
Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

55

Advances in Distributed Computing
And Artificial Intelligence Journal

KEYWORD

 ABSTRACT

Multi-agent systems
Virtual organizations
Pervasive Systems
Model-Driven Development

The development of Ubiquitous or Pervasive Systems can be considered a
complex task, with multiple actors, devices and different hardware
environments; where it is difficult to find a compact view of all the components.
This work proposes to use a MDD (Model-Driven Development) approach to
facilitate the development process of Agent-Based Pervasive Systems, providing
the user with a set of abstractions that ease the implementation of Pervasive
Systems and the deployment of a platform for their execution. The proposal
allows designing pervasive applications using high-level abstractions, avoiding
the low-level implementation details and, after that, the Pervasive System
deployment (with embedded agents and devices) is generated by using automatic
transformations. In this way, a non-expert programmer will be able to develop
Agent-Based Pervasive Systems, reducing the gap between the design and the
implementation phases.

1 Introduction
The development of Ubiquitous or Pervasive
Systems is a complex task, which involves
multiple actors, devices and different hardware
environments. So, it is difficult to find a
compact view of all the components of the
system and the requirements of this kind of
systems are very different [ENDRES, C. 2005].
However some of them are basic: (i) integration
of external devices and software systems; the
services that are provided by Pervasive Systems
can be supplied by physical devices and also by
existing software systems, and it is essential that
the system supports these issues; (ii) the
isolation of the technology and the
manufacturer-dependent devices, in order to
facilitate the development of this kind of
systems, the manufacturer-dependent devices
must be well encapsulated in independent and
generic functionalities.
So, it is easy to think that this paradigm
implementation requires, from a designer point

of view, the development of applications in
different software and hardware platforms
depending on the diversity of the objects in the
environment. This raises big challenges. In this
way, one way to implement Ubiquitous
computation is with embedded intelligent agents.
The embedded hardware (typically a computer)
containing such agent is usually called embedded
agent [HAGRAS, H. 2005]. Each embedded
agent is an autonomous entity allowing to
communicate and cooperate with other agents, as
part of a Multi-Agent System (MAS).
Model-Driven Development (MDD) approach
facilitates and simplifies the design process and
improves the software quality for Pervasive
Systems. It allows to re-use software and
automatic transformation between models
[SELIC, B. 2003]. This methodology can be
applied in the development of embedded agents
for ubiquitous computation, where different
technologies and developing platforms coexist.
This work is centered in the deployment phase
of a MDD approach for the development of
embedded agents for ubiquitous computation. In
this sense, a MDD approach to develop agent-
based software for Pervasive Environments is

MDD-Approach for developing Pervasive
Systems based on Service-Oriented Multi-
Agent Systems
Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián
Departamento de Sistemas Informaticos y Computacion Universitat Politecnica de Valencia

Camino de Vera S/N 46022 Valencia (Spain) {jaguero, mrebollo, carrasco, vinglada}@dsic.upv.es

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

56

Advances in Distributed Computing
And Artificial Intelligence Journal

presented. This MDD approach simplifies the
design and implementation of application
prototypes. Our approach provides a method for
the specification of Pervasive Systems, which
allows facing the development of such systems
from a higher abstraction level. The deployment
over different execution platforms is achieved
by means of automatic transformations among
models that described entities and the
environment (UML-like). The result is a
simplified and homogeneous deployment
process for Agent-Based Pervasive Systems
[TAPIA, D. 2013]. Finally, our approach allows
the implementation of Pervasive Systems over a
service-based framework (OSGi-based) and it
allows too agents to manage the services and the
context adapting the environment. This
approach gives the possibility to create more
advanced and powerful Pervasive
Environments.
This document is structured as follows. Section
2 briefly describes our MDD approach and
Development process. Section 3 shows how to
implement the MDD approach in order to
develop Pervasive Systems and explains the
deployment architecture. Section 4 shows a case
study, in order to illustrate this approach.
Finally, some conclusions are presented in
section 5.

