
33CC BY NC-NB EKS, 2017, vol. 18, n. 2

Hacia la educación del futuro:
El pensamiento computacional como mecanismo de

aprendizaje generativo

Towards the Education of the Future:
Computational Thinking as a Generative Learning Mechanism
Eduardo Segredo, Gara Miranda, Coromoto León

Dpto. de Ingeniería Informática y de Sistemas, Universidad de La Laguna, Spain. {esegredo, gmiranda, cleon}@ull.edu.es

Resumen
La transformación de la educación tradicional en una
educación “SMART” (del inglés, “Sensitive, Manageable,
Adaptable, Responsive and Timely”) implica la modernización
integral de todos los procesos educativos. Para dicha
transformación, la incorporación de nuevas pedagogías se
vuelve imprescindible a nivel metodológico, mientras que el
uso de entornos interactivos e inteligentes de aprendizaje
supone un hito fundamental a nivel tecnológico. En
cualquier caso, el objetivo último de esta transformación es
formar y transformar a los estudiantes del futuro para que
desarrollen habilidades del siglo XXI y puedan convertirse
así en ciudadanos de nuestro mundo en continuo cambio.
La tecnología y las computadoras son un aspecto esencial
para esta modernización, no solo en términos de soporte
tecnológico, sino también en términos de ofrecer nuevas
metodologías para el desarrollo de nuevas pedagogías y
habilidades. En este contexto, el pensamiento computacional
aparece como un mecanismo prometedor para fomentar
estas nuevas competencias básicas, ya que ofrece
herramientas que se ajustan a los intereses del alumnado y
les da la posibilidad de comprender mejor los fundamentos
de nuestra sociedad y de los entornos basados en las
Tecnologías de la Información y la Comunicación (TIC). En
este trabajo, planteamos la necesidad de realizar un esfuerzo
para fomentar el desarrollo del pensamiento computacional
como una oportunidad para transformar las pedagogías
tradicionales en metodologías adaptadas al futuro. Además,
presentamos una visión general sobre el pensamiento
computacional y analizamos el estado actual de la educación
“SMART”, haciendo hincapié en la falta de metodologías que
permitan apoyar esta transición. Por último, proporcionamos
—a aquellos educadores interesados en conseguir un cambio
real— información sobre iniciativas dedicadas a la difusión
o promoción del pensamiento computacional; herramientas
o materiales de apoyo para el desarrollo del pensamiento
computacional entre los estudiantes; así como una síntesis
de las experiencias y los resultados existentes en relación a
la aplicación del pensamiento computacional en entornos
educativos.

Abstract
The transformation of traditional education into a Sensitive,
Manageable, Adaptable, Responsive and Timely (SMART)
education involves the comprehensive modernisation of all
educational processes. For such a transformation, smart
pedagogies are needed as a methodological issue while
smart learning environments represent the technological
issue, both having as an ultimate goal to cultivate smart
learners. Smart learners need to develop 21st century skills
so that they can become into smart citizens of our changing
world. Technology and computers are an essential aspect for
this modernisation, not only in terms of technological support
for smart environments but also in terms of offering new
methodologies for smart pedagogy and the development
of smart skills. In this context, computational thinking
appears as a promising mechanism to encourage core
skills	since	it	offers	tools	that	fit	learners’	interests	and	gives	
them the possibility to better understand the foundations
of our ICT-based society and environments. In this work,
we raise to make an effort to encourage the development
of computational thinking as an opportunity to transform
traditional pedagogies to smarter methodologies. We
provide a general background about computational thinking
and analyse the current state-of-the-art of smart education,
emphasizing that there is a lack of smart methodologies
which can support the training of 21st century smart
skills. Finally, we provide —to those educators interested in
pursuing the philosophy of smart education— information
about initiatives devoted to the dissemination or promotion
of computational thinking; existing tools or materials which
support educators for the development of computational
thinking among the students; and previous experiences and
results about the application of computational thinking in
educational environments.

Palabras clave
Pensamiento computacional; Educación “SMART”; Resolución
de problemas; Programación informática; Aprendizaje
generativo

Keywords
Computational thinking; SMART education; Problem solving;
Computer programming; Generative learning

e-ISSN 2444-8729

https://doi.org/10.14201/eks20171823358

Recepción: 25-04-2017 Revisión: 10-05-2017 Aceptación: 25-05-2017 Publicación: 30-06-2017

https://doi.org/10.14201/eks20171823358

34CC BY NC-NB EKS, 2017, vol. 18, n. 2

1. Introduction

Moving towards the education of the future involves a comprehensive modernization of all educational

processes. Such a modernization implies the introduction of smart technologies, systems and devices

with the aim of creating new opportunities for academic and training organizations in terms of higher

standards and innovative approaches. Most of this modernization is the result of the rapid development

of Computer Science fields. However, Computer Science drives innovation throughout the world

economy, but it remains marginalized throughout the current education systems. It is necessary to

disseminate the real benefits of learning Computer Science in children and young students, focusing

primarily on skills and competences developed since it will improve the future access to the labor

market, regardless of the profession or sector involved. Nowadays, in our digital economy, it is not

enough to be a technological consumer or user, so it is essential to train students —at pre-university

and university levels— to be active citizens and creators in a technology-driven society. Citizens of the

future must have full confidence in the tools and technologies involved in a smart environment.

In order to perform such a transformation, many initiatives have been launched to promote Computer

Science and programming among the population, especially among children and young people.

Learning how to program a computer has many benefits for those who practice it, but the highlight

is that it helps people to think about solving problems. That is the reason why a new approach to

education is being developed currently —at all education levels— for including “computational thinking”

as an essential element of the curricula. In this paper, the foundations and basic concepts about

computational thinking will be presented. Some of the most successful and global initiatives for the

dissemination of Computer Science and computational thinking will be also introduced since they

could serve as a starting point for those interested on the development of these skills among students.

Finally, special attention will be paid to the existing tools which have been specifically designed for

teaching students the basics about programming. A thorough study of existing tools and experiences

focused on enabling the development of computational thinking will be held and made available to

professionals in the educational environments. The achievement of an appropriate education for

the present times, not only requires smart devices and smart systems but also students with an

appropriate training and specific skills which make them possible to manage in a smart environment.

2. Smart education

Given that computational thinking helps to promote problem solving abilities, critical thinking, and

creativity, both educators and business leaders, are increasingly recognizing that it is a new basic

35CC BY NC-NB EKS, 2017, vol. 18, n. 2

When thinking about the quality and training of future graduates, it is essential to identify the set of

skills to develop among learners, and try to detect suitable mechanisms to strengthen such skills. The

21st century demands skills and competence from people in order to function and live effectively at

work and leisure time (Zhu, Yu, & Riezebos, 2016). As a key research in the education field, several

studies (Greenstein, 2012; Trilling & Fadel, 2012) and initiatives have emerged in order to define,

2.1. Skills for smart citizens

skill necessary for economic opportunity and social mobility. In the coming years, we should build on

that progress, by offering every student the opportunity to properly develop this skill. In this sense,

educational environments play a key role. From educational institutions, we should make an effort

to encourage the development of computational thinking as an opportunity to transform traditional

pedagogies into smarter methodologies. This way, we will be able to transform traditional education

into “SMART education”. This term is a concept that has been gaining popularity and recognition in

recent years, especially in higher education environments. In this sense, it seems natural that the

related term “smart University” has also emerged as a key concept in the field. Since it is a relatively

recent and novel research field, there are different views about it and its main concepts. Tikhomirov’s

vision (Tikhomirov & Dneprovskaya, 2015) is that “Smart University is a concept that involves a

comprehensive modernization of all educational processes. … The smart education is able to provide

a new university, where a set of ICT and faculty leads to an entirely new quality of the processes

and outcomes of the educational, research, commercial and other university activities”. According to

(Coccoli, Guercio, Maresca, & Stanganelli, 2014), smart education can be considered as the education

in a smart environment supported by smart technologies, making use of smart tools and smart

devices.

In order to achieve these distinctive features, technology is a fundamental and necessary element, but

it is not sufficient. Technology should be a fundamental tool, but not the ultimate goal when smart

education is being pursued. So, at this moment, if we want to transform the traditional education into

a smart education, the implementation and use of technology itself will not be enough. In this regard,

a smart educational system should offer rich, interactive, and ever-changing learning environments

by exploiting the suite of technologies and services available through the Internet, by empowering

individuals’ abilities and attitudes, and by encouraging them to interact and collaborate in a framework

in which people are co-responsible for raising and appraising the inclination of everyone (Coccoli, et al.,

2014). Such smart educational systems act in the context of smart cities, which offer smart services

and applications to their citizens to enhance their quality of life. Therefore, smart education should

be focused on the use of the available technologies to improve the performance of the educational

institutions and to enhance the quality of their graduates.

