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Capturing new targets that spontaneously appear in the multi-target tracking 
(MTT) scene requires a formation of TBI (target birth intensity) item in the PHD 
(probability hypothesis density) equations. That is, in the particle 
implementation of the PHD filter, a number of new particles with a certain 
weight mass are added to the underlying particle set during the propagation of 
the PHD. In general, TBI is assumed to hold for the same magnitude at all 
scans. This ad-hoc option is simple but is not always desirable. In this paper, a 
measurement-driven adaptive mechanism is proposed that determines the 
magnitude of TBI in real time based on the estimated number of new-born 
targets, which is calculated by employing the newest measurements. Simulation 
demonstration of the particle PHD filter has been provided. 
 

   

1 Introduction 

The multi-target tracking (MTT) has a long 
history of research over a half of century, with 
many applications in both military and 
commercial realms, including, air traffic 
control, intelligence, surveillance, and 
reconnaissance (ISR), space applications, 
oceanography, autonomous vehicles and 
robotics, remote sensing, computer vision, and 
biomedical research [1]. MTT involves the joint 
estimation of the number and states of multiple 
targets in the presence of spontaneous birth of 
new targets, detection uncertainty, noise and 
false alarms, etc. which is far more complex 
than clutter-free single target tracking. Apart 
from handling the respective process and 
measurement noises in the dynamic and 
measurement models, one has to contend with 
many more challenges, such as the following: 1) 
The number of targets is unknown and time 
varying with regards to the spontaneous birth, 
spawn and death of targets,; 2) False alarms 
(clutter) exist and can be significant; 3) The 
sensor probability of detection is less than unity; 
and 4) Most challengingly, data association 

between measurements and targets in the 
presence of clutter is required to apply the 
traditional filtering. 

The states and observations of target are 
mathematically a finite-set-valued random 
variable that is random in both the number of 
elements and the values of the elements 
themselves, i.e. random finite sets (RFS). The 
idea of modelling states and observations as 
RFS is natural and does not need to consider the 
data order. With the incorporation of RFS and 
point process theory in the MTT problem, the 
probability hypothesis density (PHD) filter 
affords a concise yet adequate formation of the 
challenging MTT problem [2] which has 
attracted increasing attention in terms of 
algorithm design (see a review given in [3]) and 
parallel processing [4]. Despite the data 
association difficulty, the PHD filter still need 
to deal with target birth, false alarms and 
detection of low probability. A key step before 
filtering is the system modelling that includes 
setting up as much as possible the close-to-truth 
model for new birth targets (such as the birth 
intensity function [5]), target moving dynamics 
(such as model uncertainty [6]), measurement 
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model (such as detection uncertainty [7]) and 
background identification (such as clutter 
estimation [7, 8]). In particular, a target birth 
intensity (TBI) item is required in the PHD 
equation due to the spontaneous appearance of 
new targets. The goal of TBI is to capture the 
newly appearing targets online, integrating them 
into the underlying PHD which is arguably the 
prerequisite of the consequent ‘tracking’. 
Nevertheless, information about the birth of new 
targets is very limited in passive target tracking 
e.g. the average number of new targets in each 
scan is unknown due to the spontaneity of the 
target birth, rendering the modeling of TBI very 
challenging. 

Basically, two critical issues are involved with 
the modeling of TBI. One is the birth function 
(area and birth model) of new targets, which is 
the main part of TBI. The other is the 
probability of new target birthing or the 
expected number of new targets, namely the 
magnitude of TBI. For the birth area of new 
targets, a typical case is that it is known a priori. 
For example, targets appear around the fixed 
area such as airports [9] or most likely from the 
edges of the field of view [10]. In this case, the 
appearance area of new-birth targets can be built 
efficiently. In more common cases, where the 
targets can appear anywhere, it has to cover the 
entire state space. To overcome this 
computational inefficiency, various 
measurement-driven target birth models have 
been proposed for the particle implementation 
in [5] and [11], which position new particles 
around measurements to represent newborn 
targets. In the closed-form implementation, 
measurements are classified into two parts, 
namely, the measurements for the newborn 
targets and those for the survival targets in [12, 
13] and a detector based on the continuity of 
measurements were used to generate intensities 
of new targets. Further on, Doppler information 
might be used to initialize a more realistic 
target/track velocity [14]. 