2 πVOM
One fundamental challenge when defining a
meta-model is selecting which concepts or
components will be included in order to model
the system. A generic platform-independent
meta-model of an Agent-Based Pervasive System
is presented in this section. To do this, common
elements in existing MAS and Pervasive Systems
methodologies, have been identified and
incorporated to the Computation Independent
Model (CIM) level (see Figure 1). These models
can be adjusted as MDD models that specify the
concepts of the system, as roles, behaviors, tasks,
environment, interactions or devices. The models
can be used to describe an Agent-Based
Pervasive System without focus on platform-
specific details and requirements, as a Platform
Independent Model (PIM). After that, it is
possible to transform PIM models into Platform
Specific Models (PSM). Figure 1 shows

relationships between the concepts of different
MDD models and their transformations.

Fig. 1. MDD for Agent-Based Pervasive Systems

The proposed set of meta-models integrate
different MAS modeling approaches, and it
mainly focuses on the integration of Services and
MAS techniques for supporting dynamical and
open MAS societies [4]. This set of meta-models

is called πVOM (Platform-Independent Virtual

Organization Model). The main views of πVOM
are the Structure, Functionality, Normative,
Agent, and its Environment. Therefore, to model
the characteristics of these components in our
approach, five key concepts are used:
Organizational Unit, Service, Environment,
Norm, and Agent [ARGENTE, E. 2008].

According to this, πVOM is structured in five
meta-models or views, which cover the above,
mentioned key aspects.
These five elements describe those members
(entities) that form the organization: the topology
of the organization; the services and features that
the organization offer; the evolution of the
organization over time; the environment where
the organization is situated; and the rules about
the behavior of members respectively. These five
elements are described in more detail in
[AGUERO, J. 2010]. Next section describes the
related deployment process in detail. First, a
briefly description of the development process is
presented.

2.1.	 	 Development	 process	

The design process starts trying to model the
agents and the environmental devices using the
abstract components of the proposed meta-models
(commented in the previous section). The
Pervasive System design process is formed by a
set of transformations that finally will obtain the

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

57

Advances in Distributed Computing
And Artificial Intelligence Journal

OSGi-Java code. In order to do these steps, a set
of tools, which support the process, are required.
The tools used at each stage of the design can be
summarized as follows:
Step 1: At the beginning, the developer must
create the different diagrams (using the EMF
toolkit), which model the different devices,
resources or services of the agents. To perform
this step, an Eclipse IDE with a set of plugins is
employed. These plug-ins are mainly EMF,
Ecore, GMF and GEF, which allow the user to
draw the models that represent the Pervasive
System.
Step 2: Once the model has been developed, it is
necessary to select in which platforms the user
wants to execute the agents. This phase
corresponds with the PSM model definition of
each agent. To do this, it is necessary to apply a
model-to-model transformation (PIM-to-PSM).
This is done using the Eclipse IDE and the ATL
plug-in incorporating the appropriated set of
transformation rules. It is important to remark
that the same agent model can be transformed
into different specific agent platforms. Table I
illustrates the agent transformations, from agent
meta-model of πVOM to JADE-Leap [AGUERO,
J. 2013]. These rules are a subset of the
transformation rules needed in this phase, which
are explained in detail in [AGUERO, J. 2013]. In
this way, agent concepts are mapped from source
models to target models, and agent components
are transferred or changed from one model to
another.

Rule Concept Transformation
1 Agent πVOM.Agent ⇒ JADE.Agent
2 Behaviour πVOM.Behaviour ⇒ JADE.ParallelBehaviour
3 Capability πVOM.Capability ⇒ JADE.OneShotBehaviour
4 Task πVOM.Task ⇒ JADE.Behaviour

Table 1. Transformation rules between agent meta-model and
Jade-leap model

Step 3: After the second step, the developer must
apply a transformation to convert the models into
the MAS code (OSGi-based). To do this, we must
use a PSM-to-code transformation. In this case,
we use MOFScript, which is an Eclipse plug-in
that uses templates to do the translation. These
templates have been developed for two MAS
platforms: JADE-Leap and ANDROMEDA [8].
Figure 2 illustrates how one rule is implemented
using MOFScript. Part of the code of the rule
shows the transformation of the agent concept.