36CC BY NC-NB EKS, 2017, vol. 18, n. 2

classify, and promote 21st century skills. In (Trilling & Fadel, 2012), three different dimensions were

identified in order to classify 21st century skills: learning and innovation skills (critical thinking and

problem solving, communications and collaboration, creativity and innovation); digital literacy skills

(information literacy, media literacy, Information and Communication Technologies (ICT) literacy); and

career and life skills (flexibility and adaptability, initiative and self-direction, social and cross-cultural

interaction, productivity and accountability, leadership, and responsibility). In (Zhu, et al., 2016), the

authors proposed four levels of abilities in smart education that students should master to meet the

needs of the modern society. These abilities are basic knowledge and core skills (reading, writing,

arts, Science, Technology, Engineering, and Mathematics (STEM), etc.); comprehensive abilities (critical

thinking and real-world problem solving); personalized expertise (master information and technology

literacy, creativity, and innovation); and collective intelligence (communicate clearly and effectively,

collaborate effectively and respectfully in diverse teams). The Partnership for 21st Century Learning

(p21.org) has proposed a model based on four main components: core subjects (writing, reading,

mathematics, art, etc.); learning and innovation skills (creativity, innovation, critical thinking and

problem solving, and communication and collaboration); information media and technology skills

(needed to manage the abundance of information and also contribute to the build of IT: information

literacy, media literacy, and ICT literacy). The North Central Regional Educational Laboratory and

the Metiri Group (North Central Regional Educational Laboratory and Metiri Group, 2003) suggest

that 21st century skills are built on basic literacies of language and numeracy. These literacies are

essential to later develop what are considered the four basic academic achievements: digital-age

literacy, inventive thinking, effective communication, and high productivity. Regarding productivity

skills, it involves prioritizing and planning, using real-world tools, and the ability to produce relevant

high quality products.

Technology is so present in all areas of our lives, that most experts consider fundamental the

inclusion of digital and ICT literacy as a basic ability for all learners and 21st century citizens. Given

the importance of digital skills, the Organization for Economic Co-operation and Development has

organized 21st century skills into different categories to potentially distinguish between those that

are more strongly related to ICT from those that are not (Organisation for Economic Co-Operation and

Development, 2009): ICT functional skills (that includes skills relevant to mastering the use of different

ICT applications), ICT skills for learning (which include skills that combine both cognitive abilities or

higher-order thinking skills with functional skills for the use and management of ICT applications),

and 21st century skills which bring all those skills considered necessary in the knowledge society but

where the use of ICT is not a necessary condition.

37CC BY NC-NB EKS, 2017, vol. 18, n. 2

The newly required skills will force the educational institutions to transform and adapt in order to cope

with learners’ needs. It is mandatory to somehow reach integration between the education systems and

the industries and organizations which are requesting multidisciplinary workers with complementary

competencies and skills. As a result, in a smart environment, the curricula and the courses should

also be transformed from traditional to smart, thus promoting a vision that is not limited to the simple

acquisition of knowledge, but aims to create culturally qualified personnel by anticipating users’

demands (Coccoli, et al., 2014). Moreover, in the context of smart education it makes no sense to train

and deal with traditional learners. Smart education must be directed to smart learners: learners of the

21st century who are used to the new technologies and the changing world. So, if smart education

involves the training of new abilities in a new type of learners by using new technologies and in the

context of new curricula, it should be necessary to apply new teaching methodologies. If educators

keep applying traditional training techniques, we hardly will get to different or smarter results. For this

reason, in the context of smart education, it is completely necessary to implement smart pedagogies.

The study of new and smart pedagogies however, is still an open research field which needs to be

deeper analyzed.

Previous works have identified the importance of smart methodologies in the context of smart

education. For example, in (Zhu & He, 2012) the authors stated that “the essence of smart education

is to create intelligent environments by using smart technologies, so that smart pedagogies can be

facilitated as to provide personalized learning services and empower learners, and thus talents of

wisdom who have better value orientation, higher thinking quality, and stronger conduct ability could

be fostered”. In the basis of such a definition, in (Zhu, et al., 2016), three essential elements were

identified in smart education: smart environments, smart pedagogy, and smart learners. This way,

smart pedagogies are needed as a methodological issue, while smart learning environments represent

the technological issue, both having as an ultimate goal to cultivate smart learners as results. In this

sense, smart pedagogies and smart environments support the development of smart learners.

Smart pedagogies deal with learning processes that should be tailored according to the students’

learning needs, including requirements, background, interests, and preferences, among others

(Sampson & Karagiannidis, 2002). Interest-driven personalized learning emphasizes the interests of

students and can foster intrinsic motivations, thus promoting the personalized expertise for students

(Gradel, Edson, Gradel, & Edson, 2011). Smart pedagogies must also deal with new technologies and

smart environments so many studies are devoted to online and cooperative learning (Transforming

American education: Learning powered by technology, 2010). In (Zhu, et al., 2016), a set of instructional

2.2. Smart pedagogies and generative learning

38CC BY NC-NB EKS, 2017, vol. 18, n. 2

strategies were proposed in order to accomplish new pedagogies of smart education:

• Class-based differentiated instruction: differentiated instruction is a process to approach teaching

and learning for students with different abilities in the same class.

• Group-based collaborative learning: two or more people learn something together.

• Individual-based personalized learning: adjusting approach (differentiation) and connecting to the

learners’ interests and experiences to meet the students’ needs and provide supporting to foster

learning ability among individual students.

• Mass-based generative learning: generative learning involves the creation and refinement of

personal mental constructions about the environments (Ritchie & Volkl, 2000).

The basic premise of generative learning theories is that learning occurs when learners apply appropriate

cognitive processes to incoming information (Fiorella & Mayer, 2014): selecting (attending to relevant

material), organizing (mentally organizing incoming material into a coherent cognitive structure) and

integrating (connecting cognitive structures with each other and with relevant material activated

from long-term memory). In (Fiorella & Mayer, 2014) the authors identify eight learning strategies that

promote such understanding: learning by summarizing, learning by mapping, learning by drawing,

learning by imagining, learning by self-testing, learning by self-explaining, learning by teaching, and

learning by enacting. From our point of view, learning by programming should be also considered

as a promising learning strategy since it is able to encompass several of the above features while

representing a source of motivation and interest for learners.

Some of the aforementioned strategies can be supported by the usage of mindtools. Mindtools

(Jonassen, 2014) are computer systems that engage students in meaningfully and constructively

thinking and learning via stimulating or guiding them to interpret, analyze, synthesize, and organize

knowledge during the learning process (Chu, Hwang, & Tsai, 2010). In (Jonassen, Carr, & Yueh, 1998),

it is emphasized the importance of mindtools by addressing that “technologies should not support

learning by attempting to instruct the learners, but rather should be used as knowledge construction

tools that students learn with, not from”. In this way, learners function as designers, and the computers

function as mindtools for interpreting and organizing their personal knowledge (Jonassen, et al.,

1998). Computer applications, such as database systems, spreadsheets, expert systems, semantic

nets, video conferencing systems, multimedia and hypermedia authoring tools, programming tools,

and simulation programs, among others, are potential mindtools if they are used properly (Jonassen,

2000). To help students to comprehend and organize knowledge, solve problems, and make inferences

based on what they have learned, it is important to provide them the right mindtools to deal with

different learning tasks or solve different types of problems at the right time and in the right context

39CC BY NC-NB EKS, 2017, vol. 18, n. 2

(Chu, et al., 2010). Therefore, mindtools also play an important role in helping students to learn in

smart ways (Hwang, 2014). Consequently, rather than using the power of computer technologies to

disseminate information, they should be used in all subject domains as tools for engaging learners in

reflective, critical thinking about the ideas they are studying (Kirschner & Wopereis, 2003).

