¿Aprender con robótica en Educación Primaria? Un medio de estimular el pensamiento computacional

Resumen

La tecnología ha transformado el escenario social incorporando estrategias, técnicas y métodos para obtener procesos educativos más significativos. Una de las principales iniciativas que se promueve es el fortalecimiento de habilidades y competencias sobre programación y pensamiento computacional. Este artículo evidencia el efecto de un programa formativo utilizando robótica educativa en la adquisición de habilidades de pensamiento computacional y programación en niños de corta edad. El diseño de la investigación es de tipo cuasi-experimental, con medidas pretest y postest, con grupo experimental y control. La muestra la integran 46 estudiantes del primer curso de Educación Primaria, con edades entre 6 y 7 años, pertenecientes a un centro educativo español. El pensamiento computacional se mide a través de las dimensiones: pensamiento algorítmico-secuencias, abstracción-patrones y depuración. Las actividades de aprendizaje utilizadas en las sesiones de intervención fueron una adaptación de las acciones formativas propuestas en el programa de estudio en robótica “TangibleK”. Los resultados obtenidos muestran efectos positivos en relación con el desempeño alcanzado por los participantes en las actividades desarrolladas. Lo que manifiesta un efecto significativo en el fortalecimiento de habilidades vinculadas al pensamiento computacional. Las diferencias encontradas entre las medidas pretest y postest del grupo experimental son estadísticamente significativas y superiores a las que presenta el grupo control. De esta forma se concluye que los participantes del programa formativo en robótica y programación obtienen un mayor avance en las tres dimensiones de la competencia computacional explorada. 
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Angel-Fernandez, J. M., & Vincze, M. (2018). Introducing storytelling to educational robotic activities. IEEE Global Engineering Education Conference, EDUCON, 2018–April, 608–615. doi:https://doi.org/10.1109/EDUCON.2018.8363286

Barr, D., Harrison, J., & Conery, L. (2011). Computational Thinking: A digital age skill for everyone. Learning and Leading with Technology, 38(6), 20-23.

Basogain-Olabe, X., Olabe-Basogain, M. Á., & Olabe-Basogain, J. C. (2015). Pensamiento Computacional a través de la Programación: Paradigma de Aprendizaje. Revista de Educación a Distancia (RED), 46(6), 1–33. doi:https://doi.org/10.6018/red/46/6

Berrocoso, J., Sánchez, M., & Arroyo, M. (2015). El pensamiento computacional y las nuevas ecologías del aprendizaje. Red, 46, 1-18. doi:https://doi.org/10.6018/red/46/3

Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom. New York, NY: Teachers College Press

Bers, M. U., & Horn, M. S. (2010). Tangible programming in early childhood. High-tech tots: Childhood in a digital world, 49, 49-70.

Bers, M. U. (2012). Designing Digital Experiences for Positive Youth Development: From Playpen to Playground. Cary, NC: Oxford. doi:https://doi.org/10.1093/acprof:oso/9780199757022.001.0001

Bers, M. U. (2017). The Seymour test: Powerful ideas in early childhood education. International Journal of Child-Computer Interaction, 14, 10–14. doi:https://doi.org/10.1016/j.ijcci.2017.06.004

Bers, M. U. (2018). Coding, playgrounds and literacy in early childhood education: The development of KIBO robotics and ScratchJr. IEEE Global Engineering Education Conference, EDUCON- 2018, (pp. 2094–2102). doi:https://doi.org/10.1109/EDUCON.2018.8363498

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157. doi:https://doi.org/10.1016/j.compedu.2013.10.020

Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355-377.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association (AERA) (pp. 1-25), Vancouver, Canada.

Caballero-González, Y. A., & García-Valcárcel, A. (2017). Development of computational thinking skills and collaborative learning in initial education students through educational activities supported by ICT resources and programmable educational robots. In F.J. García-Peñalvo (Ed.), Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality (article 103). New York: ACM. doi:https://doi.org/10.1145/3144826.3145450

Caballero-González, Y. A., & García-Valcárcel, A. (2018). A robotics-based approach to foster programming skills and computational thinking: Pilot experience in the classroom of early childhood education. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 41-45). ACM. doi:https://doi.org/10.1145/3284179.3284188

Campbell, D., & Stanley, J. (1993). Diseños experimentales y cuasiexperimentales en la investigación social. Buenos Aires: Amorrortu.

Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: using robotics to motivate math,science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711–722.

Chalmers, C. (2018). International Journal of Child-Computer Interaction Robotics and computational thinking in primary school. International Journal of Child-Computer Interaction, 17, 93–100. doi:https://doi.org/10.1016/j.ijcci.2018.06.005

Chang, C. W., Lee, J. H., Chao, P. Y., Wang, C. Y., & Chen, G. D. (2010). Exploring the possibility of using humanoid robots as instructional tools for teaching a second language in primary school. Educational Technology & Society, 13(2), 13–24.