Step 4: Finally, the process finishes by adding

the necessary drivers for the different
environment devices needed in the Pervasive
System. All the functionality of physical devices
are encapsulated as OSGi services, which allow
agents to use them without worrying about low-
level features. However, it is necessary to
provide the driver/firmware/protocol of the new
devices that are not in the OSGi bundle library.
This application has a bundle library, which store
the EnvironmentService (service devices) for
frequent use or re-use.

Fig. 2. Agent translation using MOFScript

3 Deployment Process
As before commented, this work proposes to use
a homogeneous and unified model for
implementing Agent-Based Pervasive Systems
permitting its translation into different execution
MAS platforms through MDD, in which agents
act/perceive about the environment and thereby
manage/control the Pervasive System. This means
that the user can design a Pervasive Systems with
a unified, intuitive, visual model, i.e., with a high
level of abstraction. Then, the user can get the
agent code automatically using MDD with
minimal user intervention. Finally, the drivers or
firmware must be added to support environmental
devices. These drivers will be encapsulated within
a service (an OSGi service), to export their
functionality as a high-level abstraction (which
will be managed by agents). Finally, this code
should be compiled for execution over an OSGi
framework, as it is shown in Figure 3.
In order to do this final step, it is necessary to
employ an appropriated deployment platform,
which includes all the computational resources
needed to give support to systems designed
according to the proposed development process.

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

58

Advances in Distributed Computing
And Artificial Intelligence Journal

Implementing Pervasive Systems is a challenging
and exciting task, since a solid background
knowledge about how to implement this kind of
systems do not exist. Many research efforts are
currently being developed on prototype
implementations [ENDRES, C. 2005]. However,
some Pervasive System prototypes share a
common architectural style, which correctly fits
the requirements of these systems.

3.1.	 	 Deployment	 Platform	

As above commented, a deployment platform is
presented in this section. The requirements of
Pervasive Systems are basically two: (i) is
essential that the Pervasive System must support
the integration of services provided by external
devices and software systems (as other services);
(ii) the isolation of the low-level abstraction of the
devices (manufacturer dependent), the
environmental devices must be well encapsulated
in independent and generic functionalities.
Therefore, an architecture style that meets these
requirements is the well-known layered
architecture [ENDRES, C. 2005]. By means of
this architecture, the system elements are
organized in different levels with well-defined
responsibilities. Our proposal follows this
architecture style. Figure 4 shows our deployment
platform, which is a framework based on OSGi
technology. The main layers of this deployment
platform are:

Fig. 3. Implementing Agent-based Pervasive Systems using
MDD transformations

 Physical layer, has the resources/devices that
are perceived in the environment. Fully represents
the real world, where the Pervasive System is
located.

Sensor layer, has the responsibility of
accessing to physical devices, through actuators
and sensors, which allow to change or read the
state of the devices.

Environment layer, has the responsibility of

encapsulating the manufacturer dependent
technology of the environment devices. The
drivers that conform this level directly export
their functionalities through a bundle. The
bundles, which manage similar devices of
software systems from different technology or
vendors, are implemented as a common
interface, in order to provide a uniform way of
communicating within the environment devices.

Service layer, provides the system
functionality, offering services that the Pervasive
System must supply. The services are provided
by the devices located in the physical world, and
by the MAS entities (agent or organizational
unit). Also, at this level the services can be single
or composite services, which are formed by the
composition of other services.

Fig. 4. Pervasive System Architecture Proposal

Agent layer, supports the mechanisms in

order to register, de-register and discovery of
agents. In this layer the agents work together
through different interactions to support complex
tasks in a collaborative and dynamic way. This
layer also supports the information management
(knowledge) and the needed knowledge models,
including the reasoning engine and ontologies
needed by the agents. Furthermore, this layer
provides the necessary mechanisms to support
the communications and needed languages used
by agents, such as FIPA-ACL.

