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Microarray technology generates large amounts of expression level of genes to 
be analyzed simultaneously. This analysis implies microarray image segmenta-
tion to extract the quantitative information from spots. Spectral clustering is one 
of the most relevant unsupervised methods able to gather data without a priori 
information on shapes or locality. We propose and test on microarray images a 
parallel strategy for the Spectral Clustering method based on domain decomposi-
tion with a criterion to determine the number of clusters. 

 
 

   

1 Introduction 

Image segmentation in microarray analysis is a 
crucial step to extract quantitative information from 
the spots [RUEDA, 2009], [USLAN, 2010], [CHEN, 
2011]. Clustering methods are used to separate the 
pixels that belong to the spot from the pixels of the 
background and noise. Among these, some methods 
imply some restrictive assumptions on the shapes of 
the spots [YANG, 2001], [RUEDA, 2005]. Due to the 
fact that the most of spots in a microarray image have 
irregular-shapes, the clustering based-method should 
be adaptive to arbitrary shape of spots such as fuzzy 
clustering [GLEZ-PENA, 2009], but it should also 
not depend on many input parameters. To address 
these requirements, the spectral methods, and in par-
ticular the spectral clustering algorithm introduced by 
Ng-Jordan-Weiss [NG, 2002], are useful to partition 
subsets of data with no a priori on the shapes. Spec-
tral clustering exploits eigenvectors of a Gaussian 
affinity matrix in order to define a low dimensional 
space in which data points can be easily clustered. 
But when very large data sets are considered, the 

extraction of the dominant eigenvectors becomes the 
most computational task in the algorithm. To address 
this bottleneck, several approaches about parallel 
Spectral Clustering [SONG, 2008], [FOWLKES, 
2004], were recently suggested, mainly focused on 
linear algebra techniques to reduce computational 
costs. In this paper, by exploiting the geometrical 
structure of microarray images, a parallel strategy 
based on domain decomposition is investigated. 
Moreover, we propose solutions to overcome the two 
main problems from the divide and conquer strategy: 
the difficulty to choose a Gaussian affinity parameter 
and the number of clusters k which remains unknown 
and may drastically vary from one subdomain to the 
other. 

 

2 Spectral Clustering for 
cDNA microarray images 
Let first introduce some notations and recall the Ng-
Jordan-Weiss algorithm [NG, 2002] and then adapt 
the spectral clustering for image segmentation.
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2.1 Spectral clustering 

Let consider a microarray image I of size l x m. As-
sume that the number of targeted clusters k is known. 
The algorithm contains few steps which are described 
in Algorithm 1: 

 

First, the method consists in constructing the affinity 
matrix based on the Gaussian affinity measure be-
tween ijI  and rsI  the intensities of the pixels of 

coordinates ),( ji and ),( sr for { }lri ,...,1, ∈  and 

{ }msj ,...,1, ∈ . After a normalization step, the k  
largest eigenvectors are extracted. So every data 
point ijI is plotted in a spectral embedding space of 
kR and the clustering is made in this space by apply-

ing K-means method. Finally, thanks to an equiva-
lence relation, the final partition of the data set is 
directly defined from the clustering in the embedded 
space. 

 

2.2 Affinity measure 
For image segmentation, the microarray image data 
can be considered as isotropic enough in the sense 
that there does not exist privileged directions with 
very different magnitudes in the distances between 
points along theses directions. The step between pix-
els and brightness are about the same magnitude. So, 
we can include both 2D geometrical information and 
1D brightness information in the spectral clustering 
method. We identify the microarray image as a 3-
dimensional rectangular set in which both geomet-
rical coordinates and brightness information are nor-
malized. It is equivalent to setting a new distance, 
notedd , between pixels by equation (2). So by con-
sidering the size of the microarray image, the Gaussi-
an affinity irA  is defined as follows: 
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where σ  is the affinity parameter and the distance 
d between the pixel ),( ji and ),( sr is defined by: 
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This definition (2) permits a segmentation which 
takes into account the geometrical shapes of the spots 
and the brightness information among them. In the 
same way, for colored microarray images with Cy3 
and Cy5 hybridizations, we can consider 5D data 
with 2D geometrical coordinates and 3D color levels.  

