User-independent accelerometer-based gesture recognition for mobile devices

  • Xian Wang
    Universidad Politécnica de Madrid wang.xian[at]
  • Paula Tarrío
    Universidad Politécnica de Madrid
  • Ana María Bernardos
    Universidad Politécnica de Madrid
  • Eduardo Metola
    Universidad Politécnica de Madrid
  • José Ramón Casar
    Universidad Politécnica de Madrid


Many mobile devices embed nowadays inertial sensors. This enables new forms of human-computer interaction through the use of gestures (movements performed with the mobile device) as a way of communication. This paper presents an accelerometer-based gesture recognition system for mobile devices which is able to recognize a collection of 10 different hand gestures. The system was conceived to be light and to operate in a user-independent manner in real time. The recognition system was implemented in a smart phone and evaluated through a collection of user tests, which showed a recognition accuracy similar to other state-of-the art techniques and a lower computational complexity. The system was also used to build a human-robot interface that enables controlling a wheeled robot with the gestures made with the mobile phone
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
CHAMBERS, G.S.; VENKATESH, S.; WEST, G.A.W. & BUI, H.H. Segmentation of Intentional Human Gestures for Sports Video Annotation, in: MMM '04 Proceedings of the 10th International Multimedia Modeling Conference, Brisbane, Australia, 2004, pp. 124-129.
CHO, S.J.; OH, J.K.; BANG, W.C.; CHANG, W.; CHOI, E.; JING, Y.; CHO, J. & KIM, D.Y. Magic wand: a hand-drawn gesture input device in 3-D space with inertial sensors, in: Frontiers in Handwriting Recognition, 2004. IWFHR-9 2004. Ninth International Workshop on, Kokubunji, Tokyo, Japan, 2004, pp. 106-111.

GONZALEZ-SANCHEZ, T. & PUIG, D. Real-time body gesture recognition using depth camera, Electronics Letters 47 (12) (2011) 697-698.
HOFMANN, F.G.; HEYER, P. & HOMMEL, G. Velocity profile based recognition of dynamic gestures with discrete Hidden Markov Models, in: International Gesture Workshop, Bielefeld, Germany, 1998, pp. 81-95.

JOSELLI, M. & CLUA, E. gRmobile: A Framework for Touch and Accelerometer Gesture Recognition for Mobile Games, in: Games and Digital Entertainment (SBGAMES), 2009 VIII Brazilian Symposium on, Rio de Janeiro, Brazil, 2009, pp. 141-150.
KAUPPILA, M.; PIRTTIKANGAS, S.; SU, X. & RIEKKI, J. Accelerometer Based Gestural Control of Browser Application, in: International Workshop on Real Field Identification (RFId2007), Tokyo, Japan, 2007, pp. 25-28.

KAUPPILA, M.; INKEROINEN, T.; PIRTTIKANGAS, S.; & RIEKKI, J. Mobile phone controller based on accelerative gesturing, in: Pervasive 2008, the Sixth International Conference on Pervasive Computing, Sydney, Australia, 2008, pp. 130-133.

KELA, J.; KORPIPÄÄ, P.; MÄNTYJÄRVI, J.; KALLIO, S.; SAVINO, G.; JOZZO, L. & MARCA, S.D. Accelerometer-based gesture control for a design environment, Personal and Ubiquitous Computing 10 (5) (2006) 285-299.

Kinect website,, 2012

KO, M.H.; WEST, G.; VENKATESH, S. & KUMAR, M. Using dynamic time warping for online temporal fusion in multisensor systems, Information Fusion 9 (3) (2008) 370-388.

LIU, J.; WANG, Z.; ZHONG, L.; WICKRAMASURIYA, J. & VASUDEVAN, V. uWave: Accelerometer-based Personalized Gesture Recognition and its Applications, in: Pervasive Computing and Communications, 2009. PerCom 2009. IEEE International Conference on, Galveston, TX, USA, 2009, pp. 1-9.