Organizational layer, is used as a regulatory
framework for the coordination, communication,
and interaction among different computational
entities. This layer is formed by a set of
individuals and institutions that need to
coordinate resources and services across
institutional boundaries. This layer supports
high-level interoperability to integrate diverse

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

59

Advances in Distributed Computing
And Artificial Intelligence Journal

information systems in order to share knowledge
and facilitate collaboration among entities. This
layer is an open system formed by the grouping
and collaboration of heterogeneous entities.
From a technical view, these functionalities are
obtained using the THOMAS platform
[CARRASCOSA, C. 2009], which consists
basically of a set of modular services that enable
the development of agent-based organizations in
open environments.

4 Implementing an Application
Example

In order to illustrate this approach, a case study
for an Intelligent Mall is employed. The
intelligent Mall allows mobile users to know the
product offerings for a Mall based on the user
profile (preferences), ie, the user receives
recommendations for possible purchase and use
of Mall's Services. The Mall example is an
application that facilitates the interconnection
between clients (individuals, consumers) and
providers (shops, Cinemas, Fast food shops);
delimiting services that each one can request or
offer. The system controls, which service each
agent must provide. Internal functionality of
these services is responsibility of provider
agents. However, the system imposes some
restrictions about service profiles, service
requesting orders and service results.
The proposed system provides wireless data
services, which allows mobile devices (mobile
phones, netbooks, personal digital assistants-
PDAs-) to communicate with each other and with
a number of servers. The network architecture
provides access to wireless Services for users
equipped with mobile wireless devices, via a set
of access points deployed in key points around of
the Mall (usually shops which offer services and
products). This architecture is built upon a
number of wireless communication standards -
WLAN (WiFi), WPAN (Bluetooth), …- which
are employed to deliver these services to
registered users. This network architecture is
shown in Figure 5.

Fig. 5. The Mall network architecture

The third layer is composed of mobile devices
equipped with intelligent agents that act as
Personal Assistants (PA) for the users. The
second layer consists of the shop agents, which
act as access points or gateways for the supply of
services and products. These shop agents are
located in various points of the Mall and facilitate
access to mobile users. Due architecture systems
the network access can be interrupted at any
time. The first layer is composed for the Mall,
which acts as a “container” of the different shops
as a complex organization. Its real function is to
allow the creation and registration of shops and
their services, and, in addition to control and
synchronize the whole information system.

4.1.	 Intelligent	 Mall	 through	 a	 pervasive	
system	 	
The physical environment is composed of a vast
and rich infrastructure of hidden electronic
devices and components, which may differ
significantly. This approach uses different
technologies adopting open technologies
(services and standards, by example, standard
communication protocols) reducing the
seriousness of any interoperability issues that
may arise at some future point. Therefore, the
Mall environment will support a number of
services, and one function that it could fulfill
concerns the composition of elementary services
into sophisticated services that would ultimately
enhance the quality of the clients’ experience.
Figure 6, shows how the Mall components (and
technologies) are integrated and how they
interact with the environment.

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

60

Advances in Distributed Computing
And Artificial Intelligence Journal

Fig. 6. The Mall modeled as a Pervasive system

4.2.	 Deployment	 Platform	 for	 the	 Mall	 	

Some agent platforms (and others technologies)
are needed to implement the Mall example. The
Mall is designed as a virtual organization
supporting an open agent society. As agents can
enter and leave the organization at any time, the
THOMAS platform is used. Agents using the
services and products of the Mall have been
designed as embedded agents on mobile phone
by means of ANDROMEDA and JADE-Leap.
These technologies are described below briefly.
Figure 7 shows as the Intelligent Mall actors (and
technologies) are coupled on the deployment
platform.

Fig. 7. Intelligent Mall over deployment platform

1. Organizational Layer: THOMAS
framework.
THOMAS [CARRASCOSA, C. 2009]
(MeTHods, Techniques and Tools for Open
Multi-Agent Systems), is an open Multi-Agent
System architecture consisting of a related set of
modules that are suitable for the development of
systems applied in environments that working as
a ”society”. The use of THOMAS will give us

the necessary tools for the deployment of shop
and personal assistants agents into a virtual
organization infrastructure. This infrastructure
allows agents to dynamically enter or exit in the
organization, to assign roles to each agent and to
include rules or norms that agents must fulfill.