3 Parallel Spectral Clustering: 
method 

The Gaussian affinity matrix Awhose components 
are defined by (1) could be interpreted as a discretiza-
tion of the Heat kernel [BELKIN, 2002]. And in par-
ticular, it is shown in [MOUYSSET, 2010] that this 

Algorithm 1. Spectral clustering algorithm 

Input : Microarray image I, number of clusters k. 

1. Form the affinity matrix with n = l x m defined by 
equation (1). 

2. Construct the normalized matrix: 

     2121 −−= ADDL with ∑ =
=

n

r irii AD
1

, 

3. Assemble the matrix 

  [ ] kn
k RXXXX ×∈= …21 by stacking the 

eigenvectors associated with the k largest eigenvalues 
of L, 

4. Form the matrix Y by normalizing each row in the  
n x k matrix X, 

5. Treat each row of Y as a point in kR  , and group 
them in k clusters via the K-means method, 

6. Assign the original point  ijI to cluster t when row  

i of matrix Y  belongs to cluster t.  
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matrix is a discrete representation of the 2L Heat 

operator onto appropriate connected domains in kR . 
By combining tools from Heat equations and Finite 
Elements theory, the main result of [MOUYSSET, 
2010] is that for a fixed data set of points, the eigen-
vectors of A are the representation of functions 
whose support is included in only one connected 
component at once. The accuracy of this representa-
tion is shown, for a fixed density of points, to depend 
on the affinity parameter. From this theoretical mate-
rial, the Spectral Clustering could be formulated as a 
”connected components” method in the sense that 
clustering in subdomains is equivalent in restricting 

the support of these 2L  particular eigenfunctions. So 
a ”divide and conquer” strategy could be formulated 
to adapt spectral clustering for parallel implementa-
tion. As the main drawback of domain decomposition 
is how to ensure uniform distribution of data per pro-
cessor, the intrinsic property of microarray image can 
be exploited in that respect. 
 

 

 
Due to the fact that microarray presents a block struc-
ture of cDNA spots, dividing the image in q sub-
images is appropriate for a domain decomposition 
strategy because it ensures a uniform distribution of 
data per processor. An overlapping interface is inves-
tigated to gather the local partitions from the different 
subdomains.  
This interface is characterized by an overlapping 
subset of points whose geometrical coordinates are 
close to the boundaries of neighboring subdomains. 
This partitioning will connect together clusters which 
belong to different subdomains thanks to the follow-
ing transitive relation: 
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where I is the microarray image, 1C  and 2C  two 
distinct clusters and P a larger cluster which in-

cludes both 1C and 2C . We experiment this strate-
gy whose principle is represented in Fig.1 on several 
microarray images of the Saccharomyces cerevisiae 
database from the Stanford Microarray database 
(http://smd.stanford.edu/index.shtml) like the one in 
Fig.2. 

 

It is important to see how the parallel approach can 
take advantage of the specificities of this particular 
application. Indeed, when splitting the original image 
into overlapping sub-pieces of images, the local spec-
tral clustering analysis of each sub-piece involves the 
creation of many affinity matrices of smaller size. 
The total amount of memory needs for all these local 
matrices is much less than the memory needed for the 
affinity matrix covering the global image. 

3.1 Choice of the affinity pa-
rameter  

 
The Gaussian affinity matrix is widely used and de-
pends on a free parameter which is the affinity pa-
rameter, notedσ , in equation (1). It is known [NG, 

Fig.2 Block structure of microarray image. 

