M., Mhiri, M., & Gargouri, F. (2015). A Semantic Social Recommender System Using Ontologies Based Approach For Tunisian Tourism. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 4(1), 90–106. https://doi.org/10.14201/ADCAIJ20154190106


Download data is not yet available.