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This paper addresses the action recognition problem using skeleton data. In this work, 
a novel method is proposed, which employs five Distance Maps (DM), named as Spa-
tio-Temporal Distance Maps (ST-DMs), to capture the spatio-temporal information 
from skeleton data for 3D action recognition. Among five DMs, four DMs capture the 
pose dynamics within a frame in the spatial domain and one DM captures the varia-
tions between consecutive frames along the action sequence in the temporal domain. 
All DMs are encoded into texture images, and Convolutional Neural Network is em-
ployed to learn informative features from these texture images for action classification 
task. Also, a statistical based normalization method is introduced in this proposed 
method to deal with variable heights of subjects. The efficacy of the proposed method 
is evaluated on two datasets: UTD MHAD and NTU RGB+D, by achieving recogni-
tion accuracies 91.63% and 80.36% respectively.

1. Introduction
Action recognition is increasingly becoming an active research field because it has many real-time applica-
tions such as content-based video search, automatic video indexing, assisted living, robotics, human-comput-
er interaction and smart video surveillance. The traditional research examined action recognition from RGB 
videos. Unfortunately, RGB data is sensitive to many factors: (i) illumination changes (ii) background clutter 
(iii) occlusions etc. (Poppe, 2010). Besides, RGB sensors cannot capture the motion in 3D. The depth sensor, 
which captures 3D information, overcomes the above factors. In the seminal work, Shatton et al,. (Shotton et 
al., 2011) proposed a methodology to extract the skeleton joints from depth data in real time. It has generated a 
renewed interest in the research community to use of skeleton data for action recognition. Moreover, Skeleton 
map is invariant to viewpoints or appearances compared with depth map, thus suffering less intra-class variance 
(Zhang et al., 2017).

Traditional methods for skeleton based action recognition have been focused on designing handcrafted fea-
tures (Xia et al., 2012) (Wang et al., 2014) (Vemulapalli et al., 2014). These methods can be classified into three 
categories: (i) joint based, (ii) mined joint based and (iii) dynamics based methods. The joint based methods 
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capture the correlation between the joints for action recognition task where as the mined joint based methods 
identify which body parts are discriminative for action recognition. In dynamics based methods, the temporal 
dynamics are captured from the 3D trajectories of the skeleton action sequence for action classification task. 
The recent survey for skeleton based action recognition can be found in paper (Presti and La Cascia, 2016).

In recent years, deep learning methods have achieved superior results than the traditional methods in the 
field of computer vision. Two types of deep learning models received much attention for action recognition task. 
They are (i) Recurrent Neural Networks (RNNs) and (ii) Convolutional Neural Networks (CNNs). Different 
RNN based structures such as hierarchical RNN (Du et al., 2015b), spatio-temporal long short-term memory 
(LSTM) (Liu et al., 2016), part-aware LSTM (Shahroudy et al., 2016), spatio-temporal attention based RNN 
(Song et al., 2017) and two stream RNN (Wang and Wang, 2017) have been proposed to learn discriminative 
features from skeleton data for action recognition. The above methods concatenate the coordinates of joints at 
each time step before applying RNN based methods. Thus, spatial geometrical relations among different joints 
are lost in this pre-processing stage. In contrast, CNNs directly extract information from texture images which 
are encoded from skeleton sequences. Different CNN based methods are proposed for skeleton based action 
recognition. In (Du et al., 2015a), the texture images are constructed by mapping 3D (x,y,z) coordinates of joints 
to red, blue and green values respectively. In the work (Wang et al., 2016), the joint trajectories are extracted 
and encoded into color images by using hue, saturation, and values. In (Li et al., 2017), four Joint Distance 
Maps (JDMs) are constructed from the pairwise distances of skeleton joints. Then, JDMs are encoded into 
texture images. In the above works (Du et al., 2015a) (Wang et al., 2016) (Li et al., 2017), the action sequences 
are encoded into texture images. Hence, the action recognition problem is converted into image classification 
problem. CNN is employed for action classification task. To the best of our knowledge, there is no deep learning 
method which can capture effective spatio-temporal information from skeleton data.

In this paper, we address the action recognition task using skeleton data. The contributions of this paper are 
summarized as follows.

1. Since an action is a spatio-temporal event, both spatial and temporal features are needed for action recog-
nition task. In this context, we employ five Distance Maps (DMs) in spatial domain and temporal domain 
to capture the pose and temporal variations.