Fig.1 Principle of parallel spectral clustering. 
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2002] that this parameter conditions the separability 
between clusters in spectral embedding space and 
affects the results. A global heuristics for this pa-
rameter was proposed in [MOUYSSET, 2008] in 
which both the dimension of the problem as well as 
the density of points in the given p-th dimensional 
data set are integrated. With an assumption that the 
data set is isotropic enough, the image data set I is 
included in a p-dimensional box bounded by 

maxD the largest distance d  (defined by (2)) be-

tween pairs of points in I :  
 

{ } ),(max ,1;,1max rsijmsjlri IIdD ≤≤≤≤=    (4) 

 
A reference distance which represents the distance in 
the case of an uniform distribution is defined as fol-
lows: 

  pn
D
1
max=σ   (5) 

 
in which n= l x m is the size of the microarray image 
and p=3 (resp. p=5) with 2D geometrical coordinates 
and 1D brightness (resp. 3D color). From this defini-
tion, clusters may exist if there are points that are at a 
distance no more than a fraction of this reference 
distanceσ . This global parameter is defined with the 
whole image data set I and gives a threshold for all 
spectral clustering applied independently on the sev-
eral subdomains. 

3.2 Choice of the number of 
clusters  

The problem of the right choice of the number of 
clusters k  is crucial. We therefore consider in each 
subdomain a quality measure based on ratios of Fro-
benius norms, see for instance [MOUYSSET, 2008]. 
After indexing data points per cluster for a value of 
k , we define the indexed affinity matrix whose di-
agonal affinity blocks represent the affinity within a 
cluster and the off-diagonal ones the affinity between 
clusters (Fig.3).  
 

 

 
 
The ratios, noted ijr , between the Frobenius norm of 

the off-diagonal blocks )(ij and the norm of the di-

agonal ones )(ii could be evaluated. Among various 

values for k , the final number of cluster is defined so 
that the affinity between clusters is the lowest and the 
affinity within cluster is the highest: 
 

 ∑≠
=

ji ijrk minarg*  (6) 

 
Numerically, the corresponding loop to test several 
values of k  until satisfying (6) is not extremely cost-
ly but only requires to concatenate eigenvectors, ap-
ply K-means, and a reordering step on the affinity 
matrix to compute the ratios. Furthermore, this loop 
becomes less and less costly when the number of 
processors increases. This is due to the fact that ei-
genvectors become much smaller with affinity matri-
ces of smaller size. Also, subdividing the whole data 
set implicitly reduces the Gaussian affinity to diago-
nal subblocks (after permutations).  
For the 4 x 2 greyscaled spotted microarray image 
which corresponds to one subdomain of 3500 pixels, 
the original data set and its clustering result are plot-
ted in Fig.4 for k=8. 

 

Fig.3 Block structure of the indexed affinity matrix for 
k=8 clusters. 
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3.3 Parallel Implementation 
of the Spectral Clustering Al-
gorithm 

 
The FORTRAN 90 implementation of the parallel 

Spectral Clustering Algorithm follows the Mas-
terSlave paradigm with the MPI library to perform 
the communications between processors (algorithms 
2 and 3). Classical routines from LAPACK library 
[ANDERSON, 1999] are used to compute selected 
eigenvalues and eigenvectors of the normalized affin-
ity matrix A  for each subset of data points. 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
4. Numerical Experiments  

 
The numerical experiments were carried out on 

the Hyperion supercomputer of the CICT. With its 
352 bi-Intel ”Nehalem” EP quad-core nodes it can 
develop a peak of 33TFlops. Each node has 4.5 GB 
memory dedicated for each of the cores and an over-
all of 32 GB fully available memory on the node that 
is shared between the cores. 

Algorithm 3. Parallel algorithm: Master 

1: Pre-processing step 

  1.1 Read the global data and the parameters. 

  1.2 Split the data into q  subsets regarding  

      the geometry                                       

  1.3 Compute the affinity parameterσ  with the 

        formula (5). The bandwidth of the 

        overlapping is fixed to σ×3  . 

2: Send the sigma value and the data subsets  

    to the other processors (MPI SEND) 

3: Perform Spectral clustering algorithm on subset 

4: Receive the local partitions and the number 

   of clusters from each processor (MPI RECV) 

5: Grouping step 

   5.1 Gather the local partitions in a global  

         partition thanks to the transitive relation (3) 

        5.2 Give as output a partition of the whole 

               image I and the final number of clusters 

               k are given. 