We are interested in mindtools because they are related to helping users to think for themselves, make

connections among concepts, and create new knowledge. With the usage of mindtools we can train

a way of thinking about and using ICT, other technologies, learning environments, or intentional and

incidental learning activities/opportunities (constructivist in nature), so that users of those tools can

represent, manipulate, and reflect on what they know instead of reproducing what others tell them

(Kirschner & Wopereis, 2003). Some authors however, have detected what it is called the “technological

paradox” (Salomon, 2016): the consistent tendency of the educational system to preserve itself and

its practices by the assimilation of new technologies into existing instructional practices. Technology

becomes “domesticated”, which really means, that it is allowed to do precisely that which fits into the

prevailing educational philosophy of cultural transmission.

Considering the opportunities that technologies offer in the field of education, we are interested in

applying them not only to “modernize” the old methodologies, but also to implement new pedagogical

strategies that better suit within a smart education. We propose the introduction of computational

thinking as a tool for generative learning and a strategy to develop some of the most demanded

skills for nowadays students. Computational thinking can be developed without an explicit usage

of computers. However, we are interested on the development of computational thinking through

computer programming foundations, since it better matches with the students’ interests and

motivations.

Computational thinking could be described as the thought processes involved in problem formulation

and solutions representation, so that these solutions can be implemented by a processing information

agent (either a human, a computer or combinations of both). This term became famous thanks to Wing

(2006), who introduced computational thinking as a procedure that allows problem solving, designing

systems, and understanding human behavior by the use of fundamental concepts of computing.

The concept is relatively recent, so there is still no consensus on its definition, thus having multiple

variants (Barr & Stephenson, 2011; K. Brennan & Resnick, 2012; Grover & Pea, 2013). For instance, the

International Society for Technology in Education (ISTE), as well as the Computer Science Teachers

Association (CSTA), defines computational thinking as a process for problem solving which includes

at least the following dimensions:

3. Computational thinking

40CC BY NC-NB EKS, 2017, vol. 18, n. 2

• Formulate problems to allow the use of computers to solve them.

• Organize and analyze data logically.

• Represent data through abstractions, models and simulations.

• Automate solutions through algorithmic thinking, i.e. through a series of orderly steps that achieve

those solutions.

• Identify, analyze and implement possible solutions in order to find the most efficient and effective

combination of steps and resources.

• Generalize the process of problem solving to wide range of problems.

Since the first appearance of the term in 2006 (Wing, 2006), computational thinking has attracted

attention in the context of primary and secondary education, and not only in English-speaking

countries, but also in others, such as Spain (García-Peñalvo, 2016a; 2016b; Llorens-Largo, 2015). The

National Research Council (NRC) of the United States recommends mathematics and computational

thinking as one of the eight main practices in the STEM fields (A Framework for K-12 Science Education,

2012). In USA, Computer Science for All is the President’s bold new initiative “to empower all American

students, from kindergarten through high school, to learn computer science and be equipped with the

computational thinking skills they need to be creators, and not just consumers, in the digital economy,

and to be active citizens in our technology-driven world”. Many other initiatives have emerged worldwide

for the dissemination of computational thinking among young people and among the population in

general. This promotion is usually done from the approach of computer programming. In words of

Steve Jobs: “Everybody in this country should learn how to program a computer… because it teaches

you how to think”.

In this sense, some of the definitions of computational thinking believe that students make use of

computational thinking even when they do not use any kind of software tool. Conversely, programming

itself implies that students make use of computational thinking through the construction of artefacts

(Kafai & Burke, 2013; Resnick, et al., 2009). Considering computer programming as a methodology for

computational thinking, in (Brennan & Resnick, 2012), three dimensions were proposed: computational

concepts, computational practices, and computational perspectives. Table 1 shows a description

and some examples for each of those three dimensions. They allow us to understand how students

address programming learning. The knowledge of the programming language involves the syntactic,

semantic, and schematic knowledge (computational concepts), as well as the strategic knowledge

(computing practices).

41CC BY NC-NB EKS, 2017, vol. 18, n. 2

Computer programming, algorithmic programming, or simply programming, is the process of designing,

coding, debugging, and maintaining the source code of computer programs. The source code is written

in a programming language in order to create programs that exhibit a desired behavior. Programs

are usually created to address the solution of a given problem. Programmers analyze problems and

define the algorithms which facilitate their solution through the usage of computers. An algorithm is

a method that consists of a sequence of precise instructions for solving a given problem (Futschek,

2006). Algorithmic thinking is a concept strictly related to computational thinking. It is considered

one of the key concepts which allow people to be fluent in the use of information technology. The

NRC describes algorithmic thinking as a set of concepts that includes functional decomposition,

repetition (iteration and/or recursion), organization of basic data (structures, registers, matrix, list,

etc.), generalization and parameterization, algorithms vs. programs, top-down design, and refinement,

among others. According to (Futschek, 2006), algorithmic thinking includes the following capabilities

or competencies: 1) analyze given problems, 2) specify or represent a problem accurately, 3) find the

basic and appropriate operations (instructions) to solve a given problem, 4) build an algorithm to solve

the problem following the given sequence of actions, 5) think about all possible cases (special or not)

of a given problem, and 6) improve the efficiency of an algorithm.

Algorithmic thinking can be understood as the pre-programming step, i.e., the analysis phase prior to

the implementation of the computer program. Globally thinking about the process: there is a problem

to be solved, so the programmers deeply study and analyze the problem in order to design an algorithm

for its resolution, and finally, they write the source code which implements the designed algorithm.

As a result, a computer program —which is able to solve the given problem— is obtained. In the field

3.1. Computer programming and problem solving

Dimension Description Examples

Concepts Concepts used by programmers Variables, statements, etc.

Practices Problem solving practices that arise during
programming tasks

Be incremental and iterative

Testing and debugging

Reusability
Abstraction

Modularity

Perspectives Students’ knowledge about themselves,
their relationships with equals, and the

technological world that surrounds them

Express and question ideas about
technology

Table 1. Dimensions for computational thinking

42CC BY NC-NB EKS, 2017, vol. 18, n. 2

of computer programming or software development there are a number of tools which can assist

during this process of analysis, design, and implementation: software for data modelling, planning,

project management, debugging, testing, etc. The usage of such a technology is not only valuable for

computer programmers but also for learners who are interested on training time management, project

management, team management, and decision making, among other abilities.

“Mindtools: Essential Skills for an Excellent Career” (‘Mind Tools’, 2016) is a web platform for training

the practical, straightforward skills necessary to excel in a professional career. These skills can help

learners to become exceptionally effective, thus making possible to become a great manager or leader.

These skills can be trained and, if done in a proper manner, can make the very most of the opportunities

open to students. According to (‘Mind Tools’, 2016), the most essential skills for an excellent career

are leadership skills, team management, strategy tools, problem solving, decision making, project

management, time management, stress management, communication skills, creativity tools, learning

skills, and career skills. Many of those skills are trained when developing computer programs. Problem

solving can be seen as the main task or objective, while some other issues appear necessary during

the problem-solving process. In fact, problems are at the center of what many people do at work every

day. Whether you are solving a problem for a client (internal or external), supporting those who are

solving problems, or discovering new problems to solve, the problems you face can be large or small,

simple or complex, as well as easy or difficult.

A fundamental part of every manager’s role is finding ways to solve them. Therefore, being a confident

problem solver is really important for a person’s success. Much of that confidence comes from having

a good process to use when approaching a problem (Jonassen, 2010). There are four basic steps in

solving a problem (‘Mind Tools’, 2016): 1) defining the problem, 2) generating alternatives, 3) evaluating

and selecting alternatives, and 4) implementing solutions. For the first step, it is necessary to develop

communication abilities and critical thinking. Creativity is essential for the second step. Decision making

is required for the third step. Finally, some abilities for the management of time, projects or teams are

involved in the fourth and last steps. These general steps for problem solving can be extended to

software development environments. In fact, it can be seen as a particular case of problem solving,

since in this case, the unique particularity is that the implementation of solution is made through the

usage of computers. Therefore, those involved in computer programming inherently develop these

skills for problem solving. As we previously mentioned, computational thinking could be described

as the thought processes involved in formulating problems and representing their solutions, so that

these solutions can be executed by an information processing agent. Bearing the above in mind, what

has been called computational thinking is implicitly developed by those engaged in programming or

the development of IT applications: the language of computers and the foundations of computers are

used to talk about the universe and its processes.

