Beneficio educativo de un Laboratorio de Control Automático Remoto. Una colaboración beneficiosa para todos entre Asia y Europa

Resumen

Este proyecto tiene como objetivo implementar un laboratorio remoto de Control Automático en el marco de cooperación académica conjunta entre dos universidades ubicadas en Europa y Asia Central. Se hace hincapié en la solución inclusiva de una instalación de enseñanza compartida y sus logros de aprendizaje en un curso de licenciatura (Uzbekistán) y en un curso de maestría (Italia) para proveer una mejor calidad de la educación. Los diferentes contextos culturales y sociales permiten (a) la evaluación del efecto obtenido al introducir una experiencia de laboratorio remoto en un curso totalmente teórico, y (b) el paso de una experiencia de laboratorio físico a una remota. Los estudiantes son introducidos por el profesor en este laboratorio por primera vez en clases dedicadas. Luego, los estudiantes pueden acceder de forma independiente las 24 horas del día, los 7 días de la semana, simplemente reservando una estación específica durante un intervalo de tiempo. Del análisis se desprende que las experiencias del laboratorio remoto impactan positivamente en los logros de aprendizaje. Los beneficios del entorno remoto son perfectamente comparables a los que se obtienen de las actividades físicas del laboratorio.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Almarshoud, A. F. (2011). The Advancement in using Remote Laboratories in Electrical Engineering Education: a Review. European Journal of Engineering Education, 36(5), 425-433. https://doi.org/10.1080/03043797.2011.604125
Alves, G. R., et al. (2018). International Cooperation for Remote Laboratory Use. In: M. Nascimento, G. R. Alves, & E. Morais (Eds) Contributions to Higher Engineering Education. Springer, Singapore. https://doi.org/10.1007/978-981-10-8917-6_1
Axaopoulos, P. J., Moutsopoulos, K. N., & Theodoridis, M. P. (2012). Engineering education using a remote laboratory through the Internet. European Journal of Engineering Education, 37(1), 39-48. https://doi.org/10.1080/03043797.2011.644764
Ballatore, M. G., Stievano, I. S., & Tabacco, A. (2019). TEACH-GYM: Grow Your Methodologies. Proc. Innovations, Technologies, and Research in Education, Riga, Latvia. https://doi.org/10.22364/atee.2019.itre
Barros, B., Read, T., & Verdejo, M. F. (2008). Virtual Collaborative Experimentation: An Approach Combining Remote and Local Labs. IEEE Transactions on Education, 51(2), 242-250. https://doi.org/10.1109/TE.2007.908071
Bochicchio, M. A., & Longo, A. (2009). Hands-On Remote Labs: Collaborative Web Laboratories as a Case Study for IT Engineering Classes. IEEE Transactions on. Learning Technologies, 2(4), 320-330. https://doi.org/10.1109/TLT.2009.30
Bonnaud, O., Carbone, B., Danto, Y., Ordonez, N., Morimoto, N., & Mansano, R. D. (2008). International cooperation to develop low cost equipment devoted to microelectronics laboratory education. 19th EAEEIE Annual Conference, 178-181. https://doi.org/10.1109/EAEEIE.2008.4610182
Casini, M., Prattichizzo, D., Vicino, A. (2003). E-Learning by Remote Laboratories: A New Tool for Control Education Author links open overlay panel, IFAC Proceedings Volumes, 36(10), 73-78. https://doi.org/10.1016/S1474-6670(17)33657-1
de la Torre, L., Heradio, R., Jara, C. A., Sanchez, J., Dormido, A., Torres, F., & Candelas, F. A. (2013). Providing Collaborative Support to Virtual and Remote Laboratories. IEEE Transactions on Learning Technologies, 6(4), 312-323. https://doi.org/10.1109/TLT.2013.20
Fraile-Ardanuy, J., García-Gutiérrez, P.A., Gordillo-Iracheta, C., & Maroto-Reques, J. (2013). Development of an Integrated Virtual-Remote Lab for Teaching Induction Motor Starting Methods. 2011 Promotion and Innovation with New Technologies in Engineering Education (FINTDI 2011). IEEE. https://doi.org/10.1109/FINTDI.2011.5936419
Garcia-Zubia, J., Cuadros, J., Romero, S., Hernandez-Jayo, U., Orduña, P., Guenaga, M., Gonzalez-Sabate, L., & Gustavsson, I. (2017). Empirical Analysis of the Use of the VISIR Remote Lab in Teaching Analog Electronics. IEEE Transactions on Education, 60(2), 149-156. https://doi.org/10.1109/TE.2016.2608790
Hidalgo, R., Johnson, J., & Braithwaite, N. (2018). Using Learning Analytics to Improve the Design of Remote Practical Activities in Engineering. Proc. 6th Annual Symposium of the United Kingdom & Ireland Engineering Education Research Network, University of Portsmouth, U.K. Nov. 1-2, 2018 http://doi.org/10.13140/RG.2.2.31521.25449
Kalúz, M., Cirka, L. Valo, R., & Fikar M. (2014). ArPi Lab: A Low-cost Remote Laboratory for Control Education Author links open overlay. IFAC Proceedings Volumes, 47(3), 9057-9062. https://doi.org/10.3182/20140824-6-ZA-1003.00963
