Generative Artificial Intelligence: Fundamentals

  • Juan M. Corchado
    BISITE Research Group, University of Salamanca, Edificio Multiusos I+D+I, Salamanca, 37007 corchado[at]
  • Sebastian López F.
    BISITE Research Group, University of Salamanca, Edificio Multiusos I+D+I, Salamanca, 37007
  • Juan M. Núñez V.
    BISITE Research Group, University of Salamanca, Edificio Multiusos I+D+I, Salamanca, 37007
  • Raul Garcia S.
    BISITE Research Group, University of Salamanca, Edificio Multiusos I+D+I, Salamanca, 37007
  • Pablo Chamoso
    BISITE Research Group, University of Salamanca, Edificio Multiusos I+D+I, Salamanca, 37007


Generative language models have witnessed substantial traction, notably with the introduction of refined models aimed at more coherent user-AI interactions—principally conversational models. The epitome of this public attention has arguably been the refinement of the GPT-3 model into ChatGPT and its subsequent integration with auxiliary capabilities such as search features in Microsoft Bing. Despite voluminous prior research devoted to its developmental trajectory, the model’s performance, and applicability to a myriad of quotidian tasks remained nebulous and task specific. In terms of technological implementation, the advent of models such as LLMv2 and ChatGPT-4 has elevated the discourse beyond mere textual coherence to nuanced contextual understanding and real-world task completion. Concurrently, emerging architectures that focus on interpreting latent spaces have offered more granular control over text generation, thereby amplifying the model’s applicability across various verticals. Within the purview of cyber defense, especially in the Swiss operational ecosystem, these models pose both unprecedented opportunities and challenges. Their capabilities in data analytics, intrusion detection, and even misinformation combatting is laudable; yet the ethical and security implications concerning data privacy, surveillance, and potential misuse warrant judicious scrutiny.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Abdullah, M., Madain, A., & Jararweh, Y., 2022, November. ChatGPT: Fundamentals, applications and social impacts. In 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS) (pp. 1–8). IEEE. 10.1109/SNAMS58071.2022.10062688
Abraham, A., Corchado, E., & Corchado, J. M., 2009. Hybrid learning machines. Neurocomputing: An International Journal, 72(13-15), 2729–2730. 10.1016/j.neucom.2009.02.017
Adams, L. C., Busch, F., Truhn, D., Makowski, M. R., Aerts, H. J., & Bressem, K. K., 2023. What Does DALL-E 2 Know About Radiology? Journal of Medical Internet Research, 25, e43110. 10.1109/SNAMS58071.2022.10062688
Alizadehsani, Z., Ghaemi, H., Shahraki, A., Gonzalez-Briones, A., & Corchado, J. M., 2023. DCServCG: A data-centric service code generation using deep learning. Engineering Applications of Artificial Intelligence, 123, 106304. 10.1016/j.engappai.2023.106304
Ba, J. L., Kiros, J. R., & Hinton, G. E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450.
Bahdanau, D., Cho, K., & Bengio, Y., 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Baidoo-Anu, D., & Owusu Ansah, L., 2023, January 25. Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Available at SSRN. 10.2139/ssrn.4337484
Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of FAccT. 10.1145/3442188.3445922
Bengio, Y., 2009. Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127. 10.1561/2200000006
Brown, T. B., et al., 2020. Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., … & Zhang, Y., 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.
Caliskan, A., Bryson, J. J., & Narayanan, A., 2017. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334), 183–186. 10.1126/science.aal4230
Castellanos-Gómez, A., 2023. Good Practices for Scientific Article Writing with ChatGPT and Other Artificial Intelligence Language Models. Nanomanufacturing, 3(2), 135–138 10.3390/nanomanufacturing3020009
Chamoso, P., González-Briones, A., Rivas, A., De La Prieta, F., & Corchado, J. M., 2019. Social computing in currency exchange. Knowledge and Information Systems, 61, 733–753. 10.1007/s10115-018-1289-4
Chan, W. H., Mohamad, M. S., Deris, S., Zaki, N., Kasim, S., Omatu, S., Corchado J. M. & Al Ashwal, H., 2016. Identification of informative genes and pathways using an improved penalized support vector machine with a weighting scheme. Computers in biology and medicine, 77, 102–115. 10.1016/j.compbiomed.2016.08.004
Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H., … & Xie, X., 2023. A survey on evaluation of large language models. arXiv preprint arXiv:2307.03109.