43CC BY NC-NB EKS, 2017, vol. 18, n. 2

What we propose in the current work is that computational thinking may be used as a more general

learning methodology, not uniquely devoted to those interested in a professional career in the field of

Computing, but also for every learner interested on training useful and promising skills. We propose

a problem-based smart learning environment including information processing activities, scaffolding

and reflection to develop both, computing practices and computational perspectives (see Table 1). For

educators who are not experts on computer programming issues, the first approach to computational

thinking is to find projects, initiatives, courses, materials, and tools that can help them during the

process.

4. Initiatives and projects

Learning how to program a computer has many benefits for those who practice it, but the highlight

is that it helps people to think about solving problems. That is the reason why a new approach to

education is being developed currently —at all education levels— for including computational thinking

as an essential element of the curricula. Moreover, many initiatives have been launched to promote

programming among the population, especially among children and young people. For instance, we

should note TACCLE 3 – Coding (García-Peñalvo, 2016a), a European Union Erasmus+ KA2 Programme

project aimed to support primary school staff that teaches computing to 4-14 years old children.

Another important initiative is The Hour of Code (‘Code.org’, 2016) is a global initiative consisting of

one-hour introduction to computer science. It was designed to demystify code and show that everyone

can learn the basics. The goal is not to teach everybody to become an expert computer scientist in one

hour. Only one hour is enough to learn that computer science is fun and creative, that it is accessible at

all ages, for all students, regardless of their background. Similar initiatives are: Made With Code, Code

Club, CoderDojo, Code Week, All you need is {C<3DE}, and Bebras Contest, among others.

Computer Science for All (‘Computer Science For All’, 2016) is a project promoted by the White House

which intends to empower a generation of American students with the computer science skills they

need to thrive in a digital economy. Google CS First (‘Google CS First’, 2016) is a project which is

intended to inspire kids to create with technology through free computer science clubs. Google is also

promoting computational thinking by the creation and dissemination of materials and courses for

educators (‘Google for Education’, 2016). In addition to these projects and dissemination initiatives,

some tools have emerged —most of them based on visual programming languages— to allow teaching

programming to non-experts users.

In computing, a visual programming language is any programming language that lets users create

programs by manipulating program elements graphically rather than by specifying them textually. They

allow users to program through visual expressions, spatial arrangements of text and graphic symbols,

44CC BY NC-NB EKS, 2017, vol. 18, n. 2

used either as elements of syntax (Ralston, Reilly, & Hemmendinger, 2000). Traditional programming

languages such as Java or C++ have representations that closely resemble the computer’s way

of thinking (Smith, Cypher, & Tesler, 2000). On the other hand, visual programming languages use

representations that are closer to human language. These visual programming languages are

usually less powerful than traditional languages as they are domain-specific. It is better to use

visual programming languages rather than traditional programming languages to facilitate the three

dimensions of computational thinking because unnecessary syntax is reduced and the commands

are closer to spoken languages. Users usually need only to drag and drop command blocks (Lye &

Koh, 2014). With these features, those programming tools help students to reduce the cognitive load

and “allow students to focus on the logic and structures involved in programming rather than worrying

about the mechanics of writing programs” (Kelleher & Pausch, 2005).

5.1. Logo

5.2. Scratch

5. Tools for computational thinking

Logo (Papert, 1980) is a dialect of Lisp with much of the punctuation removed to make the syntax

accessible to newbies. It was intended to allow users to explore a wide variety of topics from

mathematics and science to language and music. The most well-known part of Logo is the Logo turtle.

It began as a robotic turtle that could draw on the ground and was later replaced by a simulated actor

in a two-dimensional graphical world that can move, turn, and leave trails. The turtle’s directions are

object-centric; if a user tells the turtle to “forward 10” (FD 10), it will move in its own forward direction

rather than a direction defined by the screen. Logo is an interpreted language with descriptive error

messages. Since Logo was the first proposal in such a field, many studies have been conducted in order

to somehow measure the effects that learning programming —and thus developing computational

thinking— have on the development of other cognitive abilities (Clements, 1987; Clements & Gullo,

1984; Miller, Kelly, & Kelly, 1988; Nastasi, Clements, & Battista, 1990; Statz, 1973).

Scratch (Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010; Resnick, et al., 2009) —developed at

the Massachusetts Institute of Technology (MIT) Media Lab— offers a visually appealing environment

allowing students to learn programming without initially having to write syntactically correct code.

Scratch is based on programming 2D graphical objects called sprites, set against a background called

the stage. Users write scripts with graphical blocks that represent various programming constructs to

45CC BY NC-NB EKS, 2017, vol. 18, n. 2

animate the sprites, make them interact amongst themselves, and change their appearances. Scratch

allows students to import images and sounds, apart from creating their own media, to make media-

rich projects, which can be shared by the community of users in order to create novel ones. Scratch

has an easy-to-use application interface organized into panels, which are presented based on color-

coded commands classified by their functionality. It uses blocks which fit into each other like toy

building bricks, only when their combination is meaningful and right.

Scratch is one of the most extended tools for the introduction of programming to non-experts users

(Maloney, Peppler, Kafai, Resnick, & Rusk, 2008). It is also a consolidated tool for the development of

computational thinking skills (Q. Brown, et al., 2008; Ferrer-Mico, Prats-Fernàndez, & Redo-Sanchez,

2012; Gülbahar & Kalelioğlu, 2014).

5.3. Snap!

5.4. Alice

Snap! (Harvey, et al., 2014; ‘Snap! (Build Your Own Blocks) 4.0’, 2016) is a free online block-based

educational programming language that allows students to create interactive stories, animations, and

games, among other creations, while they also learn about mathematical and computational ideas.

Snap! was inspired by Scratch, but also targets both novice and more advanced students by including

and expanding Scratch's features. Snap! 4.0 is entirely browser-based with no software that needs to

be installed locally.

The most important features that differentiate Snap! from Scratch include: first class functions or

procedures (their mathematical foundations are called also “Lambda calculus”), first class lists

(including lists of lists), first class sprites (in other words, prototype-oriented instance-based classless

programming), and mix sprites codification of Snap! programs to Python, JavaScript, and C, among

other mainstream languages.

Alice (‘Alice’, 2016; Conway, Pausch, Gossweiler, & Burnette, 1994; Cooper, Dann, & Pausch, 2000;

Kelleher & Pausch, 2007; UVa User Interface Group, 1995) is an innovative development environment

that allows three-dimensional animations to be created. At the same time, Alice is an educational

tool aimed to introduce object-oriented programming concepts. Thanks to its usage, students can

learn programming basic notions through the creation of animated stories and simple videogames.

For doing that, different three-dimensional objects (people, animals, and vehicles, among others) are

located in a virtual world, and students design a program in order to animate all those objects. There

exists a variant of Alice, referred to as Looking Glass (‘Looking Glass’, 2016), which was developed

by the Washington University in St. Louis. It provides some novelties with respect to Alice, such as a

46CC BY NC-NB EKS, 2017, vol. 18, n. 2

set of high-definition animations, a library of three-dimensional characters and landscapes, and the

possibility of creating new complex projects by reusing previously published ones, among others.

Several are the works that can be found in the related literature regarding the usage of Alice for

educational purposes, and more particularly, regarding computational thinking (Tabet, Gedawy,

Alshikhabobakr, & Razak, 2016).

5.5. App Inventor

5.6. Greenfoot

App Inventor (Abelson & Friedman, 2010; ‘MIT App Inventor’, 2016; Xie, Shabir, & Abelson, 2015) is a

visual programming tool based on blocks which allows completely functional applications for Android

devices to be built. Students can program their first application in only a few hours, and build much

more complex applications in a shorter period of time in comparison to the usage of traditional text-

based programming languages. As it was stated by its authors, App Inventor “seeks to democratize

software development by empowering all people, especially young people, to transition from being

consumers of technology to becoming creators of it” (‘MIT App Inventor’, 2016).

With respect to the usage of App Inventor as an educational tool for promoting computational thinking,

there also exist a significant number of papers published in the related literature (Maiorana, Giordano,

& Morelli, 2015; Roscoe, Fearn, & Posey, 2014).

Greenfoot (‘Greenfoot’, 2016; Henriksen & Kölling, 2004; Kölling, 2008a, 2010) is aimed to teach object-

oriented programming with Java. Students create worlds where they locate different actors in order

to generate different graphic-based applications, such as games, simulations, and stories, among

others. There exist communities for both learners and educators. The former is called The Gallery and

provides a platform to publish and discuss different projects. With respect to the latter, it is referred to

as the Greenroom (N. Brown, Stevens, & Kölling, 2010), and it allows discussing teaching strategies,

exchanging experiences and sharing resources. In Greenfoot standard textual Java code is used for

coding. Greenfoot enables an easy transition into other development environments, such as BlueJ

(‘BlueJ’, 2016; Kölling, 2008b), as well as into more professional programming tools.