2. Agent Layer: Embedded Agent Platforms.
With respect to the agent deployment, we will
use two agent platforms:
• ANDROMEDA 1 (ANDROid eMbeddED

Agent platform) [AGUERO, J. 2008] is an
agent platform specifically oriented to em-
bedded agents over the Android2

operating

system. Android can be seen as a software
system specifically designed for mobile
devices, which includes an operating
system, a middleware and key applications.
ANDROMEDA platform includes all the
abstract concepts of the πVOM agent meta-
model. The implementation was done using
the main API components of Android (SDK
1.6). The agents run as any application of
Android, because ANDROMEDA platform
can be interpreted as a new layer that is
inserted into the Android architecture, as
shown in [9].

• JADE3 [BELLIFEMINE, F, 1999] one of
the most popular or relevant platforms that
support the agents execution, widely used
because it provides programming concepts
that simplify the MAS implementation.
JADE is FIPA compliant in the
communication infrastructure between
agents. Moreover, JADE-Leap (JADE
Light Extensible Agent Platform) is a
JADE version used to implement embedded
agents, which running over J2ME (Java
Micro Edition).

3. Service Layer. This layer can provide various
types of services to facilitate and improve the
client experience on the Mall. The types of
services offered by the Mall can be grouped into
three categories (depending on the type of
service, the role of client and provider may
change): (i) Recommendation Service; (ii)
Instant Information Service; (iii) Adaptive
Service.

1 http://www.gti-ia.upv.es/sma/tools/Andromeda/
2 Android System, http://code.google.com/android/
3 http://jade.tilab.com/

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

61

Advances in Distributed Computing
And Artificial Intelligence Journal

The implementation of these services is based on
the use of OWL-S technology, which enables
clients (PAs) and Shops (Shop agents) to
automatically discover, invoke, compose, and
monitor Web resources offering services, under
specified constraints.
For example, Figure 8 shows the protocol service
of a clothing store. The customer comes to the
store, then the system registers it (if not already
registered), and then the client receives the
services from store. The client requests the daily
specials, and the store responds with special
offers products that fit the customer’s style.

4. Environment Layer. This layer has the
responsibility of encapsulating the devices
drivers (dependent manufacturer) in a single and
generic service. This encapsulation is performed
by OSGi technology (using a Bundle). The
Bundle implemented a common interface, in
order to provide a uniform way of
communicating within the devices driver. The
Bundles runs over embedded card (the
BeagleBoard 4

in this approach). The

BeagleBoard is a low-power open-source
hardware singleboard computer. The
BeagleBoard is an embedded computer boards
based on TI’s ARM.

Fig. 8. Daily specials service example

5. Sensor and Physical Layers. These layers
contain the sensors and actuators of used on the
Mall, such as: LCD screens, RFID cards, NFC
cards, QR codes, automatic locks, parking
barriers, etc. Each shop has one or more
embedded card that can run an embedded agent

4 http://beagleboard.org

(with ANDROMEDA over BeagleBoard), whose
responsibility is the sensors management.

4.3.	 	 Implementing	 the	 embedded	
agents	

After describing the technology employed, this
section presents the design and implementation of
the case study. Structural definition of the system
corresponds to identification of agents, roles,
organizational units, norms, etc.. This case study
is modeled as an organization (Mall) inside
which there are different organizational units
(shops) that represent group of agents. Each unit
is dedicated to offer services and recommend
products.

The Mall system is organized in such a way
that if shop cannot fully satisfy the user service
request, the request is forwarded to the other
shops Center. Each Service is delivered in the
most appropriate, quickest and cheapest way to
each user according to his current individual
location and mobile devices capabilities
(specified in the user profile). When a mobile
user enters within the range of a shop (access
point), the intelligent agent (Personal Assistants)
installed in the mobile device and the shop
mutually discovers each other. The Personal
Assistants sends the user's information to the
shop for user register and authentication. This
information includes a description of the mobile
device currently being used and the user profile.
Now, when the user is successfully authenticated
and authorized. The user profile is analyzed by
the Shop for current user preferences and device
capabilities. Then the Shops compiles a list of
applicable services and products from its
Service/Products Catalog and sends this to the
Personal Assistants for its knowledge. The
Personal Assistants shows the information
regarding these services and products to the user
who makes a choice and selects (makes a request
for) the service/products he wishes to use. The
PA forwards the user service request to the Shop,
which instantiates the service.