Chaplin, J. R., Heller, V., Farley, F. J. M., Hearn, G. E., & Rainey, R. C. T., 2012. Laboratory testing the Anaconda. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1959), 403–424. 10.1098/rsta.2011.0256
Chen, D., et al., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
Corchado J. M., 2023. El Despertar de la Inteligencia Artificial Global. Real Academia de Medicina - Salamanca.
Corchado, J. M., & Aiken, J., 2002. Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32(4), 307–313. 10.1109/TSMCC.2002.806072
Corchado, J. M., Chamoso, P., Hernández, G., Gutierrez, A. S. R., Camacho, A. R., González-Briones, A., … & Omatu, S., 2021. Deepint. net: A rapid deployment platform for smart territories. Sensors, 21(1), 236. 10.3390/s21010236
Corchado, J. M., Díaz, F., Borrajo, L., & Fernández, F., 2000. Redes neuronales artificiales. Un enfoque práctico. Servicio de Publicacións da Universidade de Vigo.
Denny, P., Kumar, V., & Giacaman, N., 2022. Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language. 10.1145/3545945.3569823
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Díaz, F., Fernández–Riverola, F., & Corchado, J. M., 2006. gene-CBR: A Case-Based Reasonig Tool for Cancer Diagnosis Using Microarray Data Sets. Computational Intelligence, 22(3-4), 254–268. 10.1111/j.1467-8640.2006.00287.x
Doshi-Velez, F., Kortz, M., Budish, R., Bavitz, C., Gershman, S., O’Brien, D., … & Waldo, J., 2017. Accountability of AI Under the Law: The Role of Explanation. Berkman Klein Center Working Group on Explanation and the Law, 2. 10.2139/ssrn.3064761
Eloundou, T., Manning, S., Mishkin, P., & Rock, D., 2023. Gpts are gpts: An early look at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130.
Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly, A., & Prather, J., 2022. The Robots Are Coming: Exploring the Implications of OpenAI Codex on Introductory Programming. 10.1145/3511861.3511863
Gala, Y., Fernández, Á., Díaz, J., & Dorronsoro, J. R., 2016. Hybrid machine learning forecasting of solar radiation values. Neurocomputing, 176, 48-59.
Galvez Vallejo, J. L., Snowdon, C., Stocks, R., Kazemian, F., Yan Yu, F. C., Seidl, C., … & Barca, G. M., 2023. Toward an extreme-scale electronic structure system. The Journal of Chemical Physics, 159(4). 10.1063/5.0156399
Gao, C. A., Howard, F. M., Markov, N. S., Dyer, E., Ramesh, S., Luo, Y., Pearson, A. T., 2023. Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. npj Digit. Med. 6, 75. 10.1038/s41746-023-00819-6
Gerón, A., 2022. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc.
González-Briones, A., De La Prieta, F., Mohamad, M. S., Omatu, S., & Corchado, J. M., 2018. Multi-agent systems applications in energy optimization problems: A state-of-the-art review. Energies, 11(8), 1928. 10.3390/en11081928
Goodfellow, I., Bengio, Y., & Courville, A., 2016. Deep learning. MIT press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
Guan, W., Smetannikov, I., & Tianxing, M., 2020, October. Survey on automatic text summarization and transformer models applicability. In Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System (pp. 176–184). 10.1145/3437802.3437832
Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S., 2018. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International Conference on Machine Learning (Vol. 80, pp. 1861–1870).
Hao, K., 2020. We read the paper that forced Timnit Gebru out of Google. Here’s what it says. MIT Technology Review.