With respect to the related literature, it is worth mentioning that the number of papers published

regarding Greenfoot as a tool for promoting computational thinking is, as far as we know, almost

non-existent in comparison to other tools, like Alice or App Inventor (Rick, Ludwig, Meyer, Rehder, &

Schirmer, 2010). However, several papers comparing Greenfoot, Alice, and Scratch, in terms of their

features, goals, and audiences have been published (Fincher & Utting, 2010; Utting, Cooper, Kölling,

Maloney, & Resnick, 2010).

47CC BY NC-NB EKS, 2017, vol. 18, n. 2

5.7. Pencil Code

5.8. AgentSheets and AgentCubes

Pencil Code (Bau & Bau, 2014; Bau, Bau, Dawson, & Pickens, 2015; ‘Pencil Code’, 2016) allows drawing

art, playing music, and creating games by means of a collaborative programming site. In addition it can

also be used to experiment with mathematical functions, geometry, graphing, webpages, simulations,

and algorithms. Although Pencil Code mainly focuses on the language CoffeeScript (‘CoffeeScript’,

2016), it can also be used for learning JavaScript, HTML, and CSS. It is worth mentioning the wide

range of useful reference materials and examples that are provided at the Pencil Code website.

Educators have a large number of printable classroom materials at their disposal, as well as the Pencil

Code teacher’s manual.

Taking into account that Pencil Code is one of the most recently proposed tools, literature regarding

the usage of this tool for promoting computational thinking is almost non-existent (Weintrop, 2015).

AgentSheets (‘AgentSheets’, 2016; Alex Repenning, 1993) is a tool that allows students to create

agent-based computational science applications, simulations, and games, and share them online. At

the same time, it may be used to teach computer science concepts and logic, as well as to promote

computational and algorithmic thinking. In a similar way, AgentCubes (‘AgentCubes’, 2016; Ioannidou,

Repenning, & Webb, 2009; A. Repenning & Ioannidou, 2006) provides the mechanisms required for

creating three-dimensional shapes. Those shapes can be then programmed, turned into games, and

published online. We should note that, in opposition to the approaches introduced in previous sections,

which are free, complete versions of AgentSheets and AgentCubes must be purchased, although

there is available a trial version of AgentSheets, as well as a free lite version of AgentCubes. Finally, a

completely online version of AgentCubes, termed as AgentCubes online (‘AgentCubes online’, 2016),

can also be found.

In the cases of AgentSheets and AgentCubes, there exist a noticeable number of publications in regard

to their usage to develop computational thinking, and more generally, for educational purposes. For a

complete list of publications, the reader is referred to (‘AgentSheets’, 2016).

5.9. AgentSheets and AgentCubes

The aforementioned tools are ideal for introducing computational thinking —and programming main

foundations— to young people and adults and, of course, at different education stages. However, when

dealing with younger students (especially children under 10), it is necessary to have other tools that

48CC BY NC-NB EKS, 2017, vol. 18, n. 2

6. Discussion

A comprehensive research has been conducted in order to detect existing initiatives, projects and

tools which can support the development of computational thinking. However, when first approach

is done to a field, it is important to have a general and global view about alternatives and its features.

Table 2 shows a comparison of some of the most important tools we have analyzed in the previous

section. The following dimensions have been selected:

Free software: indicates whether the tool has been released under some free software license or, on

the contrary, if a license has to be purchased.

• Online tool: shows if the tool can be accessed and used through a navigator or if it has to be

installed on a computer.

• Online repository available: is there any online repository where users can upload their projects in

order to share them with the community?

• Project reusability/remixing: can users download projects from an online repository and use them

as the starting point for their new creations?

• Learning difficulty: this dimension is related to the learning difficulty of the tool. Three different

levels have been established (low, medium, and high).

• Block-based/Text-based/Both: indicates if the tool allows users to program through blocks, text, or

if both options are available.

• Target programming language: this dimension shows if the tool is aimed at teaching a specific

programming language.

It can be observed that the number of free software tools is much higher than the number of tools

which have to be purchased. The above shows the tendency to make tools that promote computational

thinking abilities available to the largest possible amount of people. After all, computational thinking

should be viewed as a general approach for problem solving, and it should not be only applied by

are better suited to their needs. In such a case, there are some available apps, games, and educative

tools as: Kodable, Cargobot, ScratchJr, LightbotJr, Robot Turtles, Hopscotch, Lightbot, Kodu, Gamestar

Mechanic, GameMaker, My Robot Friend, SpaceChem, CodeCombat, Minecraft.edu, etc. At the same

time, other tools involve the usage of hardware, thus becoming much more attractive for students:

Raspberry Pi, Hummingbird Robotics Kit, Lego® Mindstorms, Dash and Dot, and Sphero and Ollie,

among others. In most cases they are based on programming robots.

49CC BY NC-NB EKS, 2017, vol. 18, n. 2

computer scientists or developers. Another advantage of free software tools is they may be altered by

the community with the aim of improving them and making them more powerful. At the same time,

Table 2 also shows how the tendency is to provide online tools with online repositories where users

can share their creations, as well as download them to start new projects.

With respect to the learning difficulty, and generally speaking, block-based tools are easier to learn and

use than text-based ones, with the exception of Logo. Although Logo is a text-based tool, it provides

a set of very intuitive commands which makes its learning and usage very straightforward. It is worth

mentioning the case of Blockly, which is a library to create visual programming languages. Therefore,

its learning difficulty is much higher than the remaining tools, since it is aimed at developers rather than

learners who want to develop their computational thinking abilities. Finally, we should note that Pencil

Code is the only tool that provides both block-based and text-based programming modes. Moreover,

only a few tools are aimed at teaching specific programming languages: Logo and Pencil Code.

Free Online tool
Online

repository
available

Project
reusability
/ remixing

Learning
difficulty

Block-
based /

Text-based
/ Both

Target
programming

language

Logo (Turtle
Academy)

✓ ✓ ✓ × Low Text-based Lisp (dialect)

Scratch ✓ ✓ ✓ ✓ Low
Block-
based

N/A

Snap! ✓ ✓ × × Low
Block-
based

N/A

Alice ✓ × × × Medium
Block-
based

N/A

Looking Glass ✓ × ✓ ✓ Medium
Block-
based

N/A

App Inventor ✓ ✓ ✓ ✓ Low
Block-
based

N/A

Greenfoot ✓ ✓ ✓ ✓ High Text-based Java

Pencil Code ✓ ✓ ✓ ✓ Low Both
CoffeeScript,
JavaScript,
HTML, CSS

AgentSheets × ✓ ✓ × Medium
Block-
based

N/A

AgentCubes × ✓ ✓ × Medium
Block-
based

N/A

AgentCubes
Online ✓ ✓ ✓ ✓ Medium

Block-
based

N/A

Table 2. Comparison of tools that promote the development of computational thinking abilities depending on different features

50CC BY NC-NB EKS, 2017, vol. 18, n. 2

Many initiatives have arisen to encourage the presence of computational thinking in primary and

secondary classes (Lye & Koh, 2014). However, not so many countries have made a clear position about

introducing computational thinking in the curricula. From our point of view, computational thinking

could also bring many benefits to pedagogical methodologies. The achievement of smart education

not only requires smart devices and smart systems but also students with an appropriate training and

specific skills which make them possible to manage in a smart environment. For this reason, we have

performed a deep analysis about computational thinking and its possibilities for developing a “smart”

and higher-quality education for the citizens of the future.

The research carried out, as well as the obtained findings and outcomes enable us to extract the

following conclusions:

• For developing more powerful and helpful learning environments, it is not enough to incorporate

new technologies, but it is also mandatory to introduce new learning criteria and methodologies.

• “Being smart” should not be confused with “being digital”, i.e., the ICT infrastructures are the means,

not the end, so it is not enough to train learners on the usage of isolate computer programs. In

our digital economy, it is not enough to be a technological consumer or user, it is necessary to be

active citizens and creators.

• Computational thinking provides a new opportunity for training 21st century skills and for

developing new learning strategies.

