
Guivarch, V. et al Amadeus

1

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

KEYWORD

 ABSTRACT

Multi-agent systems
Intelligent environments
Distributed algorithms
Adaptive environments

Ambient systems are characterized by their dynamics and their huge complexity.
An important issue in this field is their capability to provide a relevant behav-
iour in order to satisfy users involved. Multi-agent systems, because of their
ability to deal with dynamic, distributed and not deterministic environments,
seem to be very promising to solve adaptation problems in ambient systems. The
objective of our study is to propose Amadeus, a system able to learn the user’s
behaviour in order to perform his recurrent actions on his behalf, independently
of the ambient system in which it is applied. The originality of our contribution
is to be generic and to promote a process able to learn at runtime without any
prior learning phase and able to filter useful data for characterizing users' con-
text.

1 Introduction

Ambient systems consist of a large number of het-
erogeneous devices distributed in the environment;
some of these devices can appear or disappear at
runtime, sometimes temporarily. Moreover, these
systems involve many users who make actions in the
environment depending on their context and their
evolving preferences. Such systems require adapta-
tion techniques to take into account the dynamics of
their environment and in order to provide relevant
services to users who have evolving preferences and
uses. To our knowledge, existing systems only pro-
pose ad-hoc rules to tackle this dynamics but such a
solution is not sufficient in real applications.

Our contribution aims at proposing a solution to
tackle the problem of adaptation in ambient systems.
We propose to make an ambient system able to pro-
vide a relevant behaviour, based on the perceived us-
er’s actions, in order to assist him by realizing his ac-
tions on his behalf. It is based on the use of the multi-
agent paradigm. This choice is motivated by the fact
that such a paradigm provides solutions to problems

that evolve in dynamic, partially accessible and not
deterministic environments [RUSSELL, 1995].

Thus, we propose Amadeus, an Adaptive Multi-
Agent System that is able to learn the user's contexts
while he is performing actions in order to act on his
behalf in similar situations. We make the assumption
that if Amadeus performs actions on behalf of the us-
er, these actions may increase the user's satisfaction.

Section 2 offers a review of the use of multi-agent
systems in ambient systems. The general approach
we propose to solve this problem is then detailed in
section 3. After a general presentation of our multi-
agent system, Amadeus, in section 4, the explanation
of its functioning is split into two parts: a description
of its functioning in order to realize its learning and
an explanation of its ability to filter useless data.
Some results are included in these two subsections.
We conclude and plan future work in section 5.

2 The use of MAS in ambient
systems: positioning

In MAS approaches, context management is not
directly addressed in order to develop a generic mul-

AMADEUS: an adaptive multi-agent system to
learn a user’s recurring actions in ambient systems
Valérian Guivarcha, Valérie Campsa, André Péninoua

a Institut de Recherche en Informatique de Toulouse, Université de Toulouse

Guivarch, V. et al Amadeus

2

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

ti-agent oriented framework dedicated to only man-
age context data. Conversely, MAS are used to man-
age applications in a "vertical'' axis, from low-level
context data towards higher-level context data. How-
ever, we can distinguish two categories of MAS deal-
ing with context management: those that are strongly
related to their application domains, and those that
are more generic because they are not related to a
specific application. Among the first ones we can dis-
tinguish DALICA [CONSTANTINI et al., 2008] de-
voted to context management in a museum,
Dujardin's system [DUJARDIN et al., 2011] that ena-
bles context management for an automatic control of
a house and ASK-IT [SPANOUDAKIS et al., 2006]
that allows the users to reach easily the data and ser-
vices that are near them. Among the second ones we
can distinguish LAICA [CABRI et al., 2005] that
proposes an ambient infrastructure at the urban scale,
Spatial Agents [SATOH, 2004] that is a localization-
aware system, Tapia's system [TAPIA et al., 2008]
that is a CBR adaptation for ambient systems, and
AmbieAgents [LECH et al., 2005] that enables con-
text-aware information sharing for mobile users.

If we consider the capture of context data, the
main common point between these various multi-
agents infrastructures is the agentification associated
with this process. Except the data explicitly provided
by the designer or the user (by completing a form for
example), several agents are generally in charge of
the data recovery. We can distinguish systems com-

posed of specific agents able to capture particular
kinds of data (ASK-IT) from those composed of more
generic agents able to capture any kind of data (Tapia
and LAICA). Once perceived by an agent, the data
are made available to the system. This can be done in
a centralized way, from an agent to a central server or
towards a central agent (Tapia). This can be also done
in a distributed way, from an agent to all other agents
(LAICA and Dujardin), or towards certain specific
agents (ASK-IT system).