In contrast, less work is devoted to adapting the 
magnitude of TBI. For example, the previous 
work [5] has proposed an adaptive TBI function 
to model the target birth intensity function, yet 

offered no clue about how to determine the TBI 
magnitude, which still need to be manually 
assumed. In current works, the TBI was simply 
assigned with a constant magnitude, i.e. a 
certain number of new targets or a new target 
with a certain probability was assumed. This 
simple selection of the magnitude of TBI is in 
fact an ‘ad-hoc’ approach and is not always 
desirable. Especially in industrial applications, 
this ad-hoc specification can cause many 
unexceptional problems. In this paper, a data-
driven adaptive mechanism is proposed to 
determine the magnitude of the TBI by using 
the newest measurements. This paper primarily 
investigates the case of the particle 
implementation of PHD filters.  

The basic content of the particle PHD filter and 
the modeling of the TBI are reviewed in section 
II. Our approach is presented in section III. 
Simulation is given in section IV before we 
conclude in section V. 

2 Problem stamen 

2.1 Assumptions and definitions 
 

In the standard setup of MTT, 
indistinguishable targets move continuously in a 
given region, typically independently according 
to a known Markov process. Targets birth at 
random in space and time (spontaneously), can 
persist for a random length of time, and then 
cease to exist. The partial states of moving 
targets are measured, either at random intervals 
or more typically in periodic scans that measure 
the positions of all targets simultaneously. The 
position measurements are noisy and occur with 
detection probability less than one, and there are 
spurious position reports as referred to false 
alarms [15].  

Furthermore, the following assumptions are 
required in the PHD filter. (A.1) Each target is 
assumed to evolve and generate measurements 
independently of others; (A.2) The clutter 
distribution is assumed to be Poisson and 
independent of the measurements; (A.3) One 
target can generate no more than one 
observation; (A.4) the surviving-target process 
is Bernoulli and the appearing-target process is 
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Poisson [16]. The first three assumptions are 
common in general Bayesian multi-target 
trackers while the fourth is specific for the PHD 
recursion. 

For a formal statement, the state space of 
targets is denoted as χ⊆ℝnx and the Markov 
transition density is modeled as fk|k-1 (·|·), i.e. 
given a state xk-1 at time k-1, the probability 
density of a transition to the state xk at time k is 
fk|k-1 (xk|xk-1). The observation space is denoted as 
ℤ⊆ℝnz and the likelihood function is modeled as 
gk(·|·), i.e. given a state xk at time k, the 
probability density of receiving the observation 
zk∈ℤ is gk(zk|xk). At time k, the collections of 
states and measurements can be represented as 
finite sets Xk={xk,1, …, xk,N(k)}∈F(χ) and Zk={zk,1, 
…, zk,M(k)}∈F(ℤ) respectively, where N(k) and 
M(k) are the number of targets and 
measurements and F(χ) and F(ℤ) are the 
collections of all finite subsets of targets and 
measurements, respectively. We have 

 
1 1

1 1( U ( ))( U ( ))
k k

k kk k k kx X x X
X S x B x R

− −
− −∈ ∈

= ∪
 (1) 

where Sk|k-1 (x)and Bk|k-1 (x) are the RFS of targets 
that survive and spawn at scan k from target 
statesXk-1,and Rk is the RFS of targets that 
appear spontaneously at scan k.  

 ( U ( ))
k

k k kx X
Z G x

∈
= ∪Γ  (2) 

where Gk(x) is the random set of measurements 
coming from target x∈Xk and Γk is the set of 
measurements coming from clutter at scan k. 