• This work provides a thorough review of existing projects, initiatives, tools, and experiences whose

objective is focused on the development of computational thinking abilities. The idea was to

provide a comprehensive and detailed vision for those interested in introducing computational

thinking into their education environments.

As shown in the current work, there are many resources and tools which can help us to promote

computational thinking among learners. However, it would be also interesting to measure how the

training on computational thinking impacts on the students’ development. It is important to measure

not only the development of computational thinking, but also the impact this can have on overall skill

capacities for solving problems in any field. It is not trivial at all to get a measure of the development

of computational thinking, but much less trivial is to establish a relationship among the effects that

this development may have on other cognitive abilities of the individual. Consequently, it would be

worth designing and carrying out qualitative and quantitative analyses about how the development

7. Conclusions and future steps

51CC BY NC-NB EKS, 2017, vol. 18, n. 2

8. References

A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. (2012).

Washington, D.C.: National Academies Press. Retrieved from http://nap.edu/catalog/13165

Abelson, H. & Friedman, M. (2010). App Inventor--A view into learning about computers through

building mobile applications. In Proceedings of the 2010 SIGCSE Symposium.

AgentCubes. (2016). Retrieved 25 September 2016, from http://www.agentcubes.com/

AgentSheets. (2016). Retrieved 25 September 2016, from http://www.agentsheets.com/index.html

Alice. (2016). Retrieved 23 September 2016, from http://www.alice.org/index.php

Barr, V., & Stephenson, C. (2011). Bringing Computational Thinking to K-12: What is Involved and What

is the Role of the Computer Science Education Community? ACM Inroads, 2(1), 48-54. doi: http://

dx.doi.org/10.1145/1929887.1929905

Bau, D., & Bau, D. A. (2014). A Preview of Pencil Code: A Tool for Developing Mastery of Programming.

In Proceedings of the 2nd Workshop on Programming for Mobile & Touch (pp. 21-24). New York, NY,

USA: ACM. doi: http://dx.doi.org/10.1145/2688471.2688481

Bau, D., Bau, D. A., Dawson, M., & Pickens, C. S. (2015). Pencil Code: Block Code for a Text World. In

Proceedings of the 14th International Conference on Interaction Design and Children (pp. 445-448).

New York, NY, USA: ACM. doi: http://dx.doi.org/10.1145/2771839.2771875

BlueJ. (2016). Retrieved 25 September 2016, from http://bluej.org/

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. Presented at the Annual American Educational Research Association Meeting,

Vancouver, Canada. Retrieved from http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_

AERA2012_CT.pdf

Brown, N., Stevens, P., & Kölling, M. (2010). Greenroom: A Teacher Community for Collaborative

Resource Development. In Proceedings of the Fifteenth Annual Conference on Innovation and

Technology in Computer Science Education (pp. 305-305). New York, NY, USA: ACM. doi: http://dx.doi.

org/10.1145/1822090.1822181

of computational thinking influences the improvement of general skills and the ability to understand,

model, and solve problems.

http://nap.edu/catalog/13165
http://www.agentcubes.com/
http://www.agentsheets.com/index.html
http://www.alice.org/index.php
http://dx.doi.org/10.1145/1929887.1929905
http://dx.doi.org/10.1145/1929887.1929905
http://dx.doi.org/10.1145/2688471.2688481
http://dx.doi.org/10.1145/2771839.2771875
http://bluej.org/
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://dx.doi.org/10.1145/1822090.1822181
http://dx.doi.org/10.1145/1822090.1822181

52CC BY NC-NB EKS, 2017, vol. 18, n. 2

Brown, Q., Mongan, W., Kusic, D., Garbarine, E., Fromm, E., & Fontecchio, A. (2008). Computer Aided

Instruction as a Vehicle for Problem Solving: Scratch Boards in the Middle Years Classroom. Presented

at the 2008 Annual Conference & Exposition. Retrieved from https://peer.asee.org/computer-aided-

instruction-as-a-vehicle-for-problem-solving-scratch-boards-in-the-middle-years-classroom

Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2010). A knowledge engineering approach to developing

mindtools for context-aware ubiquitous learning. Computers & Education, 54(1), 289-297. doi: http://

dx.doi.org/10.1016/j.compedu.2009.08.023

Clements, D. H. (1987). Longitudinal Study of the Effects of Logo Programming on Cognitive

Abilities and Achievement. Journal of Educational Computing Research, 3(1), 73-94. doi: http://dx.doi.

org/10.2190/RCNV-2HYF-60CM-K7K7

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s

cognition. Journal of Educational Psychology, 76(6), 1051-1058. doi: http://dx.doi.org/10.1037/0022-

0663.76.6.1051

Coccoli, M., Guercio, A., Maresca, P., & Stanganelli, L. (2014). Smarter universities: A vision for the fast

changing digital era. Journal of Visual Languages & Computing, 25(6), 1003-1011. doi: http://dx.doi.

org/10.1016/j.jvlc.2014.09.007

Code.org. (2016). Retrieved 26 September 2016, from https://code.org/

CoffeeScript. (2016). Retrieved 25 September 2016, from http://coffeescript.org/

Computer Science For All. (2016, January 30). Retrieved 29 September 2016, from https://www.

whitehouse.gov/blog/2016/01/30/computer-science-all

Conway, M., Pausch, R., Gossweiler, R., & Burnette, T. (1994). Alice: A Rapid Prototyping System for

Building Virtual Environments. In Proceedings of Conference Companion on Human Factors in Computing

Systems (pp. 295-296). New York, NY, USA: ACM. doi: http://dx.doi.org/10.1145/259963.260503

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D Tool for Introductory Programming Concepts.

Journal of Computing in Small Colleges, 15(5), 107-116.

Ferrer-Mico, T., Prats-Fernàndez, M. À., & Redo-Sanchez, A. (2012). Impact of Scratch Programming on

Students’ Understanding of Their Own Learning Process. Procedia - Social and Behavioral Sciences, 46,

1219-1223. doi: http://dx.doi.org/10.1016/j.sbspro.2012.05.278

Fincher, S., & Utting, I. (2010). Machines for Thinking. Trans. Comput. Educ., 10(4), 13:1-13:7. doi: http://

dx.doi.org/10.1145/1868358.1868360

https://peer.asee.org/computer-aided-instruction-as-a-vehicle-for-problem-solving-scratch-boards-in-the-middle-years-classroom
https://peer.asee.org/computer-aided-instruction-as-a-vehicle-for-problem-solving-scratch-boards-in-the-middle-years-classroom
http://dx.doi.org/10.1016/j.compedu.2009.08.023
http://dx.doi.org/10.1016/j.compedu.2009.08.023
http://dx.doi.org/10.1037/0022-0663.76.6.1051
http://dx.doi.org/10.1037/0022-0663.76.6.1051
http://dx.doi.org/10.1016/j.jvlc.2014.09.007
http://dx.doi.org/10.1016/j.jvlc.2014.09.007
https://code.org/%20
http://coffeescript.org/
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all
http://dx.doi.org/10.1145/259963.260503
http://dx.doi.org/10.1016/j.sbspro.2012.05.278
http://dx.doi.org/10.1145/1868358.1868360
http://dx.doi.org/10.1145/1868358.1868360

53CC BY NC-NB EKS, 2017, vol. 18, n. 2

Fiorella, L., & Mayer, R. E. (2014). Learning as a Generative Activity: Eight Learning Strategies that

Promote Understanding. Cambridge University Press. Retrieved from http://www.cambridge.org/es/

academic/subjects/psychology/educational-psychology/learning-generative-activity-eight-learning-

strategies-promote-understanding?format=AR&isbn=9781316258576#contentsTabAnchor

Futschek, G. (2006). Algorithmic Thinking: The Key for Understanding Computer Science. In R. T.

Mittermeir (Ed.), Informatics Education - The Bridge between Using and Understanding Computers (pp.

159-168). Berlin Heidelberg: Springer. doi: http://dx.doi.org/10.1007/11915355_15

García-Peñalvo, F. J. (2016a). A brief introduction to TACCLE 3 - coding European project. In 2016

International Symposium on Computers in Education (SIIE) (pp. 1-4). doi: http://dx.doi.org/10.1109/

SIIE.2016.7751876

García-Peñalvo, F. J. (2016b). What Computational Thinking Is. Journal of Information Technology

Research, 9(3), v-viii.