All the MAS do not explain how data are mod-
eled. We can distinguish those that (i) use an ad-hoc
format (DALICA) which simplifies processings but
implies a design totally chargeable to the designer,
from those that (ii) use existing technologies (such as
an ontology, or cell in Satoh) that implies additional
processings (deduction of information, logical rea-
soning) to convert the perceived data.

The format used to model the data greatly influ-
ences the interpretation phase of these data. When the
modeling uses an ad-hoc format (DALICA and
Dujardin) the data semantics depends on its format. A
more generic modeling implies an interpretation
phase between the data perception and their model-
ing. In particular, the modeling by ontology implies
the association of one semantic to every data. The in-
terpretation phase is generally chargeable to the de-
signer at the design time of every system, none of
them being apparently capable of interpreting at
runtime the semantics of the perceived data.

Tab.1. Review of the use of multi-agent systems in ambient systems

Guivarch, V. et al Amadeus

3

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

The situations detection is, for the majority of the
systems, based on ad-hoc rules. Only the Tapia’s sys-
tem proposes a generic situations' detection. This de-
tection remains most of the time very close to the sys-
tem goal, and only the particular situations described
in advance by the designer are detectable. It is then
impossible, except for the Tapia’s system that uses a
Case-Based Reasoning, to dynamically detect new
situations.

From an architecture point of view, the existing
MASs for context management differ from the type
of agents they use. Some of them use cognitive
agents (ASK-IT, AmbieAgents and Satoh) while
Dujardin's system uses reactive agents and others
conjugate the simultaneous use of cognitive and reac-
tive agents (LAICA and Tapia). Furthermore these
systems are more or less heterogeneous: some of
them have architectures composed of a small number
of different types of agents (2 for Satoh and LAICA)
while the others propose a bigger number of types of
agents (6 for ASK-IT). Finally, the architectures dif-
fer from the complexity of their organizations. Some
architectures limit themselves to agents all connected
together through a common structure (a software bus
for LAICA, a central server for DALICA), whereas
the others adopt more complex organizations where
every agent communicate with other agents according
to their roles (Tapia and ASK-IT). However, the var-
ious organizations remain quite static, without evolu-
tion at runtime, and do not thus seems to take into ac-
count the environmental dynamics

Finally, from the adaptation viewpoint depending
on the users’ context, most of these systems are based
on ad-hoc rules. Only the Tapia’s system possesses
learning capacities, by using a CBR algorithm in or-
der to modify its behaviour when it is faced to new
situations

The main observations we can formulate regard-
ing these systems (Tab. 1) is that no proposal explic-
itly addresses context management independently of
any kind of application and also the weakness of ex-
isting systems in terms of generic adaptation. Most of
processings are performed in an ad-hoc way, some-
times in a centralized way, whereas the ambient sys-
tems imply a lot of dynamics. To overcome this lack,
we propose to investigate on the use of a generic
adaptive and distributed approach [GEORGE et al.,
2011] in order to study how a system can improve its
functionality at run-time and especially each time an
unforeseen situation appears.

3 Our MAS proposition

The objective of this study is to design a system
able to adapt the behaviour of an existing ambient
system in order to satisfy each user that uses it. Our
contribution currently focuses on a single user (called
"the user" in the rest of the paper). One of our per-
spectives is to extends our work to several users.

We consider that the user is satisfied if the system
is able to perform his recurring actions on his behalf.
As highlighted in the previous section, the use of
MAS is motivated by their ability to provide dynamic
and distributed solutions. Moreover, our objective is
to design a system able to work on any kind of ambi-
ent system rather than on a specific one.

3.1 Requirements

The first requirement concerns the genericity of
the system to propose. It has to be able to deal with
any kind of device, i.e. to integrate any type of data.
This can be done either directly, using a generic
modeling of data, or using an expandable model of
data that can be improved with some new categories
of data. For our system, we use all perceived data in a
numerical form, directly usable.

The second requirement deals with the distribu-
tion aspect of the system to propose. An ambient sys-
tem is by nature composed of numerous and hetero-
geneous devices. So, interact with the totality of such
a system in a decentralized way, without any central
component, seems to be the more relevant solution.
For our system, we propose an exclusively distributed
solution, without any centralized component.