2. A statistical based normalization method is introduced to deal with variable heights of subjects.
3. Five CNNs are trained on the proposed ST-DMs and multiplication fusion is employed on the resultant 

score vectors to assign the action label for an unknown action sequence. 
4. Our method dramatically outperforms the recent state of the art methods. The experiments have been 

conducted in two settings: single view and cross view.

The rest of the paper is organized as follows. Section 2 gives a brief overview of related works in the liter-
ature and the proposed method is presented in Section 3. The experimental results are described in Section 4. 
The conclusions are drawn in the final section.

2. Related Work
In this section, we briefly review the literature related to our work i.e. skeleton based approaches for action 
recognition. Existing literature about the skeleton based action recognition can be classified into two types: 
Handcrafed feature based methods (Traditional methods), Deep learning based methods.

2.1. Handcrafed feature based methods
These methods can be classified into three categories: (i) joint based, (ii) mined joint based and (iii) dynamics 
based methods. The joint based methods capture the correlation between the joints for action recognition task. 
For example, Müller et al. (Müller et al., 2005) introduce a class of boolean features expressing geometric rela-
tions between body points of a pose. Kerola et al. (Kerola et al., 2014) has employed a graph based approach for 
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action recognition. In this work, an action sequence is represented as spatio-temporal graph and edge weights 
are calculated based on the pair wise distances. Hussein et al. (Hussein et al., 2013) has used the covariance 
matrix of skeleton sequence as feature descriptor for action recognition and the multiple covariance matrices 
are generated to capture the relation between joint movement and time. Mined joint based methods try to learn 
which body parts are discriminative for action recognition. In paper (Climent-Pérez et al., 2012), a genetic 
algorithm is proposed to identify informative joints for a specific class. Then, K-means algorithm is employed 
for action recognition task. In work (Wang et al., 2013), skeleton joints are grouped into five body parts. Then, 
data-mining techniques are applied to obtain distinctive poses in spatial domain and temporal domain. Support 
Vector Machine is employed for action classification. In dynamics based methods, the temporal dynamics are 
captured from the 3D trajectories of the skeleton action sequence for action classification task. Dynamic based 
approaches uses linear dynamical systems (LDS) (Chaudhry et al., 2013) or hidden Markov models (HMM) or 
mixed approaches (Presti et al., 2014) for modeling of actions.

2.2. Deep learning based methods
There are two types of deep learning models received much attention for action recognition task. They are (i) 
Recurrent Neural Networks (RNNs) and (ii) Convolutional Neural Networks (CNNs).

Different RNN based structures such as hierarchical RNN (Du et al., 2015b), spatio-temporal long short-
term memory (LSTM) (Liu et al., 2016), part-aware LSTM (Shahroudy et al., 2016), spatio-temporal attention 
based RNN (Song et al., 2017) and two stream RNN (Wang and Wang, 2017) have been proposed to learn dis-
criminative features from skeleton data for action recognition. The above methods concatenate the coordinates 
of joints at each time step before applying RNN based methods. Thus, spatial geometrical relations among 
different joints are lost in this pre-processing stage.

In contrast, CNNs directly extract information from texture images which are encoded from skeleton se-
quences. Different CNN based methods are proposed for skeleton based action recognition. In (Du et al., 
2015a), the 3D (x,y,z) coordinates of joints in skeleton action sequence are mapped into red, blue and green 
values respectively. Hence, the skeleton action sequence is converted into the color image, and the action rec-
ognition problem is converted to image classification problem, and then the powerful image classifiers such 
as Convolution Neural Networks (CNN) are employed for action recognition. Due to the small size of the 
converted color images, it is difficult to fine-tune the existing CNN. In the work (Wang et al., 2016), the joint 
trajectories are extracted and encoded into color images by using hue, saturation, and values. The encoded tra-
jectories are used in CNN as inputs for action classification. The joint trajectories capture temporal variations, 
but fail to extract structural dynamics within a frame in the action sequence. In this context, Li et al. (Li et al., 
2017) proposed four Joint Distance Maps based on the pairwise distances of skeleton joints within the frame 
and the CNN was adopted for action recognition. From the above works, we have observed that the success of 
an action recognition task is dependent on how effectively model captures the spatial and temporal dynamics 
from action sequences. This paper employs five Distance Maps (DMs), referred to as Spatio Temporal Distance 
Maps (ST-DMs), to deal with spatial and temporal variations for action recognition task whereas the paper (Li 
et al., 2017) uses spatial features and it does not consider temporal variations for action recognition.