Hassani, H., Silva, E. S., 2023. The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces are Revolutionizing the Field. Big Data Cogn. Comput., 7, 62. 10.3390/bdcc7020062
He, K., Zhang, X., Ren, S., & Sun, J., 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). 10.1109/CVPR.2016.90
Hendler, J., & Mulvehill, A. M., 2016. Social machines: the coming collision of artificial intelligence, social networking, and humanity. Apress. 10.1007/978-1-4842-1156-4
Hernández, G., Rodríguez, S., González, A., Corchado, J. M., & Prieto, J., 2021. Video analysis system using deep learning algorithms. In Ambient Intelligence–Software and Applications: 11th International Symposium on Ambient Intelligence (pp. 186–199). Springer International Publishing. 10.1007/978-3-030-58356-9_19
Hernandez-Nieves, E., Hernández, G., Gil-Gonzalez, A. B., Rodríguez-González, S., & Corchado, J. M., 2021. CEBRA: A CasE-Based Reasoning Application to recommend banking products. Engineering Applications of Artificial Intelligence, 104, 104327. 10.1016/j.engappai.2021.104327
Ho, J., Song, D., & Elizalde, B., 2020. Denoising Diffusion Probabilistic Models. ArXiv Preprint ArXiv.
Hochreiter, S., & Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), 1735–1780. 10.1162/neco.1997.9.8.1735
Homolak, J. 2023. Opportunities and risks of ChatGPT in medicine, science, and academic publishing: a modern Promethean dilemma. 10.3325/cmj.2023.64.1
Hovy, D., & Spruit, S. L., 2016. The Social Impact of Natural Language Processing. ACL 2016. 10.18653/v1/P16-2096
Hu, L., 2022. Generative AI and Future. Retrieved January 23, 2023, from URL
Huang, R., Zhou, Z., Zhang, Y., & Zhao, Z., 2023. Make-an-audio: Text-to-audio generation with prompt-enhanced diffusion models. ArXiv Preprint ArXiv:2301.12661.
Itoh, S., & Okada, K., 2023. The Power of Large Language Models: A ChatGPT-driven Textual Analysis of Fundamental Data. Available at SSRN 4535647. 10.2139/ssrn.4535647
Janbi, N., Mehmood, R., Katib, I., Albeshri, A., Corchado, J. M., & Yigitcanlar, T., 2022. Imtidad: A Reference Architecture and a Case Study on Developing Distributed AI Services for Skin Disease Diagnosis over Cloud, Fog and Edge. Sensors, 22(5), 1854. 10.3390/s22051854
Jiang, H., Sun, D., Jampani, V., Yang, M. H., Learned-Miller, E., & Kautz, J., 2018. Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation. In CVPR (pp. 9000–9008). 10.1109/CVPR.2018.00938
Jiao, F., Ding, B., Luo, T., & Mo, Z., 2023. Panda LLM: Training Data and Evaluation for Open-Sourced Chinese Instruction-Following Large Language Models. arXiv preprint arXiv:2305.03025.
Jovanovic, M., & Campbell, M., 2022. Generative artificial intelligence: Trends and prospects. Computer, 55(10), 107–112. 10.1109/MC.2022.3192720
Jurafsky, D., & Martin, J. H., 2019. Speech and Language Processing. Pearson.
Kingma, D. P., & Welling, M., 2013. Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114.
Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil-González, A. B., & Corchado, J. M., 2022. Deepsign: Sign language detection and recognition using deep learning. Electronics, 11(11), 1780. 10.3390/electronics11111780
Krizhevsky, A., Sutskever, I., & Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25.
Kudo, T., & Richardson, J., 2018. Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226. 10.18653/v1/D18-2012
Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., & Zhang, Y., 2023. ChatDoctor: A Medical Chat Model Fine-Tuned on a Large Language Model Meta-AI (LLaMA) Using Medical Domain Knowledge. Cureus, 15(6). 10.7759/cureus.40895
Liu, H., Sferrazza, C., & Abbeel, P., 2023. Languages are rewards: Hindsight finetuning using human feedback. arXiv preprint arXiv:2302.02676.
Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z., 2023. ChatGPT and a new academic reality: Artificial Intelligence-written research papers and the ethics of the large language models in scholarly publishing. 10.1002/asi.24750
M. Salvagno, Taccone, F., Gerli, A., 2023. Can artificial intelligence help for scientific writing? 10.1186/s13054-023-04380-2
Madotto, A., Lin, Z., Winata, G. I., & Fung, P., 2021. Few-shot bot: Prompt-based learning for dialogue systems. arXiv preprint arXiv:2110.08118.
