Tiroidología y Paratiroidología en cirugía de tiroides y paratiroides


La atención al paciente con patología de las glándulas tiroides y paratiroides es multidisciplinar. La formación y actualización de los conocimientos sobre el diagnós-tico y tratamiento de las patologías de tiroides y paratiroides es una necesidad en todas las especialidades implicadas. Página web del curso ‘Bases de Tiroidología y Paratiroidología en cirugía de tiroides y paratiroides’: http://tiroides.org.es/.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas

Chi, L., Zhang, H., & Chen, M. (2017). End-To-End Face Detection and Recognition. ArXiv Preprint, 1703.10818, 1–9.

Crowley, J. L., & Berard, F. (1997). Multi-modal tracking of faces for video communications. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 640–645. https://doi.org/10.1109/cvpr.1997.609393

Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek, M. (2012). A brief introduction to OpenCV. Proceedings of the 35th International Convention MIPRO (MIPRO 2012), 1725–1730. Opatija, Croatia: IEEE.

Darrell, T., Gordon, G., Harville, M., & Woodfill, J. (2000). Integrated person tracking using stereo, color, and pattern detection. International Journal of Computer Vision, 37(2), 175–185. https://doi.org/10.1023/A:1008103604354

Donato, G., Bartlett, M. S., Hager, J. C., Ekman, P., & Sejnowski, T. J. (1999). Classifying facial actions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10), 974–989. https://doi.org/10.1109/34.799905

Edwards, G. J., Taylor, C. J., & Cootes, T. F. (1998). Learning to identify and track faces in image sequences. Proceedings of Sixth International Conference on Computer Vision, 317–322. https://doi.org/10.1109/AFGR.1998.670958

Essa, I. A., & Pentland, A. P. (2002). Facial expression recognition using a dynamic model and motion energy. Proceedings of 5th IEEE International Conference on Computer Vision, 360–367. https://doi.org/10.1109/iccv.1995.466916

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2), 303–338. https://doi.org/10.1007/s11263-009-0275-4

Gao, Y., & Qi, Y. (2005). Robust visual similarity retrieval in single model face databases. Pattern Recognition, 38(7), 1009–1020. https://doi.org/10.1016/j.patcog.2004.12.006

Geitgey, A. (2019). ageitgey/face_recognition: The world’s simplest facial recognition api for Python and the command line. Retrieved July 23, 2019, from https://github.com/ageitgey/face_recognition

Gunay, M., & Ensari, T. (2017). Comparison of face recognition algorithms. 2017 25th Signal Processing and Communications Applications Conference (SIU), 1–4. https://doi.org/10.1109/SIU.2017.7960469

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Heinisuo, O.-P. (2019). opencv-python. Retrieved July 23, 2019, from https://pypi.org/project/opencv-python/

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments.

Jain, V., & Learned-Miller, E. (2010). FDDB: A Benchmark for Face Detection in Unconstrained Settings.

Jung, S.-G., An, J., Kwak, H., Salminen, J., & Jansen, B. J. (2018). Assessing the Accuracy of Four Popular Face Recognition Tools for Inferring Gender, Age, and Race. Proceedings of the Twelfth International AAAI Conference on Web and Social Media (ICWSM-18), 624–627. Stanford, California, USA: AAAI Press.

Kayikci, S. (2018). A Deep Learning Method for Passing Completely Automated Public Turing Test. 3rd International Conference on Computer Science and Engineering (UBMK 2018), 41–44. https://doi.org/10.1109/UBMK.2018.8566318

King, D. (2017). dlib C++ Library: High Quality Face Recognition with Deep Metric Learning. Retrieved July 23, 2019, from http://blog.dlib.net/2017/02/high-quality-face-recognition-with-deep.html

King, D. (2019). dlib C++ Library. Retrieved July 23, 2019, from http://dlib.net

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (NIPS’12), 1097–1105. Lake Tahoe, Nevada.