Chiara, M., Lieto, D., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., … Dario, P. (2017). Computers in Human Behavior Educational Robotics intervention on Executive Functions in preschool children?: A pilot study. Computers in Human Behavior, 71, 16–23. doi:https://doi.org/10.1016/j.chb.2017.01.018

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd. Ed. New York: Academic Press.

Conde, M. Á., Fernández-Llamas, C., Ribeiro Alves, J. F., Ramos, M. J., Celis Tena, S., Gonçalves, J., . . . García-Peñalvo, F. J. (2019). RoboSTEAM - A Challenge Based Learning Approach for integrating STEAM and develop Computational Thinking. In M. Á. Conde-González, F. J. Rodríguez-Sedano, C. Fernández-Llamas, & F. J. García-Peñalvo (Eds.), TEEM’19 Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (Leon, Spain, October 16th-18th, 2019) (pp. 24-30). New York, NY, USA: ACM. doi:https://doi.org/10.1145/3362789.3362893

Di Lieto, M. C., Inguaggiato, E., Castro, E., Cecchi, F., Cioni, G., Dell’Omo, M., ... & Dario, P. (2017). Educational Robotics intervention on Executive Functions in preschool children: A pilot study. Computers in human behavior, 71, 16-23. doi:https://doi.org/10.1016/j.chb.2017.01.018

García-Peñalvo, F. J. (2016). A brief introduction to TACCLE 3 – Coding European Project. In F. J. García-Peñalvo & J. A. Mendes (Eds.), 2016 International Symposium on Computers in Education (SIIE 16). USA: IEEE. doi:https://doi.org/10.1109/SIIE.2016.7751876

García-Peñalvo, F. J., & Mendes, A. J. (2018). Exploring the computational thinking effects in pre-university education. Computers in Human Behavior, 80, 407–411. doi:https://doi.org/10.1016/j.chb.2017.12.005

García-Peñalvo, F.J., Rees, A.M., Hughes, J., Jormanainen, I., Toivonen, T., & Vermeersch, J. (2016). A survey of resources for introducing coding into schools. Proceedings of the Fourth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’16) (pp.19-26). New York: ACM. doi:https://doi.org/10.1145/3012430.3012491

García-Valcárcel, A., & Caballero-González, Y. A. (2019). Robótica para desarrollar el pensamiento computacional en Educación Infantil. Comunicar: Revista científica iberoamericana de comunicación y educación, 27(59), 63-72. doi:https://doi.org/10.3916/C59-2019-06

Gonçalves, J., Lima, J., Brito, T., Brancalião, L., Camargo, C., Oliveira, V., & Conde, M. Á. (2019, October). Educational Robotics Summer Camp at IPB: A Challenge based learning case study. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 36-43). New York: ACM. doi:https://doi.org/10.1145/3362789.3362910

González-González, C. S. (2019). State of the art in the teaching of computational thinking and programming in childhood education. Education in the Knowledge Society, 20, 17. doi:https://doi.org/10.14201/eks2019_20_a17

Goodgame, C. (2018). Beebots and Tiny Tots. In E. Langran, & J. Borup (Eds.). Society for Information Technology & Teacher Education International Conference (pp. 1179-1183). Association for the Advancement of Computing in Education (AACE).

Hernández Sampieri, R., Fernández-Collado. C., & Baptista-Lucio. P. (2014). Metodología de la investigación. México: McGraw-Hill Education.

Jung, S. E., & Won, E. S. (2018). Systematic review of research trends in robotics education for young children. Sustainability, 10(4), 905. doi:https://doi.org/10.3390/su10040905

Kalelio?lu, F. (2015). A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200-210. doi:https://doi.org/10.1016/j.chb.2015.05.047

Karampinis, T. (2018). Robotics-based learning interventions and experiences from our implementations in the RobESL framework. International Journal of Smart Education and Urban Society, 9(1), 13-24. doi:https://doi.org/10.4018/IJSEUS.2018010102

Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The Effect of a Classroom-Based Intensive Robotics and Programming Workshop on Sequencing Ability in Early Childhood. Early Childhood Education Journal, 41, 245–255. doi:https://doi.org/10.1007/s10643-012-0554-5

Lee, K. T. H., Sullivan, A., & Bers, M. U. (2013). Collaboration by Design: Using Robotics to Foster Social Interaction in Kindergarten. Computers in the Schools, 30(3), 271–281. doi:https://doi.org/10.1080/07380569.2013.805676

Misirli, A., & Komis, V. (2014). Robotics and Programming Concepts in Early Childhood Education: A Conceptual Framework for Designing Educational Scenarios. Research on E-Learning and ICT in Education, (pp. 99-118). New York, NY: Springer. doi:https://doi.org/10.1007/978-1-4614-6501-0_8