A. The PHD filter and its particle 
implementation 

Let Dk|k and Dk|k-1be the intensity functions (i.e. 
PHD) associated to the multi-target posterior 
point process and the multi-target prior point 
process, namely Dk|k=Dk|k(xk|Z1:k), Dk|k-1=Dk|k-1 
(xk|Z1:k-1), the PHD filter has the following 
recursions 

...→ Dk−1k−1→ Dk k−1→ Dk k → ...
 

which evolves via two types of updating steps:  
1) time-update step (PHD predictor)   
D
k k−1 = φ

k k−1(x u)Dk−1k−1(u)duχ∫ +γ k (x)  (3) 

where the following abbreviation is used 

1 1( ) ( ) ( ) ( )S kk k k kx u p u f x u b x uφ − −= +  

where bk(x|u) denotes the intensity function of 
the RFS of targets spawned from the previous 
state u, pS(x)is the survival probability of a 
target and γk(x) is the birth intensity function of 
new targets at scan k. The TBI may be 
integrated into the PHD updater [17] rather than 
the predictor as above. 

2) data-update step (PHD updater)  

D
k k
(x) = (1− pD (x))+

pD (x)gk (z x)
κ k (z)+Ck (z)z∈Zk

∑
#

$
%
%

&

'
(
(
D
k k−1(x) (4) 

where the following abbreviation is used 

1( ) ( ) ( ) ( )k D k k kC z p u g z u D u du−= ∫    (5) 
Where gk(z|x) is the single-target single-sensor 
likelihood, pD(x)is the probability of detection 
and κk (z) is the clutter intensity at time k, 
respectively. The clutter intensity function can 
be slimmed based on gating technology [23]. 
 The PHD recursions can be 
implemented approximately via particles [9] or 
finite GM (Gaussian mixture) [18]. The particle 
filter is a powerful approximation method that is 
free of linearity and Gaussian assumptions [19, 
20] and thereby can meet requirements of 
general MTT scenes. The particle 
implementation uses a set of samples to 
approximate the PHD predictor and updater. 
Given the importance densities pk(·|Zk), qk(·|xk-1, 
Zk) and supposing that there are Lk-1 original 
particles in time step k-1 and Jk new particles 
are allocated for possible new-born targets, 
according to (3), the particle approximation of 
the predictor can be written as 

Dk k−1(xk ) = wk k−1
(i ) δ

xk
( i ) (xk )

i=1

Lk−1+Jk

∑    (6) 

where 

xk
(i ) ~

qk (⋅ xk−1
(i ) ,Zk ),i =1,...,Lk−1

pk (⋅ Zk ),i = Lk−1 +1,...,Lk−1 + Jk

#
$
%

&%   
(7) 

wk k−1
(i ) =

φk k−1(xk
(i ) xk−1

(i ) )wk−1
(i )

qk (xk
(i ) xk−1

(i ) ,Zk )
,i =1,...,Lk−1

  
(8a) 

w
k k−1
(i ) =

γ k (xk
(i ) )

Jk pk (xk
(i ) Zk )

,i = Lk−1 +1,...,Lk−1 + Jk
    (8b) 

The particle approximation of the PHD updater 
is 
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2.2 Modeling of TBI  
The birth intensity can be written as γk(x) = 

rk×pk(x) where rk is the magnitude and pk(x) 
models the birth function. rk and pk(x)correspond 
to two critical issues that need to be considered 
by the user separately. rk reflects the average 
number of new targets and pk(x) provides the 
area and birth function of new target. The birth 
model pk(x) is addressed in a way that is more 
realistic such as measurement-driven target birth 
function [5, 11-13], uniform birth function [21] 
or entropy distribution [22], etc. whereas the 
magnitude of TBI has yet to attract enough 
attention. Furthermore, it is pointed out that in 
contrast to the sole use of position (including 
bearing) measurements, amplitude information 
and Doppler information (that depends on the 
hardware ability and additional information 
fusion) can be further considered provide initial 
target velocities [18].  