Lam, K.-M., & Yan, H. (1994). Fast algorithm for locating head boundaries. Journal of Electronic Imaging, 3(4), 351–359. https://doi.org/10.1117/12.183806

Li, H., Lin, Z., Shen, X., Brandt, J., & Hua, G. (2015). A Convolutional Neural Network Cascade for Face Detection. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’15), 5325–5334. https://doi.org/10.1109/CVPR.2015.7299170

Li, Y., Cai, C., Qiu, G., & Lam, K. M. (2014). Face hallucination based on sparse local-pixel structure. Pattern Recognition, 47(3), 1261–1270. https://doi.org/10.1016/j.patcog.2013.09.012

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes in the Wild. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV ’15), 3730–3738. https://doi.org/10.1109/ICCV.2015.425

Ma, J., Zhao, J., Ma, Y., & Tian, J. (2015). Non-rigid visible and infrared face registration via regularized Gaussian fields criterion. Pattern Recognition, 48(3), 772–784. https://doi.org/10.1016/j.patcog.2014.09.005

Mehta, J., Ramnani, E., & Singh, S. (2018). Face Detection and Tagging Using Deep Learning. 2nd International Conference on Computer, Communication, and Signal Processing: Special Focus on Technology and Innovation for Smart Environment (ICCCSP 2018), 1–6. https://doi.org/10.1109/ICCCSP.2018.8452853

Moghaddam, B., & Pentland, A. (1997). Probabilistic visual learning for object representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 696–710. https://doi.org/10.1109/34.598227

Momtahina, Hossain, R., Rahman, M. M., & Tania, O. A. (2019). Image Capturing and Automatic Face Recognition. United International University.

Nguyen, T. (2019). sthanhng/yoloface: Deep learning-based Face detection using the YOLOv3 algorithm. Retrieved July 23, 2019, from https://github.com/sthanhng/yoloface

OpenCV. (2019). Retrieved July 22, 2019, from https://opencv.org

Osuna, E., Freund, R., & Girosit, F. (2002). Training support vector machines: an application to face detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.1997.609310

Ou, W., You, X., Tao, D., Zhang, P., Tang, Y., & Zhu, Z. (2014). Robust face recognition via occlusion dictionary learning. Pattern Recognition, 47(4), 1559–1572. https://doi.org/10.1016/j.patcog.2013.10.017

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. ArXiv, 1–6.

Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Yi Ma. (2009). Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–227. https://doi.org/10.1109/TPAMI.2008.79

Yang, M. H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 34–58. https://doi.org/10.1109/34.982883

Yang, S., Luo, P., Loy, C. C., & Tang, X. (2016). WIDER FACE: A face detection benchmark. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. https://doi.org/10.1109/CVPR.2016.596

Zafeiriou, S., Zhang, C., & Zhang, Z. (2015). A survey on face detection in the wild: Past, present and future. Computer Vision and Image Understanding, 138, 1–24. https://doi.org/10.1016/j.cviu.2015.03.015

Zhang, C., & Zhang, Z. (2014). Improving multiview face detection with multi-task deep convolutional neural networks. 2014 IEEE Winter Conference on Applications of Computer Vision (WACV 2014), 1036–1041. https://doi.org/10.1109/WACV.2014.6835990

Zhang, Y., Ding, M., Bai, Y., & Ghanem, B. (2019). Detecting small faces in the wild based on generative adversarial network and contextual information. Pattern Recognition, 97, 74–86. https://doi.org/10.1016/j.patcog.2019.05.023

Zheng, Y., Zhu, C., Luu, K., Bhagavatula, C., Le, T. H. N., & Savvides, M. (2016). Towards a Deep Learning Framework for Unconstrained Face Detection. ArXiv Preprint, 1612.05322, 1–8.

Zhong Wu, Qifa Ke, Jian Sun, & Heung-Yeung Shum. (2010). Scalable Face Image Retrieval with Identity-Based Quantization and Multireference Reranking. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3469–3476. https://doi.org/10.1109/tpami.2011.111

Pardal-Refoyo, J. L. (2020). Tiroidología y Paratiroidología en cirugía de tiroides y paratiroides. Revista ORL, 11(3), 243–252. https://doi.org/10.14201/orl.23624

Artículos más leídos del mismo autor/a

1 2 3 4 5 6 > >> 


Los datos de descargas todavía no están disponibles.