Contenido principal del artículo

Mª Adolfina Ruíz Martínez
Universidad de Granada
España
Biografía
Sebastián Peralta Galisteo
Universidad de Granada
España
Herminia Castán Urbano
Universidad de Granada
España
Vol. 16 Núm. 1 (2020), Artículos, Páginas 7-15
DOI: https://doi.org/10.14201/rmc2020161715
Cómo citar

Resumen

Hasta hace poco tiempo las enfermedades mentales eran tratadas como un todo, sin diferenciación alguna; las investigaciones realizadas en estos últimos años han resaltado las diferencias existentes entre algunas de ellas, de tal forma que hoy en día existen tratamientos específicos para las patologías descritas. El objetivo principal de este trabajo, es el de mostrar dos enfermedades diferentes pero que en muchos casos se confunden, depresión y esquizofrenia. Patologías que pueden tener como desencadenantes, situaciones muy diversas y que requieren un tratamiento farmacológico diferente. Para ello, se realizará un análisis de dos películas, Prozac Nation (2001) de Erik Skjoldbjaerg y Una mente maravillosa (2001) de Ron Howard que reflejan las vivencias reales de dos personajes; se analizará la sociedad en la que conviven y el entorno que les rodea, pero resaltando muy especialmente el apartado de la farmacoterapia, que medicamentos se utilizan, si es correcto su uso, los efectos adversos que presentan… para de esta forma poder prever si la visión de la película tiene carácter formativo en este tipo de temática.

Descargas

La descarga de datos todavía no está disponible.

Detalles del artículo

Citas

Armbrust, M., Fox, O., Griffith, R., Joseph, A. D., Kaatz, Y., Knowinski, A., Lee, G., Patterson, D., Rabkin, A., Stocia, I., 2009. Above the clouds: A Berkeley view of cloud computing, University of California, Berkeley, Tech. Rep.

Bhadani A., and Chaudhary, S., 2010. Performance evaluation of web servers using central load balanc-ing policy over virtual machines on cloud, in Proc. Third Annual ACM Conference, ACM, Article no.16.

Buyya, R., Gar, S. K., and Calheiros, R. N., 2011. SLA-oriented resource provisioning for cloud compu-ting: Challenges, architecture and solutions, in Proc. Inter. Conf. Cloud. Ser. Comput., 1-10.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya, R., 2011. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, J. Softw. Pract. Exper., 41(1): 23-50.

Carretero, J, and Blas, J. G, 2014. Introduction to cloud computing: platforms and solutions, J. Cluster Computing, 17(4):1225–1229.

Chen, J., He, Q., ye, D., Chen, W., Xiang, Y., Chiew, K., and Zhu, L., 2016. Joint affinity aware grouping and virtual machine placement,. Microprocessors and Microsystems 52:365-380.

Chen, X., Chen, Y., Zomaya, A., Ranjan, R., and Hu, S., 2016. CEVP: Cross entropy based virtual ma-chine placement for energy optimization in clouds, J. Supercomputing, 72(8):3194–3209.

Cui, L., Tso, F., Pezaros, P., Jia, W., and Zhao, W., 2017. PLAN: Joint policy- and network-aware VM management for cloud data centers, IEEE Trans. Parallel and Distributed Systems, 28(4):1163-1175.

Delimitrou, C, Kozyrakis, C, 2015. Quasar: resource-efficient and QOS-aware cluster management, ACM SIGPLAN Not. 49(4):118-127.

Farahnakian, F., Ashraf, A., Pahikkala, T., Lilijeberg, P., Plosila, J., Porres, I., Tenhunen H., 2015. Using ant colony system to consolidate VMs for green cloud computing, IEEE Trans. Service Computing, 8(2):187-198.

Garrey, M. R., Graham, R. L., and D. S. Johnson, 1976. Resource constrained scheduling as generalized bin packing, J. Combinatorial Theory, Series A, 21(3):257-298.

Heidelberg, B., 2006. Bin-packing, in Combinatorial Optimization, ser. Algorithms and Combinatorics. Springer, 21:426-441.

Khazaei, H, Misi´c, J, Miˇsi´c, V. B, and S. Rashwand, 2013. Analysis of a pool management scheme for cloud computing centers, IEEE Trans. Parallel and Distributed Systems. 24(1):849–861.

Li, Y., Tang, X, Cai, W, (2016) 2016. Dynamic bin packing for on-demand cloud resource allocation, IEEE Trans. Parallel and Distributed Systems, 27(1):157-170.

Liu, C., Shen, C., Li, S., and Wang, S., 2014. A new evolutionary multi-objective algorithm to virtual ma-chine placement in virtualized data center, in Proc. 5th IEEE Int. Conf. Softw. Eng. Service Sci.,:272–275.

López-Pires, F., Barán, B., Benítez, L., Zalimben, S., and Amarilla, A., 2018. Virtual machine placement for elastic infrastructures in overbooked cloud computing datacenters under uncertainty, Future Gen. Comp. Sys., 79(3):830-848.

Lopez-Pires, F. and Baran, B, 2015. A many-objective optimization framework for virtualized datacenters, in Proc. Fifth Inter. Conf. Could Computing and Service Science, 439-450.

Lopez-Pires, F, and Baran, B, 2015. A virtual machine placement taxonomy, in Proc. IEEE/ACM Fifteenth Inter. Symp. on Clus-ter, Cloud and Grid Computing. IEEE Computer Society.