Finally, the third requirement concerns the adapta-
tion of the system to a user’s actions. An ambient sys-
tem realizing actions depending on ad-hoc rules in
order to satisfy the user can become inappropriate if it
is not able to adapt its behaviour to the user’s prefer-
ences (that may evolve) or if the ambient system
changes. So, our system has to be able to dynamically
adapt its behaviour at runtime. With this aim in view,
we propose to use the AMAS approach [GEORGE et
al., 2011]. It is an organizational approach that con-
sists in endowing each agent with local cooperative
behaviors that do not directly depend on the overall
function the system has to achieve.

These three requirements in mind, we designed an
adaptive multi-agent system Amadeus. Its objective is

Guivarch, V. et al Amadeus

4

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

to observe the user’s actions on his environment, and
to detect regularities in his behaviour in order to per-
form his actions on his behalf.

3.2 Proposed approach

We consider an ambient system as a set of devic-
es, themselves being composed of sensors and effec-
tors. These devices are distributed in the environ-
ment, and each device is connected with some of the
other devices of the ambient system. An ambient sys-
tem possesses a strongly dynamic infrastructure: de-
vices can appear (new device) or disappear (removed
or defective device), the connection between devices
can evolve (mobile device can be temporally per-
ceived).

A centralized solution to make such a dynamic
system context-aware seems to be inappropriate, be-
cause such a solution requires being able to perceive,
at any time, the state of the entire ambient system.
That is why we propose to design Amadeus as a dis-
tributed and generic multi-agent system that has to be
instantiate for every device composing the ambient
system. To avoid any confusion, in this paper,
“Amadeus” names the set of all the Amadeus instanc-
es in the ambient system, whereas an instance of
Amadeus is always explicitly named “instance of
Amadeus” (or “the instance”).

An instance of Amadeus is in charge of the man-
agement of the device to which it is associated. Its
objective is to perceive the user’s actions on the ef-
fectors of the device and to learn, based on theses
perceptions, a relevant behaviour for these effectors.
For this, the instance perceives the user’s actions on
the effectors, observes in which situations these ac-
tions were performed, and tries progressively to learn
what action it has to perform in every situation. As a
matter of fact, we consider that the best solution in
order to learn a relevant behaviour for a device with-
out a priori knowledge is to base this learning on the
user’s actions. The objective of our contribution thus
is to perform actions on behalf of the user.

4 Amadeus

This section is devoted to the presentation of the
general functioning of the MAS Amadeus. After a
brief presentation of Amadeus, we focus on the roles
of two types of agents composing the system (con-

troller and context agents), which are in charge of the
learning of a good behaviour for each effector of the
device. Finally, we introduce the functioning of the
Data, in charge of the filtering of useless perceived
data.

4.1 Architecture of Amadeus

Figure 1 shows an instance of Amadeus associated
to a device. An instance consists of four different
types of agents: the Data agent dealing with the per-
ceived data, the User agent dealing with the user’s
preferences, and the Context and Controller agents
dealing with the learned behaviour for each effector
of the device.

Fig. 1.Representation of an instance of Amadeus

The Data agents gather all data perceived by the

instance in order to be available for the other agents
of the instance. These data can result from local sen-
sors of the device, or from other instances of
Amadeus. Indeed, to describe the context in which
one user uses a device, the locally perceived data are
not sufficient, so it is necessary for the different in-
stances of Amadeus to exchanges data between them.

Each instance possesses a User agent that is in
charge of the user’s preferences: based on a represen-
tation of the user’s preferences (currently explicitly
written in a XML file), the User agent can evaluate,
for any situation, if the user is satisfied with regard to
the state of the effectors of the device. This satisfac-
tion level is represented by a numerical value that
varies from 1 (he is very satisfied) to 0 (he is not sat-
isfied at all). One of our main perspectives for this
work is to implement a User agent able to learn the
user’s preferences by itself, without any static
knowledge. Moreover, the actual solution deals with

Guivarch, V. et al Amadeus

5

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

only one user, but can be applied in a similar way
with many users.

Finally, a Controller agent is associated to each
effector of the device. Its goal is to control the state
of its effector in order to make the user’s satisfaction
level as high as possible. For this, it is related to a set
of Context agents whose aim at proposing actions as-
sociated to the forecast of their effect on the user’s
satisfaction.

4.2 Dynamic learning of a good
behaviour

The functioning of a Controller agent and its as-
sociated Context agents are strongly related. If we
place ourselves in a more general point of view, these
two agents can be seen as a single agent that (i) rec-
ords all the user’s actions and, for each of them, the
situation where he/she performed it and (ii) uses these
records to decide at runtime, faced to a new situation,
the action that seems to be the more appropriate to be
done.