The agent implementation starts by defining the
different components used in the agent, these
components are part of agent-π meta-model. In
this case, we only describe agents running on
mobile phones using ANDROMEDA or JADE-
Leap platforms, due to space limitations of
article. These agents (clients and consumers)

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

62

Advances in Distributed Computing
And Artificial Intelligence Journal

receive service information of the Mall's shops
(which depends of the user profile sent by the
Personal Assistant). The Shops responds with
different options for products and services to the
client agent, and then the user must select his
best option. This interaction and dialog process is
shown in Figure 9.

Fig. 9. Structure of the Mall

The client agent model represents a consumer in
the system. This agent has various behaviors that
allow managing services offered by the shops.
For reason of brevity the paper only explains the
two most important behaviors of the client agent.
These two most important behaviors allow the
agent to acquire the role of client and to discover
the shops and send profiles. In Figure 10 these
two behaviors can be observed. Behaviour
ShopDiscover allows the agent to perform
the activities necessary to find a shop and send
the user profiles, while the other Behaviour
(ShopClient) does the necessary tasks to use
service and view the products offered.

Fig. 10. Embedded agent model

These behaviors are composed of two individual
capabilities. As an example the Behaviour
ShopDiscover includes the Capabilities
NetManager and Broadcast. These

Capabilities realize the actions of looking for a
shop and send the user profiles respectively. The
Behaviour ShopClient can be designed in
similar way, as can be seen in Figure 10.
Once we know the different components of the
system, the design continues with the creation of
embedded agents and the Mall system, which is
modeled as an organization that will be executed
over the THOMAS platform (how is modeled
this organization is out of the scope of this paper,
for more information please refer to
[CARRASCOSA, C. 2009]). This step is
accomplished using the EMF Toolkit that allows
users to “draw”/design (UML-Like) all the agent

components according to the agent-π meta-model.
Once the agent model is designed, EMF Toolkit
allows verifying the designed system (in a
semantic and syntactic way). Figure 11 shows a
snapshot of how to design the components of the
client agent model and his correspondence with

the agent-π meta-model.

Fig. 11. Designing the client agent

After this, the next step is to generate agent code
using this toolkit. The designer must decide in
which mobile platform will be executed each
agent. In this case, the client agent is selected to
be executed over an agent platform: ANDROMEDA
or JADE-Leap. ANDROMEDA platform was
designed using the same concepts of the agent
model. So, an agent in ANDROMEDA is
implemented using the same concepts employed
in the abstract model. This design greatly
simplifies the automatic transformation between
PIM and PSM, because the ANDROMEDA PSM is
very similar to the πVOM agent model. Thus, the
second step of the MDD process is not necessary.
In this case, the needed transformation rules are
mainly model-to-text, generating directly
ANDROMEDA code which can be combined with
additional user code. The code template

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

63

Advances in Distributed Computing
And Artificial Intelligence Journal

generated by the transformations is shown in
Figure 12.

Fig. 12. Code template of ANDROMEDA Agent

The transformation from agent models to JADE-
Leap code must be done employing the two
phases previously commented: (i) the first phase
translates from the PIM model to JADE-Leap
PSM mode, and allows to obtain a
correspondence among the abstract concepts of
the agent-π model to JADE-Leap concepts; (ii)
the second phase allows to translate the JADE-
Leap PSM models obtained in the previous phase
into executable JADE-Leap code.

Fig. 13. Code template of JADE-Leap Agent

In summary, this transformation process converts
the Behaviour of agent-π in
ParallelBehaviour of JADE-Leap. But
also it translates from Capability to

OneShotBehaviour and from Task to
Behaviour. The code template generated by
this process is shown in Figure 13.
Finally, the code, generated automatically by the
tool, can be edited by the user to complete the
client agent development with the specific details
of the execution platform. Figure 14 shows the
client agent running over the ANDROMEDA and
JADE-Leap platform (executed over the mobile
phone emulator). The Personal Assistant receives
discounts in electronics products (according to
the preferences of the user profile).

