Proporcionar experiencias de aprendizaje ubicuo mediante la combinación de Internet de las Cosas y los estándares de e-Learning

Resumen

Actualmente, el aprendizaje está teniendo lugar con mayor frecuencia en cualquier lugar y en cualquier momento. Esto implica que los ambientes del aprendizaje electrónico se expandan desde los entornos de aprendizaje solo virtuales a entornos que implican espacios físicos. Gracias a la evolución de Internet, las TIC (Tecnologías de la Información y Comunicación) y a la Internet de las Cosas, se pueden experimentar nuevos escenarios de aprendizaje por parte de los estudiantes, ya sea individualmente o en colaboración. Estos escenarios de aprendizaje ubicuos, permiten compaginar tanto ambientes virtuales como ambientes físicos. Por tanto, estas experiencias se caracterizan por las interacciones posibles del estudiante con el entorno físico, la detección de los datos contextuales, y también la adaptación de las estrategias pedagógicas y de los servicios según el contexto. Este artículo pretende aprovechar esta tendencia y sustentarla en las normas existentes de aprendizaje electrónico como IMS LD y LOM. La solución propuesta es extender los modelos de normas de aprendizaje electrónico como IMS LD y LOM para soportar Internet de las Cosas y para aportar un enfoque de adaptación de las actividades de aprendizaje según el contexto del estudiante y su huella digital utilizando la API eXperience. En este contexto y con el fin de permitir las capacidades de razonamiento y la interoperabilidad entre los modelos propuestos se proponen representaciones ontológicas y una implementación de la solución. Además, se plantea una arquitectura técnica que resalta los componentes de software necesarios y sus interacciones. Y, por último, se implementa y se evalúa un escenario de aprendizaje ubicuo.
  • Referencias
  • Cómo citar
  • Del mismo autor
  • Métricas
Anasol, P. R., Callaghan, V., Gardener, M., & Alhaddad, M. J. (2012). End-user programming & deconstrutionalism for collaborative mixed reality laboratory cocreative activities. Presented at the 2nd European Immersive Education Summit, 26, 27.

Atif, Y., & Mathew, S. (2013). A Social Web of Things Approach to a Smart Campus Model. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 349-354). IEEE.
http://dx.doi.org/10.1109/GreenCom-iThings-CPSCom.2013.77

Berlanga, A. J., & García-Peñalvo, F. J.(2005). IMS LD reusable elements for adaptive learning designs. Journal of Interactive Media in Education, 11.
http://dx.doi.org/10.5334/2005-11

Berlanga, A. J., García-Peñalvo, F. J., & Carabias, J. (2006). Authoring adaptive learning designs using IMS LD. In V. Wade, H. Ashman, & B. Smyth (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems, Proceedings (Vol. 4018, pp. 31- 40). Berlin: SpringerVerlag.
http://dx.doi.org/10.1007/11768012_5

Borrego-Jaraba, F., García, G. C., Ruiz, I. L., & Gómez-Nieto, M. Á. (2013). An NFC based context-aware solution for access to bibliographic sources in university environments. Journal of Ambient Intelligence and Smart Environments, 5(1), 105-118.

Callaghan, V. (2012). Buzz-Boarding; practical support for teaching computing based on the internet-of-things.

Chandra, D. G., & Raman, A. C. (2014). Educational Data Mining on Learning Management Systems Using SCORM. In Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on (pp. 362- 368). IEEE.
http://dx.doi.org/10.1109/csnt.2014.91

Chikh, A. (2014). A general model of learning design objects. Journal of King Saud University-Computer and Information Sciences, 26(1), 29-40.
http://dx.doi.org/10.1016/j.jksuci.2013.03.001

Chin, J., & Callaghan, V. (2013, July). Educational living labs: a novel internetof-things based approach to teaching and research. In Intelligent Environments (IE), 2013 9th International Conference on (pp. 92-99). IEEE.
http://dx.doi.org/10.1109/ie.2013.48

Christophe, B. (2011, October). Semantic profiles to model the” web of things”. In Semantics Knowledge and Grid (SKG), 2011 Seventh International Conference on (pp. 51- 58). IEEE.