Currently, the Controller agent decides of the
most appropriate action and the set of its Context
agents represents the recorded previous cases. How-
ever, contrary to more classical learning algorithms
(such as CBR) where the previous cases are generally
recorded as static knowledge, a Context agent repre-
sents a dynamic knowledge that adapts itself if it be-
comes erroneous.

The next two paragraphs are devoted to a more
detailed presentation of the Controller agent and the
Context agent. Next the joint behavior of these agents
is detailed in order to explain how an instance of
Amadeus is able to learn and to act on its effectors on
behalf of the user.

4.2.1 Controller agent
A Controller agent is associated to each effector

of a device. Its goal is to evaluate at any time what is
the best action to keep the user’s satisfaction level as
high as possible. We define an action as being the af-
fectation of a state to the effector. So, an action can
be "to change the effector state", or "to maintain the
actual effector state" (the action is to do nothing).

A Controller agent begins every cycle by perceiv-
ing the propositions of actions made by the context
agents. Each proposition of action PA includes the ac-
tion description A, associated with a forecast F on the

effect of this action on the user’s satisfaction level U,
and a confidence C about this forecast. So, each ac-
tion proposition PA can be expressed as “if the action
A is performed now the user’s satisfaction level will
pass from U to U+F with a confidence C”.

The Controller agent has then to evaluate the best
proposition of action received. However, two or more
action propositions may be in conflict. For example, a
Controller agent can receive two propositions of ac-
tions PA and PA’ with the same proposed action
A=A’ but with a different forecast F≠F’. In this case,
(and in similar cases where more than two proposi-
tions of actions are in conflict), the Controller agent
eliminates the less confident proposition(s) of ac-
tion(s).

Once this preprocessing realized, the Controller
agent has propositions of actions, each of them hav-
ing only one forecast. Based on these forecasts, the
Controller agent is then able to evaluate the better
proposition of action in order to increase as much as
possible (or decrease if it is not possible to do better)
the user’s satisfaction level.

Finally, the Controller agent selects the Context
agent that sent the best proposition of action and un-
selects at the same time the other previously selected
Context agents.

Even if the Controller agent is the agent in charge
of deciding what is the best action to be performed on
the effector, we can notice that it does not possess
any particular knowledge; all information to take its
decision are provided by Context agents.

4.2.2 Context agent
A Context agent is a representation of an action

previously performed by the user in a particular situa-
tion. Indeed it considers that, if the same situation
happens once again, the realization of its action will
have the same effect that the first time the action was
performed. A Context agent is then created each time
the user makes an action, in order to represent this ac-
tion in the associated situation. It also possesses a de-
scription of this action.

The description of its situation is not based on a
semantic representation, but only on the states of the
perceive data. More precisely, when a Context agent
is created, it creates a range values around the values
of the perceived data, thanks to a data structure
named Adaptive Range Tracker (ART). An ART is
an interval where borders are managed by two AVT

Guivarch, V. et al Amadeus

6

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

[LEMOUZY et al., 2011]. An AVT is a tool based on
an AMAS that enables to approximate as best as pos-
sible the real value of a changing variable. We fixed
the initial wide of a range values to 5% of the possi-
ble values for a data. Each ART has a validity status:
when the actual data value is included in the range of
an ART, this ART is considered as valid. The Context
agent has its own validity status, and when all the
ART of a Context agent are valid, this Context agent
becomes valid in its turn. This means it can send its
proposition of action to the Controller agent.

As explained in section 4.2.1, a proposition of ac-
tions consists of the value to affect to the effector, a
forecast on the effect of this action on the user’s satis-
faction and the confidence level of this forecast. The
forecast is initialized at the Context agent creation,
and it is based on the comparison between the user’s
satisfaction levels before and after he performs his
action. The confidence level associated with this
forecast is initialized at 0.5. The figure 2 represents
the internal state of a Context agent, including a val-
ues range for each data, its validity status, its selec-
tion status, its forecast and the confidence associated
to this forecast.

