Detecting Spam Review through Spammer’s Behavior Analysis
Main Article Content
Abstract
Keywords:
Downloads
Article Details
References
Hussain, N., Turab Mirza, H., Rasool, G., Hussain, I., & Kaleem, M. (2019). Spam Review Detection Techniques: A Systematic Literature Review. Applied Sciences, 9(5), 987.
Bajaj, S., Garg, N., & Singh, S.
K. (2017). A Novel User-based Spam Review Detection. Procedia Computer Science, 122, (pp. 1009-1015).
Biradar, J. G. (2017). The exponential Distribution model for Review Spam Detection. International Journal of
Advanced Research in Computer Science, 8(3), pp. 938-947.
Mukherjee, A., Venkataraman, V., Liu, B., & Glance, N. S. (2013). What yelp fake review filter might be doing? In: International Conference on Web and Social Media (pp. 409-418).
Fusilier, D. H., Montes-y-Gómez, M., Rosso, P., & Cabrera, R. G. (2015). Detecting positive and negative deceptive opinions using PU-learning. Information processing & management, 51(4), 433-443.
Ong, T., Mannino, M., & Gregg, D. (2014). Linguistic characteristics of shill reviews. Electronic Commerce Research and Applications, 13(2), (pp.69-78).
Dematis, I., Karapistoli, E., & Vakali, A. (2018). Fake Review Detection via Exploitation of Spam Indicators and Reviewer Behavior Characteristics. In: International Conference on Current Trends in Theory and
Practice of Informatics (pp. 581-595). Edizioni Della Normale, Cham.
Jindal, N., & Liu, B. (2008, February). Opinion spam and analysis. In Proceedings of the 2008 international conference on web search and data mining (pp. 219-230). ACM..
Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In: Mining text data (pp. 415- 463). Springer US.
Zhou, S., Qiao, Z., Du, Q., Wang, G. A., Fan, W., & Yan, X. (2018). Measuring Customer Agility from Online Reviews Using Big Data Text Analytics. Journal of Management Information Systems, 35(2),
(pp.510-539).
Chakraborty, M., Pal, S., Pramanik, R., & Chowdary, C. R. (2016). Recent developments in social spam detection and combating techniques: A survey. Information Processing & Management, 52(6),
(pp.1053-1073).
Mukherjee, A., Kumar, A., Liu, B., Wang, J., Hsu, M., Castellanos, M., & Ghosh, R. (2013). Spotting opinion
spammers using behavioral footprints. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 632-640). ACM..
Heydari, A., Tavakoli, M., & Salim, N. (2016). Detection of fake opinions using time series. Expert Systems with Applications, 58, (pp. 83-92).
KC, S., & Mukherjee, A. (2016). On the temporal dynamics of opinion spamming: Case studies on Yelp. In Proceedings of the 25th International Conference on World Wide Web (pp. 369-379). International World Wide Web Conferences Steering Committee.
Li, H., Fei, G., Wang, S., Liu, B., Shao, W., Mukherjee, A., & Shao, J. (2017). Bimodal distribution and co-bursting in review spam detection. In Proceedings of the 26th International Conference on World Wide Web (pp. 1063-1072).
Kaghazgaran, P., Caverlee, J., & Alfifi, M. (2017, May). Behavioral Analysis of Review Fraud: Linking Malicious Crowdsourcing to Amazon and Beyond. In Eleventh International AAAI Conference on Web and Social Media.
Viviani, M., & Pasi, G. (2017). Quantifier guided aggregation for the veracity assessment of online reviews. International Journal of Intelligent Systems, 32(5), 481-501.
Wang, Zhuo, Songmin Gu, and Xiaowei Xu. "GSLDA: LDA-based group acc detection in product reviews." Applied Intelligence 48.9 (2018): 3094-3107.
Kaghazgaran, P., Caverlee, J., & Squicciarini, A. (2018,February). Combating crowdsourced review
manipulators: A neighborhood-based approach. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 306-314). ACM.
Ganesan, K., & Zhai, C. (2012). Opinion-based entity ranking. Information retrieval, 15(2), 116-150.
Hazim, M., Anuar, N. B., Ab Razak, M. F., & Abdullah, N. A. (2018). Detecting opinion spams through supervised boosting approach. PloS one, 13(6), e0198884.
Zhou, W., Liu, M., & Zhang, Y. (2017, December). Detecting Spammer Communities Using Network Structural Features. In International Conference on Collaborative Computing: Networking, Applications
and Work-sharing (pp. 670-679). Springer, Cham
Asadi, R., Kareem, S. A., Asadi, M., & Asadi, S. (2015). A single-layer semi-supervised feed forward neural network clustering method. Malaysian Journal of Computer Science, 28(3), (pp.189-212)
Pudaruth, S., Moheeputh, S., Permessur, N., & Chamroo, A. (2018). Sentiment Analysis from Facebook Comments using Automatic Coding in NVivo 11, ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal Regular Issue, Vol. 7 N. 1, (pp. 41-48)