3. Proposed Method
In this section, we first introduce the some necessary backgrounds. Then, we present two phases, Feature Ex-
traction and Action Representation, of the proposed method. Finally, the action classification phase is discussed.

3.1. Preliminaries

3.1.1. Basic CNN components
The CNN is a popular deep learning architecture. LeCun et al. (LeCun et al., 1990) introduced the modern frame-
work of the CNN, named as LeNet-5, in their seminal work. LeNet-5 has been trained with backpropagation 
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algorithm for Handwritten digit recognition problem. Due to the lack of the large training data and computing 
resources at that time, Lenet-5 doesn’t give good performance on complex problems such as image and video 
classification. Numerous variants of the CNN architectures have been proposed in the literature since 2006. The 
basic components of all these variants are very similar. In general, the basic components of CNN are: Convolu-
tion layer, Activation function, Pooling layer, Loss Function.

The convolution layer is composed of several kernels. The weights in kernels are learned from the training 
data. The output of a convolution layer is a feature map and the number of feature maps generated are dependent 
on the number of kernels used in convolution operation. Let F is a convolved feature map and feature value 
at location (p, q) in ith feature map of jth layer is calculated as in equation (1). Typically, several convolution 
layers are stacked in CNN. In general, first convolution layer is designed to learn low level features and last 
convolution layer is for high level abstract features.

where  are the wight vector and bias terms of ith filter of jth layer.  is the input patch of jth layer.
Typical activation functions are sigmoid, tanh and Rectified Layer (ReLu). Among these, Relu is frequently 

used to reduce the training time of CNN. It makes the negative values to zero in feature map F. Let A is activa-
tion map and the value at location (p, q) in ith activation map of jth layer is calculated as in equation (2). The 
function max() returns the maximum value in the given list of parameters. (Note that both two parameters are 
scalars in function max()).

Pooling is important concept in CNN. The pooling layer gives shift-invariance and lowers the computation-
al burden by reducing the resolution of the feature maps. It is usually placed between two convolution layers. 
Typically, there are two types of pooling operations: (i) average pooling; (ii) max pooling. Let pool(.) is the 
pooling function, it is denoted mathematically as in equation 3.

where Np,q is neighbourhood region of location (p, q). After stacking of convolution and pooling layers, one or 
more fully-connected (FC) layers are placed in CNN. In FC layer, all neurons in previous layer are connected 
to each neuron in the current layer. Hence, it helps for high level reasoning.

It is essential to choose appropriate loss function to train CNN for a specific task. Typical loss functions for 
CNN are: (i) hinge loss; (ii) softmax loss. Hinge loss function is used to train a SVM classifier. The hinge loss 
for multi-class svm is calculated as stated in equation 4. Let W is the weight vector of a classifier and N is the 
number of instances in the training set. If training set contains M classes, the hinge loss Lh is defined as stated 
in equation (4).

where Ai is the input instance and yi is the corresponding label for Xi. δ(yi, j) = 1 if yi = j, other wise δ(yi, j) = −1. 
Softmax loss is frequently used to train a CNN. Let Ls denotes the softmax loss of a classifier, it is defined as 
the combination of logistic and softmax functions as stated in equation (5).
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where  and  are the activations of a densely connected layer. Hence 

3.1.2. Regularization
Training a CNN is a optimization problem. Overfitting is the main problem in training a CNN. It can be 

solved by introducing the regularization parameters. Regularization adds the additional terms to the objective 
function.

Mainly, two typical techniques are used in CNN: (i) lc norm regularization (ii) dropout. If the soft max loss 
function of a classifier is Ls(θ, x, y), the lc norm regularization loss E(θ, x, y) is defined as given in equation (6).

 (6)

if c ≥ 1, the lc norm regularization is convex and the optimization problem is easier. Otherwise, the lc norm is 
non convex. Dropout is the another regularization method, introduced by Hinton et al. (Hinton et al., 2012). In 
work (Hinton et al., 2012), dropout is applied to fully connected layers to make learning more accurate even 
absence of some information.