Google CS First. (2016). Retrieved 29 September 2016, from https://www.cs-first.com/

Google for Education. (2016). Retrieved 29 September 2016, from www.google.com/edu/resources/

programs/exploring-computational-thinking/

Gradel, K., Edson, A. J., Gradel, K., & Edson, A. J. (2011). Cooperative Learning: Smart Pedagogy and

Tools for Online and Hybrid Courses. Journal of Educational Technology Systems, 39(2), 193-212. doi:

http://dx.doi.org/10.2190/ET.39.2.i

Greenfoot. (2016). Retrieved 25 September 2016, from http://www.greenfoot.org/door

Greenstein, L. M. (2012). Assessing 21st Century Skills: A Guide to Evaluating Mastery and Authentic

Learning (1st edition). Thousand Oaks: Corwin.

Grover, S., & Pea, R. (2013). Computational Thinking in K-12 A Review of the State of the Field.

Educational Researcher, 42(1), 38-43. doi: http://dx.doi.org/10.3102/0013189X12463051

Gülbahar, Y., & Kalelioğlu, F. (2014). The Effects of Teaching Programming via Scratch on Problem

Solving Skills: A Discussion from Learners’ Perspective. Informatics in Education, 13(1), 33-50.

Harvey, B., Garcia, D. D., Barnes, T., Titterton, N., Miller, O., Armendariz, D., … Paley, J. (2014). Snap!

(Build Your Own Blocks). In Proceedings of the 45th ACM Technical Symposium on Computer Science

Education (pp. 749-749). New York, NY, USA: ACM. doi: http://dx.doi.org/10.1145/2538862.2539022

Henriksen, P., & Kölling, M. (2004). Greenfoot: Combining Object Visualisation with Interaction.

In Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented Programming

http://www.cambridge.org/es/academic/subjects/psychology/educational-psychology/learning-generative-activity-eight-learning-strategies-promote-understanding%3Fformat%3DAR%26isbn%3D9781316258576%23contentsTabAnchor
http://www.cambridge.org/es/academic/subjects/psychology/educational-psychology/learning-generative-activity-eight-learning-strategies-promote-understanding%3Fformat%3DAR%26isbn%3D9781316258576%23contentsTabAnchor
http://www.cambridge.org/es/academic/subjects/psychology/educational-psychology/learning-generative-activity-eight-learning-strategies-promote-understanding%3Fformat%3DAR%26isbn%3D9781316258576%23contentsTabAnchor
http://dx.doi.org/10.1007/11915355_15
http://dx.doi.org/10.1109/SIIE.2016.7751876%20
http://dx.doi.org/10.1109/SIIE.2016.7751876%20
https://www.cs-first.com/
www.google.com/edu/resources/programs/exploring-computational-thinking/
www.google.com/edu/resources/programs/exploring-computational-thinking/
http://dx.doi.org/10.2190/ET.39.2.i
http://www.greenfoot.org/door
http://dx.doi.org/10.3102/0013189X12463051
http://dx.doi.org/10.1145/2538862.2539022

54CC BY NC-NB EKS, 2017, vol. 18, n. 2

Systems, Languages, and Applications (pp. 73-82). New York, NY, USA: ACM. doi: http://dx.doi.

org/10.1145/1028664.1028701

Hwang, G.-J. (2014). Definition, framework and research issues of smart learning environments - a

context-aware ubiquitous learning perspective. Smart Learning Environments, 1, Article 4. doi: https://

doi.org/10.1186/s40561-014-0004-5

Ioannidou, A., Repenning, A., & Webb, D. C. (2009). AgentCubes: Incremental 3D end-user development.

Journal of Visual Languages & Computing, 20(4), 236-251. doi: https://doi.org/10.1016/j.jvlc.2009.04.001

Jonassen, D. H. (2000). Computers as Mindtools for Schools, Engaging Critical Thinking. Upper Saddle

River, New Jersey: Prentice-Hall.

Jonassen, D. H. (2010). Learning to Solve Problems: A Handbook for Designing Problem-Solving

Learning Environments. New York, USA: Taylor & Francis.

Jonassen, D. H. (2014). Mindtools (Productivity and Learning). In R. Gunstone (Ed.), Encyclopedia of

Science Education (pp. 1-7). Netherlands: Springer. doi: https://doi.org/10.1007/978-94-007-6165-

0_57-1

Jonassen, D. H., Carr, C., & Yueh, H.-P. (1998). Computers as Mindtools for Engaging Learners in Critical

Thinking. TechTrends, 43(2), 24-32. doi: https://doi.org/10.1007/BF02818172

Kafai, Y. B., & Burke, Q. (2013). Computer Programming Goes Back to School. Phi Delta Kappan, 95(1),

61-65. doi: https://doi.org/10.1177/003172171309500111

Kelleher, C., & Pausch, R. (2005). Lowering the Barriers to Programming: A Taxonomy of Programming

Environments and Languages for Novice Programmers. ACM Comput. Surv., 37(2), 83-137. doi: https://

doi.org/10.1145/1089733.1089734

Kelleher, C., & Pausch, R. (2007). Using Storytelling to Motivate Programming. Commun. ACM, 50(7),

58-64. doi: https://doi.org/10.1145/1272516.1272540

Kirschner, P., & Wopereis, I. G. J. H. (2003). Mindtools for teacher communities: A European perspective.

Technology, Pedagogy and Education, 12(1), 105-124. doi: https://doi.org/10.1080/14759390300200148

Kölling, M. (2008a). Greenfoot: A Highly Graphical Ide for Learning Object-oriented Programming. In

Proceedings of the 13th Annual Conference on Innovation and Technology in Computer Science Education

(pp. 327-327). New York, NY, USA: ACM. doi: https://doi.org/10.1145/1384271.1384370

Kölling, M. (2008b). Using BlueJ to Introduce Programming. In J. Bennedsen, M. E. Caspersen, & M.

Kölling (Eds.), Reflections on the Teaching of Programming (pp. 98-115). Berlin Heidelberg: Springer. doi:

http://dx.doi.org/10.1145/1028664.1028701
http://dx.doi.org/10.1145/1028664.1028701
https://doi.org/10.1186/s40561-014-0004-5
https://doi.org/10.1186/s40561-014-0004-5
https://doi.org/10.1016/j.jvlc.2009.04.001
https://doi.org/10.1007/978-94-007-6165-0_57-1
https://doi.org/10.1007/978-94-007-6165-0_57-1
https://doi.org/10.1007/BF02818172
https://doi.org/10.1177/003172171309500111
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1272516.1272540
https://doi.org/10.1080/14759390300200148
https://doi.org/10.1145/1384271.1384370

55CC BY NC-NB EKS, 2017, vol. 18, n. 2

https://doi.org/10.1007/978-3-540-77934-6_9

Kölling, M. (2010). The Greenfoot Programming Environment. Trans. Comput. Educ., 10(4), 14:1-14:21.

doi: https://doi.org/10.1145/1868358.1868361

Llorens-Largo, F. (2015). Dicen por ahí. . . que la nueva alfabetización pasa por la programación.

ReVisión, 8(2), 11-14.

Looking Glass. (2016). Retrieved 23 September 2016, from https://lookingglass.wustl.edu/

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through

programming: What is next for K-12? Computers in Human Behavior, 41, 51-61. doi: https://doi.

org/10.1016/j.chb.2014.09.012

Maiorana, F., Giordano, D., & Morelli, R. (2015). Quizly: A live coding assessment platform for App

Inventor. In 2015 IEEE Blocks and Beyond Workshop (pp. 25-30). doi: https://doi.org/10.1109/

BLOCKS.2015.7368995

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by Choice:

Urban Youth Learning Programming with Scratch. In Proceedings of the 39th SIGCSE Technical

Symposium on Computer Science Education (pp. 367-371). New York, NY, USA: ACM. doi: http://dx.doi.

org/10.1145/1352135.1352260

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch

Programming Language and Environment. Trans. Comput. Educ., 10(4), 16:1-16:15. doi: https://doi.

org/10.1145/1868358.1868363

Miller, R. B., Kelly, G. N., & Kelly, J. T. (1988). Effects of Logo computer programming experience on

problem solving and spatial relations ability. Contemporary Educational Psychology, 13(4), 348-357. doi:

https://doi.org/10.1016/0361-476X(88)90034-3

Mind Tools: Essential Skills for an Excellent Career. (2016). Retrieved 29 September 2016, from http://

www.mindtools.com/

MIT App Inventor. (2016). Retrieved 23 September 2016, from http://appinventor.mit.edu/explore/