Ku, H., Ahfock, T., & Yusaf, T. (2011). Remote access laboratories in Australia and Europe. European Journal of Engineering Education, 36(3), 253-268. https://doi.org/10.1080/03043797.2011.578244
Lal, S., Lucey, A. D., Lindsay, E. D., Treagust, D. F., Long, J. M., Mocerino, M., & Zadnik, M. G. (2020). Student perceptions of instruction sheets in face-to-face and remotely-operated engineering laboratory learning. European Journal of Engineering Education, 45(4), 491-515. https://doi.org/10.1080/03043797.2019.1654433
Lang, D., Mengelkamp, C., Jäger, R. S., Geoffroy, D., Billaud, M., & Zimmer, T. (2007). Pedagogical evaluation of remote laboratories in eMerge project. European Journal of Engineering Education, 32(1), 57-72. https://doi.org/10.1080/03043790601055626
Lima, N. M., Viegas, M. C., & García-Peñalvo, F. J. (2017). Learning from complementary ways of developing experimental competences. Education in the Knowledge Society, 18(1), 63-74. https://doi.org/10.14201/eks20171816374
Lima, N., Viegas, C., & García-Peñalvo, F. J. (2019). Different Didactical Approaches Using a Remote Lab: Identification of Impact Factors. IEEE Revista Iberoamericana de Tecnologías del Aprendizaje (IEEE RITA), 14(3), 76-86. https://doi.org/10.1109/RITA.2019.2942256
Lowe, D., Dang, B., Daniel, K., Murray, S., & Lindsay, E. (2015). On the Viability of Supporting Institutional Sharing of Remote Laboratory Facilities. European Journal of Engineering Education, 40(6), 611-622. https://doi.org/10.1080/03043797.2014.1001815
Luthon, F. & Larroque, B. (2015). LaboREM—A Remote Laboratory for Game-Like Training in Electronics. IEEE Transactions on Learning Technologies, 8(3), 311-321. https://doi.org/10.1109/TLT.2014.2386337
Marques, M. A., Viegas, M. C., Costa-Lobo, M. C., Fidalgo, A. V., Alves, G. R., Rocha, J. S., & Gustavsson, I. (2014). How Remote Labs Impact on Course Outcomes: Various Practices Using VISIR. IEEE Transactions on Education, 57(3), 151-159. https://doi.org/10.1109/TE.2013.2284156
NI, National Instrument (2016). USER GUIDE AND SPECIFICATIONS NI myRIO-1900. https://www.ni.com (https://www.ni.com/pdf/manuals/376047c.pdf).
Nikolic, S., Ros, M., Jovanovic, K., & Stanisavljevic, Z. (2021). Remote, simulation or traditional engineering teaching laboratory: a systematic literature review of assessment implementations to measure student achievement or learning. European Journal of Engineering Education, 46(6), 1141-1162. https://doi.org/10.1080/03043797.2021.1990864
Pradarelli, B., Latorre, L., Flottes, M. L., Bertrand, Y., & Nouet, P. (2009). Remote Labs for Industrial IC Testing. IEEE Transactions on Learning Technologies, 2(4), 304-311. https://doi.org/10.1109/TLT.2009.46
Qiao, Y., Liu, G.-P., Zheng, G., & Hu, W. (2010). NCSLab: A Web-Based Global-Scale Control Laboratory With Rich Interactive Features. IEEE Transactions on Industrial Electronics, 57(10), 3253-3265. https://doi.org/10.1109/TIE.2009.2027924
Sousa, N., Alves, G. R., & Gericota, M. G. (2010). An Integrated Reusable Remote Laboratory to Complement Electronics Teaching. IEEE Transactions on Learning Technologies, 3(3), 265-271. https://doi.org/10.1109/TLT.2009.51
Tawfik, M., Sancristobal, E., Martin, S., Gil, R., Diaz, G., Colmenar, A., Peire, J., Castro, M., Nilsson, K., Zackrisson, J., Hakansson, L., & Gustavsson, I. (2013). Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard. IEEE Transactions on Learning Technologies, 6(1), 60-72. https://doi.org/10.1109/TLT.2012.20
Tirado-Morueta, R., Sánchez-Herrera, R., Márquez-Sánchez, M. A., Mejías-Borrero, A., & Andujar-Márquez, J. M. (2018). Exploratory Study of the Acceptance of Two Individual Practical Classes with Remote Labs. European Journal of Engineering Education, 43(2), 278-295. https://doi.org/10.1080/03043797.2017.1363719
Tselegidis, A. (2018). Github project “Easy!Appointment”. https://bit.ly/3BvxxKi. Accessed online on Sep. 20, 2022.
Viegas, C., Pavani, A., Lima, N., Marques, A., Pozzo, I., Dobboletta, E., Atencia, V., Barreto, D., Calliari, F., Fidalgo, A., Lima, D., Temporão, G., & Alves, G. (2018). Impact of a remote lab on teaching practices and student learning. Computers & Education, 126, 201-216. https://doi.org/10.1016/j.compedu.2018.07.012
Ballatore, M. G., Razza, V., Regruto, D., Stievano, I., & Tabacco, A. (2022). Beneficio educativo de un Laboratorio de Control Automático Remoto. Una colaboración beneficiosa para todos entre Asia y Europa. Education in the Knowledge Society (EKS), 23, e28495. https://doi.org/10.14201/eks.28495

Descargas

Los datos de descargas todavía no están disponibles.
+