Compton, M., Barnaghi, P., Bermudez, L., García-Castro, R., Corcho, O., Cox, S., ... & Taylor, K. (2012).The SSN ontology of the W3C semantic sensor network incubator group. Web Semantics: Science, Services and Agents on the World Wide Web, 17, 25-32.
http://dx.doi.org/10.1016/j.websem.2012.05.003

Derntl, M., Neumann, S., Griffiths, D., & Oberhuemer, P. (2012). The conceptual structure of IMS Learning Design does not impede its use for authoring. Learning Technologies, IEEE Transactions on, 5(1), 74- 86.
http://dx.doi.org/10.1109/TLT.2011.25

De, S., Barnaghi, P., Bauer, M., & Meissner, S. (2011, September). Service modelling for the Internet of Things. In Computer Science and Information Systems (FedCSIS), 2011 Federated Conference on (pp. 949-955). IEEE.

Domingo, M. C. (2012).An overview of the Internet of Things for people with disabilities. Journal of Network and Computer Applications, 35(2), 584-596.
http://dx.doi.org/10.1016/j.jnca.2011.10.015

Experience API specification. Retrieved March 04th, 2015, from http://www.adlnet.gov/wp-content/uploads/2013/10/xAPI_v1.0.1-2013-10-01.pdf

García-Peñalvo, F. J. (Ed.). (2008). Advances in E-Learning: Experiences and Methodologies: Experiences and Methodologies. IGI Global.
http://dx.doi.org/10.4018/978-1-59904-756-0

García-Peñalvo, F. J., & Seoane-Pardo, A. M. (2015). Una revision actualizada del concepto de eLearning. Décimo Aniversario. Education in the Knowledge Society, 16(1), 119-144.
http://dx.doi.org/10.14201/eks2015161119144

Gómez, J., Huete, J. F., Hoyos, O., Perez, L., & Grigori, D. (2013). Interaction System based on Internet of Things as Support for Education. Procedia Computer Science, 21, 132-139.
http://dx.doi.org/10.1016/j.procs.2013.09.019

Hachem, S., Teixeira, T., & Issarny, V. (2011). Ontologies for the Internet of Things. In Proceedings of the 8th Middleware Doctoral Symposium (p. 3). ACM.
http://dx.doi.org/10.1145/2093190.2093193

IMS Learning Design specification. Retrieved March 04th, 2015, from http://www.imsglobal.org/learningdesign/

Latorre García, M., Carro Fernández, G., Sancristobal Ruiz, E., Pesquera Martín, A., & Castro Gil, M. (2013). Rethinking remote laboratories: Widgets and smart devices. In Frontiers in Education Conference, 2013 IEEE (pp. 782-788). IEEE.
http://dx.doi.org/10.1109/FIE.2013.6684933

“LTSC WG12: Learning Object Metadata”, IEEE Learning Technology Standards Committee, 2002. Retrieved March 04th, 2015, from https://ieee-sa.centraldesktop.com/ltsc/

Luque Ruiz, I., Castro Garrido, P., Matas Miraz, G., Borrego-Jaraba, F., & Gómez-Nieto, M. Á. (2011). Near Field Communications Handbook.

Presser, M., Barnaghi, P. M., Eurich, M., & Villalonga, C. (2009). The SENSEI project: integrating the physical world with the digital world of the network of the future. Communications Magazine, IEEE, 47(4), 1-4.
http://dx.doi.org/10.1109/MCOM.2009.4907403

Taamallah, A., & Khemaja, M. (2014). Designing and eXperiencing smart objects based learning scenarios: an approach combining IMS LD, XAPI and IoT. In Proceedings of the Second International Conference on
Technological Ecosystems for Enhancing Multiculturality (pp. 373-379). ACM.
http://dx.doi.org/10.1145/2669711.2669926

Vidal-Castro, C., Sicilia, M. Á., &Prieto, M. (2012). Representing instructional design methods using ontologies and rules Knowledge- Based Systems, 33, 180-194.
http://dx.doi.org/10.1016/j.knosys.2012.04.005

Watson, C. E., & Ogle, J. T. (2013). The pedagogy of things: Emerging models of experiential learning. Bulletin of the IEEE Technical Committee on Learning Technology, 15(1), 3.
Taamallah, A., & Khemaja, M. (2015). Proporcionar experiencias de aprendizaje ubicuo mediante la combinación de Internet de las Cosas y los estándares de e-Learning. Education in the Knowledge Society (EKS), 16(4), 98–117. https://doi.org/10.14201/eks201516498117

Descargas

Los datos de descargas todavía no están disponibles.
+