On the other hand, γk(x) is commonly applied 
with a constant magnitude i.e. rk is fixed. For 
example, it is assumed as 20% [9, 23], 20% (10% 
each in two regions) [18], 5% [24], 25% [5], or 
10% and 1% [17] (separately in two 
regions).That is, in the particle implementation, 
the same amount of new particles are generated 
at each step. This ad-hoc selection is simple but 
is not always desirable and can be problematic. 
If it can be “known” simply that targets birth are 
more likely to occur at special steps, the 
magnitude of TBI should be large. Otherwise, it 
should be small or even naught. To employ an 
optimal magnitude that matches the background 
is the same necessity for robust system 
modelling as employing a suitable TBI function, 
although the latter may appear more 
mathematical. Based on this, we propose a data-
driven adaptive method that calculates the 
magnitude of the TBI by using the information 

of newest measurements, as called 
measurement-driven magnitude-adaptive TBI. 
Note that the proposed approach is not specified 
to any particular pk(x). 
 

3 Magnitude-Adaptive TBI 

3.1 Measurement-driven 
magnitude-adaptive 
mechanism 

Since the appearance of new targets is often 
deemed as spontaneous event, the assumption 
that new targets are possible to appear at any 
step must still be applied. In our approach, a 
tentative TBI 𝛾!  is assumed with 
magnitude 𝑟! e.g. 𝑟! = 0.2  for each step. As 
common, a fixed number 𝑁! of particles per 
target are used in the particle PHD filter. That is 
to assign 𝐽! = 𝑟!×𝑁!  new 
particles 𝑥!

(!),𝑤!
(!)

!!!,…,!!
, where the state is 

determined according to a specified birth model 
𝑝!(𝑥)according to (8b) while the weight can be 
determined as  

 ( )
1

1i k
k k

k p

r
w

J N− = =  (12) 

The next step is to calculate the required TBI 
magnitude 𝑟!based on the assumed 𝑟!and the 
underlying measurement   𝑍! . Using the PHD 
updater (10), the weight of each ‘tentative’ 
particle is updated as 

( ) ( )
( ) ( ) ( )

1

( ) ( )
1 ( )

( ) ( )
k

i i
D k k ki i i

D kk k k k
z Z k k

p x g z x
w p x w

z C zκ −
∈

⎡ ⎤
⎢ ⎥= − +

+⎢ ⎥⎣ ⎦
∑   (13) 

To note, Ck(z) used in (13) is the same with (11) 
that needs to sum up all particles, although here 
updating is only for new particles.  

Then, the updated weight mass of these new 
particles is 

 
ˆ

( )

1

kJ
i

k k k
i

r w
=

=∑   (14) 

which can be interpreted as an estimate of the 
average number of new targets in the assigned 
TBI region according to the physical meaning of 
the PHD. 

It is necessary to note that dense clutter can 
cause an overestimation of the magnitude of the 
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TBI as clutter can fall into the target birth area 
to pull up the estimation of (14). In this case, 
even the original PHD filter may also be 
‘cheated’ to obtain an overestimation of the 
number of targets. Inevitably, not much can be 
done to avoid this as long as the measurement of 
clutter is indistinguishable with that from targets. 
For conservative reasons, in our approach, the 
magnitude can be further hard-limited to be not 
bigger than an upper threshold rupper, e.g. 
rupper=0.8 since a large value rk can be obtained 
from (14) due to heavy clutter. It is only 
sensible to add just sufficient particles to 
capture new targets. In summary, the modified 
magnitude rk for the TBI is given as follows 

ˆ
( )

upper
1

min ,
kJ

i
k k k

i
r w r

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (15) 

That is, Jk=rk×Np ‘definitive’ new particles 
with uniform weight !

!!
 will be introduced into 

the prediction model (6) to approximate the TBI 
in the PHD updating. 