Fig. 2.Representation of the Context agent

The Context agent begins its cycle by validating

its values ranges depending on perceived data up-
dates. Then, if these updates make it valid, it sends its
proposition of action to the Controller agent. If its
proposition of action is the most interesting for the
Controller agent, it is then selected. In this case, the
Context agent records the current user’s satisfaction
level as perceived from the User agent. A Context
agent is not a static representation of an action propo-
sition because it has the capabilities to observe the re-
al effect of its proposition on the user’s satisfaction
level. Indeed, when the Controller agent unselects a
Context agent, the Context agent compares the previ-
ous and actual user’s satisfaction levels, and evalu-

ates if the real effect of its action fits with the reality.
If it is the case, the proposition of action sent to the
Context agent was perfectly correct; so it increases
the confidence level of its forecast. When the forecast
value differs from the reality, but the forecast mean-
ing is correct (for example, the action increased the
user’s satisfaction level, but not as much as ex-
pected), the Context agent adapts its forecast to make
it more correct. However, it considers that its action
proposition was correct enough to increase the confi-
dence level of its forecast. If the user’s satisfaction
level has increased in the opposite direction of what it
expected (the user’s satisfaction level has decreased
whereas the Context agent has forecasted an in-
crease), the Context agent first decreases the confi-
dence level of its forecast. Then it adjusts its values
ranges. Indeed it considers that making such an error
means that it sent its proposition of action in a wrong
situation (maybe the initial values ranges were too
wide, or maybe the user’s preferences changed).

To summarize, when the Context agent is selected
by the Controller agent, it adjusts its proposition of
action. If its proposition was good, it can progressive-
ly refine its action proposition: the values ranges ena-
bling it to consider itself as valid become then more
precise. It is then able to send its proposition of action
in more correct situations with a forecast more accu-
rate and a higher confidence. If its proposition was
not good, the Context agent decreases the possible
situations where it can send its proposition, and it de-
creases the confidence on the forecast on the effect of
the proposition of action.

Finally, if the Context agent sends too much bad
propositions of actions, it can be considered as inap-
propriate. So, if a Context agent possesses a confi-
dence level equal to zero, it decides to disappear.

4.2.3 How Amadeus is learning?
This paragraph aims at explaining how the set of

Context agents and the Controller agent, by working
together, can make the instance of Amadeus able to
learn a good behaviour for each effector of a device.

The first point concerns the Context agents' crea-
tion. These agents represent knowledge about the us-
er’s behaviour, but the Controller agent does not have
to manage them. Every Context agent possesses an
autonomous behavior and sends by itself its proposi-
tions when it seems appropriate to the actual situa-
tion.

Guivarch, V. et al Amadeus

7

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

Moreover, contrary to classical learning algo-
rithms where it is necessary, at every change in the
environment, to start again the learning from the be-
ginning (and so, to record all previous cases), every
Context agent autonomously observes in which situa-
tion its proposition of action becomes inappropriate.
For that it evaluates each time it is selected, if its
proposition of action has the expected effect; if it is
the case, it adapts itself by adjusting its values ranges
and by updating its confidence level. Finally, the
suppression of a part of the effector behaviour that
became incorrect is also chargeable to every Context
agent.

4.2.4 Results

In order to evaluate the ability of Amadeus to
learn the user’s recurring actions, we established a
simulation of a simple example of ambient system.
Figure 3 represents an example of an apartment with
a light and an electric shutter, as well as a presence
sensor and a luminosity sensor.

Fig. 3.Illustration of the apartment of the study

In this simulation, the user moves in and out of the

room during the day, looking for a satisfying lumi-
nosity. More precisely, if the luminosity is too low
when the user is in the room, the user opens the elec-
tric shutter, and if it is not enough, he turns on the
light. In the same way, with a strong luminosity, he
begins to turn off the light, and eventually he closes
the shutter. When the user leaves the room, it turns
off the light if it was turned on, but does not care if
the shutter is opened or closed when he is absent.

Figure 4 represents the number of actions per-
formed by the user during a simulation of fifty days;
the user performs on average ten actions by days.

Fig. 4.Number of user’s actions by day without Amadeus

Then, in a first study, we add an instance of

Amadeus to every device of the ambient system. So,
we have an instance of Amadeus in charge of learning
the correct behaviour for the light, and another in-
stance for the electric shutter.

Figure 5 represents the user’s actions as well as
the Amadeus actions. We can observe that, the first
day, the user performs all the actions. Indeed,
Amadeus begins its process without any initial
knowledge (without any Context agent). But after the
first day, some Context agents are created and begin
to send their propositions of actions. So, considering
the static user’s preferences of this study, Amadeus
performs most of the actions on behalf of the user.
And progressively, as the different Context agents ac-
curate their own behaviors, the user’s actions go to
disappear and be made by Amadeus, and the last us-
er’s actions allow the creation of other Context
agents.