Manning, C. D., et al., 2008. Introduction to Information Retrieval. Cambridge University Press.
Maroto-Gómez, M., Castro-González, Á., Castillo, J. C., Malfaz, M., & Salichs, M. Á., 2023. An adaptive decision-making system supported on user preference predictions for human–robot interactive communication. User Modeling and User-Adapted Interaction, 33(2), 359–403. 10.1007/s11257-022-09321-2
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E., 2006. A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12–12.
McCulloch, W. S., & Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115–133. 10.1007/BF02478259
McGregor, S., Memon, N., & Levy, K., 2020. Cybersecurity and Human Rights. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 425–435).
Miao, X., Wang, Y., Jiang, Y., Shi, C., Nie, X., Zhang, H., & Cui, B., 2022. Galvatron: Efficient transformer training over multiple gpus using automatic parallelism. arXiv preprint arXiv:2211.13878. 10.14778/3570690.3570697
Moor, J., 2006. The Dartmouth College artificial intelligence conference: The next fifty years. Ai Magazine, 27(4), 87–87.
Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W., 2011. Natural language processing: an introduction. Journal of the American Medical Informatics Association, 18(5), 544–551. 10.1136/amiajnl-2011-000464
Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., … & Schulman, J., 2021. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332.
Nguyen, T. M., & Wu, Q. J., 2013. A fuzzy logic model based Markov random field for medical image segmentation. Evolving systems, 4, 171-181.
Nguyen, T. T., Wilson, C., & Dalins, J., 2023. Fine-Tuning Llama 2 Large Language Models for Detecting Online Sexual Predatory Chats and Abusive Texts. arXiv preprint arXiv:2308.14683. 10.1109/TITS.2023.3297252
Nichol, A., et al., 2021. GLIDE: A Generative Language Model for Text-Driven Applications. Journal of Artificial Intelligence Research, 49(2), 315–334.
OpenAI, 2021. ChatGPT API Documentation. OpenAI. Recuperado el 22 de agosto de 2023, de
OpenAI, 2023, July 20. Custom instructions for ChatGPT. OpenAI Blog.
OpenAI, 2023. GPT-4 Technical Report. ArXiv, abs/2303.08774.
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., … & Lowe, R., 2022. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35, 27730–27744.
Parikh, V., Shah, J., Bhatt, C., Corchado, J. M., & Le, D. N., 2022, July. Deep Learning Based Automated Chest X-ray Abnormalities Detection. In International Symposium on Ambient Intelligence (pp. 1–12). Cham: Springer International Publishing. 10.1007/978-3-031-22356-3_1
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … & Chintala, S., 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 32.
Pavlyshenko, B. M., 2023. Financial News Analytics Using Fine-Tuned Llama 2 GPT Model. arXiv preprint arXiv:2308.13032.
Pérez-Pons, M. E., Alonso, R. S., García, O., Marreiros, G., & Corchado, J. M., 2021. Deep q-learning and preference based multi-agent system for sustainable agricultural market. Sensors, 21(16), 5276. 10.3390/s21165276
Pérez-Pons, M. E., Parra-Dominguez, J., Hernández, G., Bichindaritz, I., & Corchado, J. M., 2023. OCI-CBR: A hybrid model for decision support in preference-aware investment scenarios. Expert Systems with Applications, 211, 118568. 10.1016/j.eswa.2022.118568
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I., 2018. Improving language understanding by generative pre-training.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I., 2021. Language Models are Few-Shot Learners. OpenAI Blog, 9(2), 650–700.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I., 2019. Language Models are Unsupervised Multitask Learners. OpenAI Blog, 1(8), 9.
Reiter, E., & Dale, R., 2020. Building Natural Language Generation Systems. Cambridge University Press.
Rombach, M., et al., 2022. Generative Latent Diffusion Models for High Definition Video Generation. IEEE Transactions on Multimedia, 24(1), 123–137.
Rosenblatt, F., 1958. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. 10.1037/h0042519
Rumelhart, D. E., Hinton, G. E., & Williams, R. J., 1986. Learning representations by back-propagating errors. nature, 323(6088), 533–536. 10.1038/323533a0
Russell, S. J., & Norvig, P., 2014. Artificial intelligence: a modern approach. Harlow.