3.2 Implementation with 
multiple TBI model 

In cases that new targets have multiple birth 
forms e.g. new targets appearing at different 
areas; they need to be modelled as separate 
functions with individual magnitudes. In this 
case, the magnitude of each TBI function can be 
modelled as described in the single TBI model, 
which is independent of each other. That is, in 
each TBI model, an assumed number of 
tentative particles are used to process the 
tentative PHD updating and then, their weight 
sum are interpreted as the estimated number of 
targets in that area and further hard-limited as 
(15) to serve as the required magnitude of TBI 
for the underlying TBI function. We call this the 
independency of the magnitude of the TBI. This 
will be demonstrated in our simulation. 
Although our approach is not specified to 
particular target birth function, it is unable to 
assign magnitude for different TBI functions 
which assumes target birth in the same area 
since their PHDs could be overlapped in close 
proximity and thus are indistinguishable. 

3.3 Discussion 
The proposed approach can be viewed as a 

look-ahead step where newest measurements are 
employed to shape the desiredmagnitude of TBI 
in a rehearsal trial. This is similar to the 
auxiliary variable idea [25] that employs 
knowledge about the next observation before 
resampling to ensure that particles which are 
more likely to have high likelihood have a good 
chance of surviving while here we employ the 
information of the next observations to 
determine our parameter (the magnitude of the 
TBI). Although the assumption of a tentative 
magnitude   𝑟!  remains necessary, it will not 
affect much the result. For the computational 
requirement, we have 

 
Remark 1. Since the prediction steps of all 

particles are independent of each other, the 
prediction (8a) and likelihood calculation 
gk(z|xk) of the original Lk-1 particles for all z∈Zk, 
which are the main computation of the PHD 
updating, do not need to process twice but 
instead, the results calculated within (13) can be 
directly used in the definitive PHD updating 
step (10). Therefore, the likelihoods of the 
original Lk-1 particles are stored after the 
calculation of (13).  

 
Remark 2. As a matter of fact, if the birth 

intensity function is adapted in accordance with 
the measurements, the PHD equations must be 
applied in a different form, see [5]. Here in our 
approach, due to the independence of the TBI 
magnitude to the target birth function as well as 
to the PHD derivations, our magnitude-adaptive 
mechanism will not inflict any modification of 
the original PHD equations. 

 
Serving in the core as an environment 

modelling technique, the proposed approach is 
suitable to work together with the adaptive 
target-birth function e.g. [5, 11] for complete 
adaptive TBI. The extension of our approach is 
feasible to advanced extensions of the PHD 
filter of higher order. In what follows, we only 
demonstrate the efficiency of our approach in 
the context of the particle implementation of the 
general PHD filter. 

4 Simulations 

4.1 Single target-birth model 
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A two-dimensional MTT scene is considered, 
in which eight targets will appear 
individuallyover the region [-100,100]×[-
100,100]. Here, we consider the TBI case with a 
single target birth area i.e. all targets appear 
around x = [0, 3, 0, -3]T with Gaussian 
distribution covariance Q=diag([10, 1, 10, 1]T, 
i.e. the TBI function is defined as γk=rkN(.; x , 
Q). Each target moves according to the 
following Markov transition dynamics 

2

1,
1 2

2,

1 0 0 / 2 0
0 1 0 0 0
0 0 1 0 / 2
0 0 0 1 0

k
k k

k

w
x x

w
−

Δ ⎡ ⎤Δ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤Δ⎢ ⎥⎢ ⎥= + ⎢ ⎥⎢ ⎥⎢ ⎥Δ Δ ⎣ ⎦⎢ ⎥⎢ ⎥

Δ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

(16) 

where the sampling time ∆=1, xk=[x1,k, x2,k, x3,k, 
x4,k]T, [x1,k, x3,k]T is the position while [x2,k, x4,k]T 
is the velocity at time k. The process noise 
{w1,k}, {w2,k} are mutually independent zero-
mean Gaussian white noise with the standard 
deviation of 1 and 0.1, respectively. 

