Irrigation System through Intelligent Agents Implemented with Arduino Technology
Abstract The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.
- Referencias
- Cómo citar
- Del mismo autor
- Métricas
M. Guijarro Mata-Garcia, E. Tortajada Agudo and F. González Rivas, “Sistema de Riego Inteligente Borroso,” 2007.
J. Toloza, L. Leiva, A. Riba, F. Carmona and N. Acosta, Desarrollo de un prototipo de sistema portátil para la detección en tiempo-real de la necesidad de riego en cultivos de producción intensiva, 2006.
J. Vecino, “La Inteligencia Artificial en la Agricultura: Perspectivas de los Sistemas Expertos,” Revista de Estudios Agro-Sociales, 1989.
J. R. Bustos M., “Inteligencia Artificial en el Sector Agropecuario,” Seminario de Investigación I, 2005.
M. Woolridge and M. Wooldridge, in Introduction to Multiagent Systems. JohnWiley & Sons, Inc., New York, 2002.
M. Bratman, in Intention, Plans, and Practical Reason. Harvard University Press, Cambridge, MA , Harvard University Press, Cambridge, MA , 1987.
A. Rao and M. Georgeff, Modeling rational agents within a BDI-architecture., San Mateo, CA, USA: Morgan Kaufmann publishers Inc., 1991.
A. Mas, “Agentes Software y Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones.,” in Agentes Software y Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones., Madrid, Pearson Prentice Hall, 2005, p. 296.
L. Zadeh, “Fuzzy Logic,” IEEE Computer Magazine, abril, 1988.
ARDUINO, “Arduino.cc,” 2012. [Online]. Available: http://arduino.cc/en/Main/Software.
Mega, “ARDUINO MEGA,” 2013 [Online]. Available: http://arduino.cc/es/Main/ArduinoBoardMega
JADE, “Java Agent DEvelopment Framework,” 2012 [Online]. Available: http://jade.tilab.com/.
FIPA, “Foundation for Intelligent Physical Agents,” 2013 [Online]. Available: http://fipa.org/.
A. S. B. del Brio, Redes Neuronales y Sistemas Borrosos, Madrid: RA-MA, 2006
WPF, “Windows Presentation Fundation,” 2012 [Online]. Available: http://msdn.microsoft.com/es-es/library/ms742119.aspx.
NetBeans, “NetBeans IDE,” 2013 [Online]. Available: https://netbeans.org/.
Arduino, “Arduino IDE,” 2013 [Online]. Available: http://arduino.cc/es/Main/Software
Microsoft, “Microsoft Visual Studio,” 2012 [Online]. Available: http://www.microsoft.com/visualstudio/esn/2013-preview.
Microsoft, “Microsoft Access,” 2012 [Online]. Available: http://office.microsoft.com/es-mx/access/.
J. Toloza, L. Leiva, A. Riba, F. Carmona and N. Acosta, Desarrollo de un prototipo de sistema portátil para la detección en tiempo-real de la necesidad de riego en cultivos de producción intensiva, 2006.
J. Vecino, “La Inteligencia Artificial en la Agricultura: Perspectivas de los Sistemas Expertos,” Revista de Estudios Agro-Sociales, 1989.
J. R. Bustos M., “Inteligencia Artificial en el Sector Agropecuario,” Seminario de Investigación I, 2005.
M. Woolridge and M. Wooldridge, in Introduction to Multiagent Systems. JohnWiley & Sons, Inc., New York, 2002.
M. Bratman, in Intention, Plans, and Practical Reason. Harvard University Press, Cambridge, MA , Harvard University Press, Cambridge, MA , 1987.
A. Rao and M. Georgeff, Modeling rational agents within a BDI-architecture., San Mateo, CA, USA: Morgan Kaufmann publishers Inc., 1991.
A. Mas, “Agentes Software y Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones.,” in Agentes Software y Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones., Madrid, Pearson Prentice Hall, 2005, p. 296.
L. Zadeh, “Fuzzy Logic,” IEEE Computer Magazine, abril, 1988.
ARDUINO, “Arduino.cc,” 2012. [Online]. Available: http://arduino.cc/en/Main/Software.
Mega, “ARDUINO MEGA,” 2013 [Online]. Available: http://arduino.cc/es/Main/ArduinoBoardMega
JADE, “Java Agent DEvelopment Framework,” 2012 [Online]. Available: http://jade.tilab.com/.
FIPA, “Foundation for Intelligent Physical Agents,” 2013 [Online]. Available: http://fipa.org/.
A. S. B. del Brio, Redes Neuronales y Sistemas Borrosos, Madrid: RA-MA, 2006
WPF, “Windows Presentation Fundation,” 2012 [Online]. Available: http://msdn.microsoft.com/es-es/library/ms742119.aspx.
NetBeans, “NetBeans IDE,” 2013 [Online]. Available: https://netbeans.org/.
Arduino, “Arduino IDE,” 2013 [Online]. Available: http://arduino.cc/es/Main/Software
Microsoft, “Microsoft Visual Studio,” 2012 [Online]. Available: http://www.microsoft.com/visualstudio/esn/2013-preview.
Microsoft, “Microsoft Access,” 2012 [Online]. Available: http://office.microsoft.com/es-mx/access/.
Salazar, R., Rangel, J. C., Pinzón, C., & Rodríguez, A. (2013). Irrigation System through Intelligent Agents Implemented with Arduino Technology. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 2(3), 29–36. https://doi.org/10.14201/ADCAIJ2014262936
Most read articles by the same author(s)
- Nicholas Beliz, José Carlos Rangel, Chi Shun Hong, Detecting DoS Attack in Web Services by Using an Adaptive Multiagent Solution , ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal: Vol. 1 No. 2 (2012)
Downloads
Download data is not yet available.
+
−