MÄNTYJÄRVI, J.; KELA, J.; KORPIPÄÄ, P. & KALLIO, S. Enabling fast and effortless customisation in accelerometer based gesture interaction, in: MUM '04: Proceedings of the 3rd international conference on Mobile and ubiquitous multimedia, College Park, MD, USA, 2004, pp. 25-31.
MYERS, C.; RABINER, L.R. & ROSENBERG, A.E. Performance tradeoffs in dynamic time warping algorithms for isolated word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing 28 (6) (1980) 623-635.

Niezen, G. & Hancke, G.P. Gesture Recognition as Ubiquitous Input for Mobile Phones, in: UbiComp ’08 Workshop W1 – Devices that Alter Perception (DAP 2008), Seoul, South Korea, 2008.

NIEZEN, G. & HANCKE, G.P. Evaluating and Optimising Accelerometer-based Gesture Recognition Techniques for Mobile Devices, in: AFRICON 2009, Nairobi, South Africa, 2009, pp. 1-6.

Nintendo's Wii website,, 2012

PYLVÄNÄINEN, T. Accelerometer Based Gesture Recognition Using Continuous HMMs, in: Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, 2005, pp. 639-646.

SAKOE, H. & CHIBA, S. Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech and Signal Processing 26 (1) (1978) 43-49.

SATO, E.; YAMAGUCHI, T. & HARASHIMA, F. Natural Interface Using Pointing Behavior for Human–Robot Gestural Interaction, Industrial Electronics, IEEE Transactions on, 54 (2) (2007) 1105-1112.

SCHLÖMER, T.; POPPINGA, B.; HENZE, N. & BOLL, S. Gesture recognition with a Wii controller, in: TEI '08: Proceedings of the 2nd international conference on Tangible and embedded interaction, Bonn, Germany, 2008, pp. 11-14.

SERAFIMOV, K.; ANGELKOV, D.; KOCESKA, N. & KOCESKI, S. Using Mobile-phone Accelerometer for Gestural Control of Soccer Robots, in: Embedded Computing (MECO), 2012 Mediterranean Conference on, Bar, Montenegro, 2012, pp. 140-143.

SHAH, D.; SCHNEIDER, J. & CAMPBELL, M. A Sketch Interface for Robust and Natural Robot Control, Proceedings of the IEEE 100 (3) (2012) 604-622.

WANG, X.; TARRÍO, P.; METOLA, E,; BERNARDOS, A.M. & CASAR, J.R. Gesture recognition using mobile phone’s inertial sensors, in: 9th International Conference on Distributed Computing and Artificial Intelligence, Salamanca, Spain, 2012, Advances in Intelligent and Soft Computing, Volume 151, pp. 173-184.

WESTEYN, T.; BRASHEAR, H.; ATRASH, A. & STARNER, T. Georgia Tech Gesture Toolkit: Supporting Experiments in Gesture Recognition, in: ICMI '03: Proceedings of the 5th international conference on Multimodal interfaces, Vancouver, British Columbia, Canada, 2003, pp. 85-92.

WU, J.; PAN, G.; ZHANG, D.; QI, G.& LI, S. Gesture recognition with a 3-d accelerometer, in: 6th International Conference, Ubiquitous Intelligence and Computing (UIC) 2009, Brisbane, Australia, 2009, pp. 25-38.

YAN, R.; TEE, K.P.; CHUA, Y.; LI, H. & TANG, H. Gesture Recognition Based on Localist Attractor Networks with Application to Robot Control, Computational Intelligence Magazine, IEEE 7 (1) (2012) 64-74.

YANG, H.D.; PARK, A.Y. & LEE, S.W. Gesture Spotting and Recognition for Human–Robot Interaction, Robotics, IEEE Transactions on 23 (2) (2007) 256-270.
Wang, X., Tarrío, P., Bernardos, A. M., Metola, E., & Casar, J. R. (2013). User-independent accelerometer-based gesture recognition for mobile devices. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 1(3), 11–25.


Download data is not yet available.