3.1.3. Optimization
To optimize the performance for CNN, the key techniques are data augmentation and weight initialization. 

CNN is a deep neural network and millions of parameters have to be learned from the training data. Hence, a 
large quantity of training data is needed to set optimal values for these learn-able parameters. For some specific 
problems, acquisition of data is very difficult. In this context, data augmentation is the solution for optimizing 
performance of a CNN. The well known augmentation methods are mirroring (Yang and Patras, 2015), shifting 
(Salamon and Bello, 2017), sampling (Russakovsky et al., 2015a) and rotating (Xie and Tu, 2015). In works 
(Xie et al., 2015) (Xu et al., 2015), additional augmentation methods are introduced to optimize the learning 
in fine-grained recognition tasks. The loss function of CNN is non-convex and very difficult to train (Choro-
manska et al., 2015). To achieve fast convergence in training, weight initialization plays a vital role. In work 
(Russakovsky et al., 2015b), the weights are initialized with zero mean gaussian distribution and standard 
deviation is 0.01.

3.1.4. Stochastic gradient descent
In general, the backpropagation algorithm is used to train a CNN. It uses gradient descent to update the 

parameters. Many variants of gradient descent methods are available in the literature (Qian, 1999). The param-
eters are updated using standard gradient descent algorithm as θt+1 = θt − η∇θE[L(θt)]. L(θt) is the objective 
function and E[L(θt)] is the expectation of L(θt) over the full training set. η is the learning rate. In stochastic 
gradient descent, E[L(θt)] is calculated on each randomly picked input instance (Xt, yt) as stated in equation (7)

  (7)

In some contexts, the E[L(θt)] is calculated over mini batch for stable convergence of CNN. To choose opti-
mal value for learning rate η, Schaul et al. (Schaul et al., 2013) proposed the learning rate schedules to adjust 
the η during training. In paper (Qian, 1999), momentum is introduced to update the parameters using velocity 
vector as stated in equations (8) and (9)

  (8)



10

M. Naveenkumar and S. Domnic
Learning Representations from Spatio-Temporal Distance Maps 
for 3D Action Recognition with Convolutional Neural Networks

ADCAIJ: Advances in Distributed Computing  
and Artificial Intelligence Journal  

Regular Issue, Vol. 8 N. 2 (2019), 5-18 
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Table 1: Layers Description of AlexNet

Figure 1: Frame work of the proposed method
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	 𝜃�₊� = θ� + 𝑣�+1 (9)

where γ is momentum term, vt+1 is the current velocity vector. In general, the training process using SGD 
don’t converge. The training process should stop at the point where the performance stops increasing. The two 
popular techniques to stop training process are (i) early stopping criteria (ii) choosing fixed number of epochs.

3.2. Feature Extraction
The proposed method contains four main parts as illustrated in Fig. 1. They are the construction of ST-DMs 
from input skeleton data, encoding of ST-DMs to texture color images, training the CNN model and the fusion 
of scores. The four Distance Maps in the spatial domain are referred to XY Zmap, XY map, Y Zmap and XZmap. 
To deal with actions that contains human to human interaction, every action is assumed to be performed by two 
subjects (main subject and auxiliary subject). If an action sequence contains only one subject, a shadow subject 
is copied from main subject (Ding et al., 2017). Suppose an action sequence A contains M skeleton frames and 
each skeleton frame contains 2N joints, where N joints are related to main subject and other N joints are for 
auxiliary subject. A = {F1, ……FM}, where F represents a frame and . The  represents 
the 3D coordinates (x, y, z) of jth joint of ith frame. The 2D orthogonal projections of 3D Joint J are referred as 
Jxy, Jyz and Jxz. The four spatial DMs are constructed as stated in equations (10) to (13). The fifth feature map, 
named as TEMP map, is calculated in the time domain as given in equation (14).