Algorithm 2. Parallel Algorithm: Slave 

  1: Receive the value and its data subset from the 
Master processor (MPI CALL) 

  2: Perform the Spectral Clustering Algorithms on its 
subset  

  3: Send the local partition and its number of clusters 
to the Master processor (MPI CALL) 

Fig.4 Clustering on one subdomain: 4x2 greyscaled spotted 
microarray image and its clustering result 
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For our tests, the domain is successively divided in 
q={18,32,45,60,64} subboxes. The timings for each 
step of parallel algorithm are measured. We test this 
Parallel Spectral Clustering on one microarray image 
from the Stanford Microarray Database. For decom-
position in 64 subboxes, the original microarray im-
age of 392931 pixels which represents 8 blocks of 
100 spots and the clustering result are plotted in 
Fig.5. After the grouping step, the parallel spectral 
clustering result has determined 11193 clusters. 
Compared to the original data set, the shapes of the 
various hybridization spots are well described. 
 
We give in Table 1, for each distribution, the number 
of points on each processor, the time in seconds to 
compute σ  defined by (5), the time in the parallel 

Spectral Clustering step, the time of the grouping 
phase and the total time and the memory consump-
tion in GigaOctets. The first remark is that the total 
time decreases drastically when we increase the num-
ber of processors. Logically, this is time of the paral-
lel part of the algorithm (step 3) that decreases while 
the two other steps (1 and 5), that are sequential, 
remain practically constant. To study the performance 
of our parallel algorithm, we compute the speedup. 
Because we cannot have a result with only one pro-
cessor in order to have a sequential reference (lack of 
memory), we take the time with the 18 processors, 
the minimum number of processors in order to have 
enough memory by processor. The speedup for q 
processors will then be defined as qTT18 . 

 

 
We can notice in Fig.6 that the speedups increase 
faster than the number of processors: for instance, 
from 18 to 64 processors, the speedup is 12 although 
the number of processors grows only with a ratio 
3.55. This good performance is confirmed if we draw 
the mean computational costs per point of the image. 
  
 

Fig.6: Performances of the parallel part: Speedup with the 
18 processors time as reference 

Fig.5 Original microarray image and its clustering result 
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We define, for a given number of processors, the 
parallel computational cost (resp. total computational 
cost) the time spent in the parallel part (parallel Spec-
tral Clustering part) (resp. total time) divided by the 
average number of points on each subdomain. We 
give in Fig.7, these parallel (plain line) and total 
(dashed line) computational costs. 
 
We can observe from Table 1 that the fewer points 
we have per subset, the faster we go and the decreas-
ing is better than linear. This can be explained by the 
non-linearity of our problem which is the computa-
tion of eigenvectors from the Gaussian affinity ma-
trix. There are much better gains in general when 
smaller subsets are considered. 

5 Conclusion  

With the domain decomposition strategy and heuris-
tics to determine the choice of the Gaussian affinity 
parameter and the number of clusters, the parallel 
spectral clustering becomes robust for microarray 
image segmentation and combines intensity and 
shape features. The numerical experiments show the 
good behaviour of our parallel strategy when increas-
ing the number of processors and confirm the suita-
bility of our method to treat microarray images.  
 
However, we find two limitations: the lack of 
memory when the subset given to a processor is large 
and the time spent in the sequential parts which stays 
roughly constant and tends to exceed the parallel time 
with large number of processors.  
 
To reduce the problem of memory but also to reduce 
the spectral clustering time, we studied sparsification 

techniques [MOUYSSET, 2013] in the construction 
of affinity matrix by dropping some components that 
correspond to points at a distance larger than a 
threshold. A threshold based on uniform distance was 
defined for any kind of data distribution. This dis-
tance could be considered as a limit threshold to pre-
serve the clustering results. 
 
We validate this approach in Matlab by showing that 
the number of non zero of the affinity matrix decreas-
es with still some good results in terms of spectral 
clustering and even some gains in the time spent to 
compute the affinity matrix. 
These results are confirmed when we use sparsifica-
tion with our parallel spectral clustering solver. We 
can show that we are able to reduce significantly the 
size of the affinity matrix without loosing the quality 
of the segmentation solution. 
 