Fig. 14. Agents on mobile phones

5 Conclusions
This work presents the application of the ideas
proposed by the MDD for the design of Agent-
Based Pervasive Systems. Although the use of

Agüero, J. et al MDD-Approach for developing Pervasive Systems based on
Service-Oriented Multi-Agent Systems

Special Issue #6
http://adcaj.usal.es

64

Advances in Distributed Computing
And Artificial Intelligence Journal

MDD refers primarily to methodologies of
object-oriented software, it was verified that the
approach could be adopted in the development of
Agent-Based Pervasive Systems. Concretely, a
layered deployment architecture which is part of
a Model Driven Development specifically
designed for this kind of systems has been
presented in this work. This development process
allows designing pervasive applications using
high-level abstractions, avoiding the low-level
implementation details and, after that, the
Pervasive System deployment (with embedded

agents and devices) is generated by using
automatic transformations. Moreover, a case
study has been presented in order to illustrate the
advantages of this proposal.

6 Acknowledgment
This work is supported by the MINECO /FEDER
grant TIN2012-36586-C03-01 of the Spanish
government.

7 References
[ENDRES, C. 2005] C. Endres, A. Butz, and A. MacWilliams, “A survey of software

infrastructures and frameworks for ubiquitous computing,” Mobile
Information Systems, vol. 1, no. 1, pp. 41–80, 2005.

[HAGRAS, H. 2005]

H. Hagras, V. Callaghan, and M. Colley, “Intelligent Embedded Agents,”
Information Sciences, vol. 171, no. 4, pp. 289 – 292, 05 2005.

[TAPIA, D. 2013] Dante I. Tapia, Juan A. Fraile, Sara Rodríguez, Ricardo S. Alonso, Juan M.
Corchado, Integrating hardware agents into an enhanced multi-agent
architecture for Ambient Intelligence systems, Information Sciences,
Volume 222, 2013, Pages 47-65

[SELIC, B. 2003] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, pp. 19–25, 2003.

[ARGENTE, E. 2008] E. Argente, V. Julian, and V. Botti, “MAS Modelling based on
Organizations,” in 9th Int. Workshop on Agent Oriented Software
Engineering (AOSE08), 2008, pp. 1–12.

[AGUERO, J. 2010] J. Agüero, M. Rebollo, C. Carrascosa, and V. Julian, “MDD for Virtual
Organization design,” in Trends in International conference on Practical
Applications of agents and multiagent systems (PAAMS2010), Springer-
Verlag, Ed., vol. 71, 2010, pp. 9–17.

[AGUERO, J. 2013] J. Agüero, M. Rebollo, C. Carrascosa, and V. Julian, “Towards the
development of agent-based organizations through MDD,” International
Journal on Artificial Intelligence Tools (IJAIT), DOI:
10.1142/S0218213013500024, pp. 1–34, 2013.

[CARRASCOSA, C.
2009]

C. Carrascosa, A. Giret, V. Julian, M. Rebollo, E. Argente, and V. Botti,
“Service Oriented Multi-agent Systems: An open architecture,” in
Autonomous Agents and Multiagent Systems (AAMAS), 2009, pp. 1–2.

[ARGENTE, E. 2011] E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo,
“An abstract architecture for virtual organizations: The THOMAS
approach,” Knowledge and Information Systems, vol. 29, no. 2, pp. 379–
403, 2011.

[AGUERO, J. 2008] J. Agüero, M. Rebollo, C. Carrascosa, and V. Julian, “Does Android Dream
with Intelligent Agents?” in International Symposium on Distributed
Computing and Artificial Intelligence 2008 (DCAI 2008), vol. 50, 2008, pp.
194–204.

[BELLIFEMINE, F,
1999]

F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - A FIPA-compliant agent
framework,” in Proceedings of the Practical Applications of Intelligent
Agents, 1999. [Online]. Available: http://jmvidal.cse.sc.edu/library/jade.pdf