Malik, S., Khan, S., and Srinivasan, S., 2013. Modeling and analysis of state-of-the-art VM-based cloud management platforms, IEEE Trans. Cloud Comput., 1(1).

Mann Z.A., and Szabo, M., 2017. Which is the best algorithm for virtual machine placement optimiza-tion? , in Concurrency and Computation: Practice and Experience, 29 (10).

Mian, R., Martin, P., Zulkernine, F., and Vazqrz-Poletti, L., 2012. Estimating resource costs of data-intensive workloads in public clouds,, in proc. Tenth inter. workshop Middleware for Grids, Clouds e-Science, 3:1-3:6.

Mastroianni, C., Meo M., and Papuzzo, G., 2013. Probabilistic consolidation of virtual machine cluster in self organizing cloud data centers, IEEE Tran. Cloud. Computing, 1(2):215-228.

Meng, X., Isci, C., Kepart, J., Zhang, L., Bouillet, E., and Pendarakis, D., 2010. Efficient resource provi-sioning in compute clouds via VM multiplexing, in Proc. Seventh Inter. Conf. Autonomous Computing., :11-20.

Meng, X., Pappas, V., Zhang, L., 2010. Improving the scalability of data center networks with traffic-aware virtual machine placement, in Proc IEEE INFOCOM2010, 1-9.

Panigrahy, R., Talware, K., Uyeda, L., and Wideder, U., 2011. Heuristics for Vector Bin Packing. Mi-crosoft Research.

Peterson, L., Bavier, A., Fiuczynski, M.E., and Muir, S., 2006. Experiences building PlanetLab, in proc. of the 7th Symp. on Operating Systems Design and Implementation :351-366

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., and Kozuch, M.A, 2012. Heterogeneity and dynamici-ty of clouds at scale: Google trace analysis, in proc. of the 3rd ACM Symp. on Cloud Comp.

Rahman M., and Graham, P., 2017. Compatibility-based static VM placement minimizing interference, J. Network and Computer Application 84:68-81.

Shen, S., vanBeek, V., and Iosup, A., 2015. Statistical characterization of business critical workloads hosted in cloud datacenters, in 15th IEEE/ACM Inter. Symp. on Cluster, Cloud and Grid Computing, :465-474.

Simao, J., and Veiga, L., 2016. Partial-utility driven scheduling for flexible SLA and pricing arbitration in clouds, IEEE Trans. Cloud Comput., 4(4):467-480.

Sonnek, J., Greensky, J., Reutiman, R., Chandra, A., 2010. Starling: minimizing communication over-head in virtualized computing platforms using decentralized affinity-aware migration, in Proc. Thirty ninth IEEE Inter. Conf. on Parallel Processing (ICPP 2010), :228-237.

Stillwell, M., Schanzenbach, D., Viven, F., Casanova, H., 2010. Resource allocation algorithms for virtu-alized service hosting platforms, J. Parallel Distri. Comput., 70(9):962-974.

Vaquero, L. M., Rodero-Merino, L., and Buyya, R., 2011. Dynamically scaling applications in the cloud, ACM SIGCOMM Comput. Commun. Revi., 41(1):45-52.

Verma, A., Ahuja P., and Neogi, A., 2008. pMapper: power and migration cost aware application place-ment in virtualized systems, in proc. ACM/IFIP/USENIX, Ninth Inter. Conf. on middleware. :243-264.

Wang, W., Chen, H., and Chen, X., 2012. An availability-aware virtual machine placement approach for dynamic scaling of cloud applications, in Proc. IEEE Ninth Inter. Conf. Ubiquitous Intelligence & Computing and Autonomic & Trusted Computing (UIC/ATC), 509-516.

Yan, C., Zhu, M., Yang, X., Yu, Z., Li, M., 2012. Affinity-aware virtual cluster optimization for mapre-duce applications, in Proc. of IEEE Inter. Conf. on Cluster Computing (CLUSTER 2012), :63-71

Ye, K., Wu, Z., Wang, C., Zhou, B.B., Si, V., Jiang, V., Zomaya, A.Y., 2015 Profiling-based workload consolidation and migration in virtualized data centers, IEEE Trans. Parallel and Distributed Systems, 26 (3): 878-890.

Yin, B., Wang, Y., Meng, L., and Qiu, X., 2012. A Multi-dimensional Resource Allocation Algorithm in Cloud Computing, Information and Computational Science, 11(9):3021-3028.

Yokoyama, D., Schulze, B., Kloh, H., Bandini, M., Rebello, V., 2017. Affinity aware scheduling model of cluster nodes in private clouds, J. Network and Computer Application., 95:94-104.

Zhao, H., Wang, J., Liu F., Wang, Q., Zhang W., and Zheng, Q., 2018. Power-Aware and Performance-Guaranteed Virtual Machine Placement in the Cloud IEEE Trans. Parallel and Distributed Systems, 29(6):1385-1400.

Zhou, W., Yang, S., Fang, J., Niu X., and Song, H., 2010. Vmctune: A load balancing scheme for virtual machine cluster using dynamic resource allocation, in Proc. IEEE ninth inter. conf. Grid and Cloud Computing, 81–86.

Zhu, Q., Zhu J., and Agrawal, G., 2010. Pow er-aware consolidation of scientific workflows in virtualized environments, in proc ACM/IEEE, inter. conf. for high performance computing, storage and analysis. :1-12.