Figure 2: Sample color images of Spatio-Temporal Maps generated by the proposed method  
on UTD MHAD dataset.
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Where f represents the frame number, J refers (x,y,z) coordinates of joint, Jxy refers (x,y) coordinates of the 
joint and so on. dist3D () is the Euclidean distance of two points in Euclidean 3-space where as dist2D () is the 
Euclidean distance of two points in Euclidean 2-space. suppose, r = (r1, r2, …, rn) and s = (s1, s2…, sn) are 
two points in Eucledean n-space, the distnD () is calculated as:

Table 2: Recognition accuracy of Five DMs and their Multiplication Fusion on UTD MHAD  
and NTU RGB+D datasets

For an Action A, when the distances calculated for a single frame are arranged in a single column, four ma-
trices are generated for four spatial features respectively. Each matrix of size (2N2 − N) × M.  In the context of 
the TEMP map feature, the distances calculated for two consecutive frames are arranged in a single column. As 
a result, a matrix is formed of size 2N × (M − 1). Since M is vary from one action sequence to another, feature 
matrices do not contain fixed number of columns for all the sequences in the training set. To avoid this problem 
and produce matrices with fixed number of columns M1, bi-linear interpolation is used to resize the spatial map 
from (2N2 − N) × M to (2N2 − N) × M1and temporal map from 2N × (M − 1) to 2N × M1. Since subjects can 
have different scale in their height and width in the skeleton data, the feature values extracted from skeleton data 
need to be normalized to fit the desired range [0-1]. Hence, a normalization equation is proposed in this work 
as given in equation (16). To keep the values in [0-255] range, the normalized matrix is multiplied by 255 as 
in equation (17). The resultant matrices looks like gray images with 256 intensity levels. In order to adopt the 
AlexNet (Krizhevsky et al., 2012) for classification, the gray images are encoded into color images by adopting 
jet color bar (Li et al., 2017). The color images of ST-DMs for different actions in the UTD MHAD dataset is 
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shown in Fig. 2. As a result, the action recognition problem is converted into an image classification problem 
and CNN is fine-tuned for action classification in this paper.

Where M is a feature matrix to be normalized, min(M) is minimum value in M and max(M) is the maximum 
value in M.

3.3. Action Classification
The popular CNN architecture, AlexNet (Krizhevsky et al., 2012), is fine-tuned for action classification in this 
paper. Since the input layer of AlexNet takes 227 × 227 × 3 images, all encoded color images are resized us-
ing bicubic interpolation (Keys, 1981). The layers used in Alexnet are Convolution, Relu, Max pooling, Fully 
connected, drop out and soft max, which are discussed in Section 3.1. The details of different layers of AlexNet 
used for experiments are described in Table 1. Five CNNs are trained using color images related to five features 
as illustrated in Fig. 1. This letter adopts multiplication fusion (Li et al., 2017) to produce the final test result. 
For an action sequence A in testing set, if v1, v2, v3, v4, and v5 are the vectors related to scores of five CNNs, the 
label is assigned for action A as given in equation (18). AlexNet is trained using the solver “Stochastic Gradient 
Decent with Momentum” with momentum value 0.9. In general, the initial learning rates are small values for 
fine tuning the network. The learning rate is initially set to 0.0001 for fine tuning and the mini-batch size is set 
to 128 for all the experiments in this paper.

Table 3: Recognition accuracy results on UTD MHAD Dataset

 Label of test instance A = Find_Max_index(v1 ◊ v2 ◊ v3 ◊ v4 ◊ v5) (18)

where ◊ represents the element wise multiplication and Find_Max_index(.) is the function to find the index 
(class label) of maximum value.

4. Experiments
The efficacy of the proposed method is evaluated on two benchmark datasets for action recognition. All the 
experiments are carried out using a workstation with 16 GB RAM, NVIDIA Quadro K2200 graphics card. The 
number of epochs are set to 100 for all the experiments.
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4.1. Datasets

4.1.1. UTD MHAD dataset
UTD MHAD dataset (Chen et al., 2015) uses a kinect camera and a wearable inertial sensor to capture depth, 
skeleton joints, RGB data and inertial sensor data. The skeleton is represented by using 20 joints. It contains 27 
actions, performed by 8 subjects with each one performs an action four times. As a result, 864 (27x8x4 = 864) 
data sequences are generated. After removing 3 corrupted sequences, the total data sequences are 861. For fair 
comparison, we follow the cross subject protocol proposed in the paper (Chen et al., 2015). For cross subject 
evaluation, the odd subjects (1,3,5,7) are used for training and even subjects (2,4,6,8) are used for testing. As a 
result, there are 431 action sequences in training set and 430 in testing set.