Nastasi, B. K., Clements, D. H., & Battista, M. T. (1990). Social-cognitive interactions, motivation, and

cognitive growth in Logo programming and CAI problem-solving environments. Journal of Educational

Psychology, 82(1), 150-158. doi: https://doi.org/10.1037/0022-0663.82.1.150

North Central Regional Educational Laboratory and Metiri Group. (2003). 21st Century Skills: Literacy

in the Digital Age. Retrieved from http://pict.sdsu.edu/engauge21st.pdf

https://doi.org/10.1007/978-3-540-77934-6_9
https://doi.org/10.1145/1868358.1868361
https://lookingglass.wustl.edu/
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1109/BLOCKS.2015.7368995
https://doi.org/10.1109/BLOCKS.2015.7368995
http://dx.doi.org/10.1145/1352135.1352260%20
http://dx.doi.org/10.1145/1352135.1352260%20
https://doi.org/10.1145/1868358.1868363%20
https://doi.org/10.1145/1868358.1868363%20
https://doi.org/10.1016/0361-476X%2888%2990034-3
http://www.mindtools.com/
http://www.mindtools.com/
https://doi.org/10.1037/0022-0663.82.1.150
http://pict.sdsu.edu/engauge21st.pd

56CC BY NC-NB EKS, 2017, vol. 18, n. 2

Organisation for Economic Co-Operation and Development. (2009). 21st Century Skills and Competences

for New Millennium Learners in OECD Countries (EDU Working paper No. 41). Retrieved from http://www.

oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=EDU/WKP(2009)20&doclanguage=en

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York, NY, USA: Basic

Books, Inc.

Pencil Code. (2016). Retrieved 25 September 2016, from https://pencilcode.net/

Ralston, A., Reilly, E. D., & Hemmendinger, D. (2000). Encyclopedia of Computer Science (4th ed.).

Hoboken, NJ, USA: Wiley.

Repenning, A. (1993). Agentsheets: A Tool for Building Domain-oriented Visual Programming

Environments. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing

Systems (pp. 142-143). New York, NY, USA: ACM. doi: http://dx.doi.org/10.1145/169059.169119

Repenning, A., & Ioannidou, A. (2006). AgentCubes: Raising the Ceiling of End-User Development in

Education through Incremental 3D. In Visual Languages and Human-Centric Computing (VL/HCC’06)

(pp. 27-34). doi: https://doi.org/10.1109/VLHCC.2006.7

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., …

Kafai, Y. (2009). Scratch: Programming for All. Commun. ACM, 52(11), 60-67. doi: https://doi.

org/10.1145/1592761.1592779

Rick, D., Ludwig, J., Meyer, S., Rehder, C., & Schirmer, I. (2010). Introduction to Business Informatics

with Greenfoot Using the Example of Airport Baggage Handling. In Proceedings of the 10th Koli Calling

International Conference on Computing Education Research (pp. 68-69). New York, NY, USA: ACM. doi:

https://doi.org/10.1145/1930464.1930474

Ritchie, D., & Volkl, C. (2000). Effectiveness of Two Generative Learning Strategies in the Science Classroom.

School Science and Mathematics, 100(2), 83-89. doi: https://doi.org/10.1111/j.1949-8594.2000.

tb17240.x

Roscoe, J. F., Fearn, S., & Posey, E. (2014). Teaching Computational Thinking by Playing Games and

Building Robots. In 2014 International Conference on Interactive Technologies and Games (iTAG) (pp.

9-12). doi: https://doi.org/10.1109/iTAG.2014.15

Salomon, G. (2016). It’s Not Just the Tool but the Educational Rationale that Counts. In E. Elstad

(Ed.), Educational Technology and Polycontextual Bridging (pp. 149-161). Rotterdam, The Netherlands:

SensePublishers. doi: https://doi.org/10.1007/978-94-6300-645-3_8

http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/%3Fcote%3DEDU/WKP%282009%2920%26doclanguage%3Den
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/%3Fcote%3DEDU/WKP%282009%2920%26doclanguage%3Den
https://pencilcode.net/
http://dx.doi.org/10.1145/169059.169119
https://doi.org/10.1109/VLHCC.2006.7
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1930464.1930474
https://doi.org/10.1111/j.1949-8594.2000.tb17240.x
https://doi.org/10.1111/j.1949-8594.2000.tb17240.x
https://doi.org/10.1109/iTAG.2014.15
https://doi.org/10.1007/978-94-6300-645-3_8

57CC BY NC-NB EKS, 2017, vol. 18, n. 2

Sampson, D., & Karagiannidis, C. (2002). Personalised Learning: Educational, Technological and

Standardisation Perspective. Interactive Educational Multimedia, 4, 24-39.

Smith, D. C., Cypher, A., & Tesler, L. (2000). Programming by Example: Novice Programming Comes of

Age. Commun. ACM, 43(3), 75-81. doi: https://doi.org/10.1145/330534.330544

Snap! (Build Your Own Blocks) 4.0. (2016). Retrieved 29 September 2016, from http://snap.berkeley.

edu/

Statz, J. (1973). The Development Of Computer Programming Concepts And Problem-Solving Abilities

Among Ten-Year-Olds Learning Logo. Electrical Engineering and Computer Science - Dissertations.

Retrieved from http://surface.syr.edu/eecs_etd/256

Tabet, N., Gedawy, H., Alshikhabobakr, H., & Razak, S. (2016). From Alice to Python. Introducing Text-

based Programming in Middle Schools. In Proceedings of the 2016 ACM Conference on Innovation and

Technology in Computer Science Education (pp. 124-129). New York, NY, USA: ACM. doi: https://doi.

org/10.1145/2899415.2899462

Tikhomirov, V., & Dneprovskaya, N. (2015). Development of strategy for smart University. In Open

Education Global International Conference. Banff, Canada.

Transforming American education: Learning powered by technology. (2010). (National Educational

Technology Plan). Retrieved from https://www.ed.gov/sites/default/files/NETP-2010-final-report.pdf

Trilling, B., & Fadel, C. (2012). 21st Century Skills: Learning for Life in Our Times (1st Ed.). San Francisco:

John Wiley & Sons Inc.

Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (2010). Alice, Greenfoot, and Scratch - A

Discussion. Trans. Comput. Educ., 10(4), 17:1-17:11. doi: https://doi.org/10.1145/1868358.1868364

UVa User Interface Group. (1995). Alice: Rapid Prototyping for Virtual Reality. IEEE Comput. Graph.

Appl., 15(3), 8-11. doi: https://doi.org/10.1109/38.376600

Weintrop, D. (2015). Blocks, text, and the space between: The role of representations in novice

programming environments. In 2015 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) (pp. 301-302). doi: https://doi.org/10.1109/VLHCC.2015.7357237

Wing, J. M. (2006). Computational Thinking. Commun. ACM, 49(3), 33-35. doi: https://doi.

org/10.1145/1118178.1118215

Xie, B., Shabir, I., & Abelson, H. (2015). Measuring the Usability and Capability of App Inventor to Create

https://doi.org/10.1145/330534.330544
http://snap.berkeley.edu/
http://snap.berkeley.edu/
http://surface.syr.edu/eecs_etd/256
https://doi.org/10.1145/2899415.2899462
https://doi.org/10.1145/2899415.2899462
https://www.ed.gov/sites/default/files/NETP-2010-final-report.pdf
https://doi.org/10.1145/1868358.1868364
https://doi.org/10.1109/38.376600
https://doi.org/10.1109/VLHCC.2015.7357237
https://doi.org/10.1145/1118178.1118215%20
https://doi.org/10.1145/1118178.1118215%20

58CC BY NC-NB EKS, 2017, vol. 18, n. 2

Mobile Applications. In Proceedings of the 3rd International Workshop on Programming for Mobile and

Touch (pp. 1-8). New York, NY, USA: ACM. doi: https://doi.org/10.1145/2824823.2824824

Zhu, Z.-T., & He, B. (2012). Smart Education: new frontier of educational informatization. E-Education

Research, 12, 1-13.

Zhu, Z.-T., Yu, M.-H., & Riezebos, P. (2016). A research framework of smart education. Smart Learning

Environments, 3(1), Article 4. doi: http://dx.doi.org/10.1186/s40561-016-0026-2

https://doi.org/10.1145/2824823.2824824
http://dx.doi.org/10.1186/s40561-016-0026-2