With sparse structures to store the matrix, we will 
also gain a lot of memory. However, we may have to 
adapt our eigenvalues solver and use for example 
ARPACK library [LEHOUCQ, 1998]. To reduce the 
time of the sequential parts, we could also investigate 
parallelization of the computation of theσ parameter 
and the ability to separate the spotted microarray 
image in sub-images. 
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Fig.7 Parallel and total computational costs 



Mouysset, S. et al                              Segmentation of cDNA Microarray Images using Parallel Spectral Clustering 
 

 
 

8 
 

Advances in Distributed  
Computing and Artificial  

Intelligence Jornual 
Special Issue #4 
http://adcaj.usal.es 

 
 

 

7 References 
[ANDERSON, E. et al. 
1999]   

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, 
A. Greenbaum, S. Hammarling, A. McKenney, et al. LAPACK Users’ guide. So- 
ciety for Industrial Mathematics, 1999. 

[BELKIN, M. et al. 2002] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embed- 
ding and clustering. Advances in Neural Information Processing Systems, 2002. 

[CHEN, W.-Y. et al. 2010] W.-Y. Chen, Y. Song, S. Yangqiu, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel Spec-
tral Clustering in Distributed Systems. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 2011. 

[FWOLKES, C.et al.2010] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Ny-
trom method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
2004. 

[GIANNAKEAS,N. et al 
2008] 

N. Giannakeas and D. Fotiadis. Image Processing and Machine Learning Techniques 
for the Segmentation of cDNA Microarray Images. Handbook of research on ad-
vanced techniques in diagnostic images and biomedical application, 2008. 

[GLEZ-PENA, D. et al 
2009] 

D. Glez-Peña; F. Díaz, J.M. Hernández; J.M. Corchado and F. Fdez-Riverola. 
geneCBR: a translational tool for multiple-microarray analysis and integrative in-
formation retrieval for aiding diagnosis in cancer research. BMC Bioinformatics, 
2009. 

[LEHOUCQ,R. et al 1998] R. Lehoucq, D. Sorensen, and C. Yang. ARPACK users’ guide: solution of large- 
scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998. 

[Ng, A.Y. et al. 2002] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: analysis and an 
algorithm. Proceedings in Advance Neural Information Processing Systems, 2002. 

[MOUYSSET, S. et al. 
2008] 

S. Mouysset, J. Noailles, and D. Ruiz. Using a Global Parameter for Gaussian 
Affinity Matrix in Spectral Clustering, Lecture Notes in Computer Science, 
Springer-Verlag, 2008. 

[MOUYSSET, S. et al. 
2010] 

S. Mouysset, J. Noailles, and D. Ruiz. On an Interpretation of Spectral Clustering 
via Heat Equation and Finite Elements Theory. Lecture Notes in Engineering and 
Computer Science, 2010. 

[MOUYSSET, S. et al. 
2013] 

S. Mouysset and R. Guivarch. Sparsification on Parallel Spectral Clustering. Lec-
ture Notes in Computer Science, Springer-Verlag, 2013 (to appear). 

[RUEDA, I. et al. 2005] L. Rueda and L. Qin. A new method for DNA microarray image segmentation. 
Image Analysis and Recognition, 2005. 

[RUEDA, I. et al. 2009] L. Rueda and J. Rojas. A Pattern Classification Approach to DNA Microarray 
Image Segmentation. Pattern Recognition in Bioinformatics, pages 319–330, 2009. 

[SONG, Y. et al. 2008] Y. Song, W.-Y. Chen, H. Bai, C. Lin, and E. Chang. Parallel spectral clustering. 
Proceedings of European Conference on Machine Learning and Pattern Knowledge 
Discovery. Springer, 2008. 

[USLAN, V. et al. 2010] V. Uslan, O. Bucak, and B. Cekmece. Microarray image segmentation using cluster-
ing methods. Mathematical and Computational Applications, 2010. 

[YANG, Y. et al. 2001] Y. Yang,M. Buckley, and T. Speed. Analysis of cDNA microarray images. Briefings 
in bioinformatics, 2001. 

 