Moreno, I., Muñoz, L., Serracín, J. R., Quintero, J., Pittí Patiño, K., & Quiel, J. (2012). La robótica educativa, una herramienta para la enseñanza-aprendizaje de las ciencias y las tecnologías. Education in the Knowledge Society. 13(2), 74-90

Öztürk, H. T., & Calingasan, L. (2018). Robotics in early childhood education: A case study for the best practices. In H. Ozcinar, G. Wong, & H. Ozturk (Eds.). Teaching computational thinking in primary education (pp. 182–200). Hershey, PA: IGI Global. doi:https://doi.org/10.4018/978-1-5225-3200-2.ch010

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming concepts and computational thinking with ScratchJr in preschool education: a case study. International Journal of Mobile Learning and Organisation, 10(3), 187. doi:https://doi.org/10.1504/ijmlo.2016.077867

Papert, S. (1980). Mindstorms. Children, computers and powerful ideas. New York: Basic Books.

Peinado, J. M. (2004). Enseñanza-aprendizaje en estrategias metacognitivas en niños de educación infantil. Universidad de Burgos.

Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In M. Honey & D.E. Kanter (Eds.), Design, make, play: Growing the next generation of STEM innovators (pp.163-181). New York: Routledge.

Sanders, M (2009). STEM, STEM Education, STEMmania. The Technology Teacher, 68(4), 20-26.

Strawhacker, A., & Bers, M. U. (2018). Promoting Positive Technological Development in a Kindergarten Makerspace: A Qualitative Case Study. European Journal of STEM Education, 3(3), 09. doi: https://doi.org/10.20897/ejsteme/3869

Strawhacker, A., Lee, M., & Bers, M. U. (2018). Teaching tools, teachers’ rules: exploring the impact of teaching styles on young children’s programming knowledge in ScratchJr. International Journal of Technology and Design Education, 28(2), 347–376. doi:https://doi.org/10.1007/s10798-017-9400-9

Strawhacker, A., Sullivan, A., & Bers, M. U. (2013). TUI, GUI, HUI: Is a bimodal interface truly worth the sum of its parts? Proceedings of the 12th International Conference on Interaction Design and Children, (pp. 309–312). doi:https://doi.org/10.1145/2485760.2485825

Sullivan, A., & Bers, M. U. (2016). Robotics in the early childhood classroom: learning outcomes from an 8-week robotics curriculum in pre-kindergarten through second grade. International Journal of Technology and Design Education, 26(1), 3–20. doi:https://doi.org/10.1007/s10798-015-9304-5

Sullivan, A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing, and Coding with KIBO: Using Robotics to Foster Computational Thinking in Young Children. Conference Proceedings of International Conference on Computational Thinking Education 2017, pp.110–115.

Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The Wheels on the Bot go Round and Round: Robotics Curriculum in Pre-Kindergarten. Journal of Information Technology Education: Innovations in Practice, 12, 203-219.

Thornton, R., Powell, Z., Marinus, E., Crain, S., & McArthur, G. (2018). Unravelling the Cognition of Coding in 3-to-6-year Olds: The development of an assessment tool and the relation between coding ability and cognitive compiling of syntax in natural language. In Proceedings of ACM International Computing Education Research (ICER) conference, Espoo, Finland, August 2018. New York, NY, USA: ACM. doi:https://doi.org/10.1145/3230977.3230984

Villena-Taranilla, R., Cózar-Gutiérrez, R., Miguel Merino-Armero, J., & Antonio González-Calero, J. (2018). Computational Thinking Initiation. An experience with robots in Primary Education. Journal of Research in Science Mathematics and Technology Education, 1(2), 181–206 doi:https://doi.org/10.31756/jrsmte.124

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. doi:https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 366(1881), 3717-3725. doi:https://doi.org/10.1098/rsta.2008.0118

Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. RED, 46, 1-47. doi:https://doi.org/10.13140/RG.2.1.3395.8883

Zapata-Ros, M. (2019). Computational Thinking Unplugged. Education in the Knowledge Society, 20, 18. doi:https://doi.org/10.14201/eks2019_20_a18
Caballero-González, Y. A., & García-Valcárcel, A. (2020). ¿Aprender con robótica en Educación Primaria? Un medio de estimular el pensamiento computacional. Education in the Knowledge Society (EKS), 21, 15. https://doi.org/10.14201/eks.22957

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yen Air Caballero-González

,
Universidad de Salamanca
Departamento de Didáctica, Organización y Métodos de Investigación, Grupo GITE-USAL

Ana García-Valcárcel

,
Universidad de Salamanca
Departamento de Didáctica, Organización y Métodos de Investigación, Grupo GITE-USAL
+