The target-originated range measurements are 
given by 

1,

2,

1 0 0 0
0 0 1 0

k
k k

k

v
y x

v
⎡ ⎤⎡ ⎤

= + ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦   

 (17) 

where {v1,k} and {v2,k} are independent zero-
mean Gaussian noise with the same standard 
deviation2.5. Clutter is uniformly distributed 
over the region with an average rate of p points 
per scan, i.e. κ= p/2002. The simulation uses 
p=10, the survival probability of a target 
pS=0.98, the detection probability of a target 
pD=0.95.  

For the particle implementation, 500 particles 
per expected target are used and the total 
number of particles is hard-limited to be not less 
than 300. To capture the average performance, 
we run 100 trials. The trajectory of targets and 
observations are plotted in x and y dimension 
respectively in Fig.1. The scenario covers cases 
that new targets birth by single or multiple at 
positions being far or close to existing targets 
and then exists for a period of short or long. To 
extract the estimates, the Multi-EAP (Expect a 
Posterior) estimator [26] is employed which is 
proven to be computational faster, more 
accurate and reliable than clustering methods. 
The optimal sub-pattern assignment (OSPA) 
metric is used to evaluate the estimation 

accuracy. A big OSPA distance indicates low 
estimation quality. The cut-off parameter used is 
100, order parameter is 1, for an explanation see 
[27]. 

Three particle PHD filters are designed that 
are different from one another only in the 
magnitude of TBI. The basic particle PHD filter 
uses the constant rk =0.2 at all scans. In the 
exactly-known TBI model the time of target 
birthing is exactly known and the filter uses 
rk=1 at scans when new targets appear otherwise 
rk=0. The proposed adaptive approach applies 
the tentative   𝑟!=0.2 to calculate the required 
magnitude that is upper-limited to be not larger 
than rupper=0.8 to avoid overshoot. The average 
estimated numbers of targets, magnitudes of 
TBI and OSPA of the three filters are given in 
figure 2. Compared with the TBI model with 
fixed magnitude, the adaptive approach and the 
exactly-known magnitude strategy for TBI have 
reduced the OPSA by 3.32% and 5.78% on 
average respectively. The filter using the 
exactly-known magnitude for TBI performs the 
best while the adaptive approach performs 
moderately and is better than the common filter 
that uses the fixed magnitude for TBI. In 
particular, obvious benefits are achieved when 
no new target birth. That is because integrating 
extra TBI into the underlying PHD recursions 
deflects the estimation, which may not be 
significant owing to the self-correction ability of 
the filter.  

The computing time (excluding the estimate 
extraction step) and the number of particles used 
by different filters for each recursion are 
separately plotted in Figure 3. Compared with 
the TBI model with fixed magnitude, the 
adaptive approach has increased the computing 
time by 10.04% and the exactly-known 
magnitude strategy for TBI has reduced 0.01% 
on average respectively. This agrees with the 
analysis given in Remark 1 that the proposed 
magnitude-adaptive mechanism has not cost too 
much computation. Indeed, the simulation 
verifies the validity of the proposed magnitude-
adaptive TBI model. 
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Fig. 1  Trajectories of targets (dot) and 
observations in one trial (circle) 

 
Fig.2  Estimated number of targets, 

magnitude of TBI used and mean OSPA of different 
filters 

 
Fig. 3  Computing time and number of 
particles used in different filters 

4.2 Multiple target-birth model 
In this example, we demonstrate the validity 

of our approach in a type of scene where new 
targets have different birth models based on the 
same state dynamic model (16) but different 
parameters and different observation model. 
The process noise {w1,k}, {w2,k} are mutually 
independent zero-mean Gaussian white noise 
with the same standard deviation of 15. The 
range-and-bearing observation region is the half 
disc of radius 2000m. If detected the 
observation is a noisy range and bearing vector 
given by  
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    (18) 
where 𝑣!~𝑁 ∙; 0,𝑅! , with 
𝑅! = diag([𝜎!!,𝜎!!]!) , σ! = 5 m, σ! = 𝜋/
180rad/s.  

In this example, the birth process follows a 
Poisson RFS with intensity 𝛾! = 𝑟!,!𝑁(∙!