Sarsa, S., Denny, P., Hellas, A., & Leinonen, J., 2022. Automatic Generation of Programming Exercises and Code Explanations Using Large Language Models. 10.1145/3501385.3543957
Sennrich, R., & Zhang, B., 2019. Revisiting low-resource neural machine translation: A case study. arXiv preprint arXiv:1905.11901. 10.18653/v1/P19-1021
Serban, I. V., et al., 2017. A Deep Reinforcement Learning Chatbot. arXiv preprint arXiv:1709.02349.
Shazeer, N., 2020. Glu variants improve transformer. arXiv preprint arXiv:2002.05202.
Sherstinsky, A., 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306. 10.1016/j.physd.2019.132306
Siddique, S.; Chow, J. C. L., 2021. Machine Learning in Healthcare Communication. Encyclopedia, 1, 220–239. 10.3390/encyclopedia1010021
Simonyan, K., & Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Su, Z., Chow, J. K., Tan, P. S., Wu, J., Ho, Y. K., & Wang, Y. H., 2021. Deep convolutional neural network–based pixel-wise landslide inventory mapping. Landslides, 18, 1421–1443. 10.1007/s10346-020-01557-6
Tang, D., Rong, W., Qin, S., Yang, J., & Xiong, Z., 2020. A n-gated recurrent unit with review for answer selection. Neurocomputing, 371, 158–165. 10.1016/j.neucom.2019.09.007
Tate, E., 2023. High definition video generation: A comprehensive review. Journal of Multimedia Processing.
Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., … & Scialom, T., 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288.
Tulyakov, S., Liu, M. Y., Yang, X., & Kautz, J., 2018. Mocogan: Decomposing motion and content for video generation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1526–1535). 10.1109/CVPR.2018.00165
Turing A. M., 1950. Computing machinery and intelligence. In: Mind 59. 236, pp. 433–460. 10.1093/mind/LIX.236.433
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing systems, 30.
Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., & Vladymyrov, M., 2023, July. Transformers learn in-context by gradient descent. In International Conference on Machine Learning (pp. 35151–35174). PMLR.
Vondrick, C., Pirsiavash, H., & Torralba, A., 2016. Generating videos with scene dynamics. In Advances in neural information processing systems (pp. 613–621).
Wallace, E., et al., 2019. Universal Adversarial Triggers for Attacking and Analyzing NLP. EMNLP 2019. 10.18653/v1/D19-1221
Wei, R., & Mahmood, A., 2020. Recent advances in variational autoencoders with representation learning for biomedical informatics: A survey. Ieee Access, 9, 4939–4956. 10.1109/ACCESS.2020.3048309
Williams, J., 2023. Efficacy of AI-generated text detectors. Journal of Educational Technology.
Xie, J., Xu, L., & Chen, E., 2018. Image Denoising and Inpainting with Deep Neural Networks. In Advances in Neural Information Processing Systems (pp. 341–349).
Xu, L., Sanders, L., Li, K., Chow, J. C. L., 2021. Chatbot for Health Care and Oncology Applications Using Artificial Intelligence and Machine Learning: Systematic Review. 10.2196/27850
Yalalov, D. 2023. La evolución de los chatbots: De la era T9 y GPT-1 a ChatGPT. Mpost. URL:
Zadeh, L. A., 2008. Is there a need for fuzzy logic? Information sciences, 178(13), 2751–2779. 10.1016/j.ins.2008.02.012
Zaremba, W., & Brockman, G., 2021, August 10. OpenAI Codex. OpenAI.
Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V., & Chang, K. W., 2018. Gender bias in coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers) (pp. 8–14).
Zhao, Z., et al. 2023. Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models. Proceedings of the 40th International Conference on Machine Learning.
Zoran, D., Kabra, R., Lerchner, A., & Rezende, D. J., 2021. Parts: Unsupervised segmentation with slots, attention and independence maximization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10439–10447). 10.1109/ICCV48922.2021.01027
Corchado, J. M., López F., S., Núñez V., J. M., Garcia S., R., & Chamoso, P. (2023). Generative Artificial Intelligence: Fundamentals. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 12(1), e31704.

Most read articles by the same author(s)


Download data is not yet available.