Figure 3: Accuracies on Training set with number of epochs on the NTU RGB+D dataset for both cross 
subject and cross view settings. (a) Cross Subject (b) Cross View
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Table 4: Recognition accuracy results on NTU RGB+D Dataset

4.1.2. NTU RGB+D dataset
To the best of our knowledge, NTU RGB+D dataset (Shahroudy et al., 2016) is largest action recognition data-
set and it uses three kinect v2 sensors to capture the depth and skeleton information. The skeleton is represented 
using 25 joints. It contains 60 action classes performed by 40 subjects. There are 56,880 action sequences and 
more than 4 million frames in this dataset. After removing missing skeletons, the dataset contains 56,578 action 
sequences. This dataset is challenging in two aspects: (i) large intra class variations; (ii) view point variations. 
Due to large scale of this dataset, it is highly suitable for deep learning. We follow the two experimental proto-
cols, namely cross subject and cross view protocols, proposed in paper (Shahroudy et al., 2016). In cross subject 
test, the actions pertaining to the subjects 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38 
are considered for training and remaining are for testing. As a result, the training set contains 40,091 samples 
where as testing set consisting of 16,487 action sequences. In cross view evaluation, the samples captured using 
camera 2 and 3 for training and camera 1 samples for testing.

4.2. Results of Action Recognition
Table 2 reports the results of individual ST-DMs and their multiplication fusion. Here, Mul(ALL) means the 
multiplication fusion of all five Distance Maps (DM). When comparing the individual DMs, XY Zmap outper-
forms the other DMs on both the datasets. The multiplication fusion of all DMs significantly achieves good 
performance than other recent works in the literature. From these results, it is concluded that all five DMs have 
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their significance to achieve recognition accuracy. Table 3 reports the performance of the proposed method 
with other state of the art methods on UTD MHAD dataset. It is noted from Table 3 that the works (Wang et 
al., 2016) (Li et al., 2017) achieved 85.81% and 88.10% recognition accuracies respectively, which is not bet-
ter than that of the proposed method, which achieves the accuracy of 91.16%. The reason is that the proposed 
method uses both spatial and temporal dynamics where as the works (Wang et al., 2016) (Li et al., 2017) used 
either spatial or temporal dynamics for action recognition.

Table 4 shows the results on the NTU RGB+D dataset. For this dataset, we compare our results with tra-
ditional methods (Ohn-Bar and Trivedi, 2013) (Vemulapalli et al., 2014) (Evangelidis et al., 2014) (Huang et 
al., 2017), RNN based methods (Du et al., 2015b) (Shahroudy et al., 2016) (Shahroudy et al., 2016) (Song et 
al., 2017) (Liu et al., 2017) (Wang and Wang, 2017) and CNN based methods (Wang et al., 2016) (Li et al., 
2017) (Núñez et al., 2018). It should be noted that the work (Núñez et al., 2018) uses both CNN and LSTM 
for action recognition. The empirical results show that our method achieves 80.36% and 86.94% accuracies for 
cross subject and cross view settings respectively, which are higher than the recent existing works. The reason 
for the achievement of better results by our method is that it uses both spatial and temporal dynamics for action 
recognition.

To compare and analyze the convergence rates of five ST-DMs employed in this paper, we plot the accura-
cies on the training data during training phase. The results of five ST-DMs on NTU RGB+D dataset are shown 
in Figure 3. From this Figure 3, it is observed that the all curves, related to five ST-DMs, converge their maxi-
mum values. For Cross subject settings (see Figure 3(a)), all ST-DMs except XY map, the training accuracy rate 
is gradually increased and stabilized after 80th epoch, but, for XY map, the training accuracy rate is stabilized 
after 90th epoch. For Cross view settings (see Figure 3(b)), for all ST-DMs, the training accuracy rate is stabi-
lized after 80th epoch.

5. Conclusion
This paper presented a methodology for action recognition using skeleton data. It employed two types (spatial, 
temporal) of skeleton features for action recognition. Four features are extracted in the spatial domain to cap-
ture the structure (pose) dynamics within a frame, and one feature is extracted in temporal domain to capture 
the temporal dynamics between consecutive frames. All extracted features are converted into 2D color images. 
Hence, the 3D action recognition problem is converted into a 2D image classification problem. This represen-
tation allows us to fine tune the Convolutional Neural Network without training from scratch. The proposed 
method is evaluated on two benchmark datasets: UTD MHAD and NTU RGB+D datasets, by achieving recog-
nition accuracies 91.16% and 80.36% respectively.
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