!!!
;𝑚! ,𝑄) , where 𝑚! = [−1500,0,250,0] , 
𝑚! = [−250,0,1000,0] , 𝑚! = [250,0,750,0] , 
𝑚! = [1000,0,1500,0] , 
𝑄 =diag ([50,50,50,50)!  . This indicates that 
new targets are possible to appear from four 
different areas. Clutter is Poisson with intensity 
κ= 1.6×10-3 that is an average rate of p=10 
points per scan over the region [0, 2000]m ×[0, 
𝜋 ]rad. The example uses pS=0.98, pD=0.95. 
Furthermore, 1000 particles per expected target 
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are used and the total number of particles is 
hard-limited to be not less than 600. 

The trajectories of targets are plotted in the x-
y position space in Fig.4. The basic particle 
PHD filter uses the constant   𝑟!,! = 0.02 , 
𝑟!,! = 0.02, 𝑟!,! = 0.03,𝑟!,! = 0.03 at all scans. 
In the exactly-known TBI model the time and 
area of target birth is exactly known and the 
filter uses rk,n=1 at scans when new targets 
appear in area n otherwise rk,n=0, here n 
indicates the area new targets appear from. The 
proposed adaptive approach applies the 
tentative 𝑟!,! = 0.02, 𝑟!,! = 0.02, 𝑟!,! =
0.03, 𝑟!,! = 0.03   to calculate the required 
magnitude (under the upper threshold rupper=0.6). 
The average magnitudes of TBI 𝑟!,!of the three 
filters, for these four different TBI functions are 
given in figure 5 separately. The magnitude 
obtained in our approach is larger than the 
constant assumption only at the steps when 
target birth incur and the following one or two 
steps when new targets are still around the target 
birth area. The results confirm that the proposed 
magnitude-adaptive mechanism could obtain the 
estimation of the magnitude of TBI that is close 
to the truth. 

The mean OSPA, estimated number of targets 
and computing time of different filters on 
average of 100 trials with regard to each step are 
separately plotted in Figure 3. Compared with 
the TBI model with fixed magnitude, the 
adaptive approach and the magnitude-known 
strategy for TBI have increased the computing 
time by 16.4% and 2.92% on average 
respectively and have reduced the OPSA by 
5.31% and 14.84% on average respectively. 
Again, the filter using the exactly-known 
magnitude for TBI performs the best while the 
adaptive approach performs moderately and is 
better than the filter that uses the constant 
magnitude for TBI. Particularly, the magnitude-
adaptive TBI approach has spent more 
computational time than the single TBI models 
due to the complexity of the multiple TBI 
models.  

 
Fig. 4 Trajectories of targets birth from four areas 

 
Fig. 5 Magnitudes of TBI used in each step by 

different filters 
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Fig.6  Mean OSPA, estimated number 
of targets and computing time used in different filters 

Overall, the use of the magnitude-adaptive 
mechanism, whether for the single TBI model 
or for multiple TBI models, shows the 
advantage over the traditional ad-hoc 
approaches that employ constant assumptions 
on estimation accuracy but has disadvantage on 
the computing speed. The reduction of the 
computing speed can be compensated by 
reducing the number of particles used. Although 
the benefit due to the design of the magnitude of 

TBI is not so significant, as one would expect, 
the proposed adaptive approach provides a 
reliable and adaptive solution to determine the 
magnitude of TBI. This avoids the blind manual 
specification of the magnitude of TBI in 
practice. 

5. Conclusion 
A measurement-driven magnitude-adaptive 
mechanism has been proposed for the target 
birth modeling in the PHD filter. It determines 
the magnitude of target birth intensity online by 
taking into account the information contained in 
the newest measurements, which requires little 
additional computation. The improvement on 
the modelling of the target birth magnitude is 
independent of the derivation of the PHD 
equations and therefore no modification needs 
to be made on the basic PHD equations. 
Simulations of the particle implementation of 
the PHD filter have demonstrated the validity of 
the proposed magnitude-adaptive approach, 
which provides a robust solution for industrial 
applications of the PHD filter.  
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