Fig. 5.Number of user’s actions by day with Amadeus

We can notice that whereas the user performed

495 actions during the 50 days without Amadeus, this
number decreases until 25, when Amadeus is added.
This study shows the capability of Amadeus to learn a
correct behaviour in order to act on behalf of the user
(having static preferences).

Guivarch, V. et al Amadeus

8

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

To study now the capability of Amadeus to deal
with a change in the user’s preferences we realized
the same simulation but at the 25th day, we modify
the user’s preferences: he is now supposed to prefer a
lower level of luminosity. He turns on the light or
opens the shutter later, whereas he turns off the light
or closes the shutter sooner.

Fig. 6.Number of user’s actions by day with a user’s

preferences change in the 25th day

Figure 6 shows that during the 25th day, the user

starts again to act because the action provided by
Amadeus is not appropriate for him. However,
Amadeus progressively learns new actions to make its
behaviour adapted to the new user’s preferences.
More precisely, the existing Context agents that be-
came inappropriate progressively disappear whereas
new Context agents, based on the new user’s actions,
are created.

We can notice many properties for this learning. It
is realized exclusively in a in a local way, inde-
pendently of the other instances learning, and without
any initial knowledge. The data themselves are not
associated with any a priori knowledge about its se-
mantic, the perceived data being processed as numer-
ical data. Moreover, each instance makes its learning
at runtime: there are not two different phases with a
first phase where the instance only observes what it
happens, and a second phase where, after the use of a
learning algorithm on the recorded data, the instance
uses its learned behaviour to act on the effectors. On
the contrary, an instance adapts its learned behaviour
without recording perceived data, but only by adapt-
ing its learned behaviour when new perceptions ar-
rive. So, any new action of the user can modify or
improve the learning at any moment.

4.3 Filtering Data
In section 4.2 we described the ability of an in-

stance of Amadeus to associate, for each occurred sit-
uation, an action with a forecast on the effect of this
action on the user’s level satisfaction. However, the
main limit of our contribution concerns the number of
data that our system has to process. Indeed, it seems
easy to describe correctly the situations in which the
instance of Amadeus can act when all perceived data
are useful to describe this situation. Nevertheless, in a
real ambient system, considering the large number of
devices, we can consider that generally, only a part of
the perceived data is really useful and that a lot of
perceived data is useless.

Fig.7. Number of actions performed by Amadeus de-

pending on the useless data number

Figure 7 represents the number of Amadeus ac-

tions depending of the useless data number, the use-
less data values evolving in a random way. It shows a
strong decrease of the Amadeus's performances when
useless data are added to the ambient system.

To solve this problem, we propose to endow every
instance of Amadeus with learning capabilities in or-
der to filter at runtime the useless perceived data.
Considering our data modeling only based on numer-
ical values, we have to realize this filtering process
without any semantic data. Moreover, our objective is
to realize this process at runtime, without saving any
data.

We propose in that sense to agentify each data.
The filtering process is performed by the Data
agents: each Data agent has to learn if its associated
data is useless to the Context agents related to a Con-
troller agent. For that, when an action is performed
by the system, if this action is a relevant one, every
Context agent proposing a different action observes
the list of its invalid values ranges. Indeed, if its

Guivarch, V. et al Amadeus

9

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

proposition of action is different from the performed
one, it considers that it was right to not be valid be-
cause its action would not have been relevant. So, it
considers that all its invalid values ranges helped it to
do not wrongly propose its action in the current situa-
tion. In this data list, it may exist useless data that are
invalid in this situation, but we can be sure that at
least one data of the list is useful. So, the Context
agent sends a utility signal to the associated Data
agent. This signal is in the form “I was invalid par-
tially thanks to you and my invalid status was the
right one; you have been useful for me”.

To determine the uselessness of a data, we ob-
serve a difference between useful and useless data.
On the one hand, the state of a useless data is inde-
pendent of the performed actions, so it can have any
value when it is included in a Context agent 's utility
signal. On the other hand, a useful data has a specific
value when it is included in a utility signal. So, we
can distinguish useful and useless data by comparing
their values at runtime with their values when they
are considered as useful. Figure 8 represents the den-
sity functions of two data of the simulation: the lumi-
nosity data and a useless data. We can observe that
there is a big difference between the two density
functions of the luminosity data, because this piece of
data is linked to the decisions of realizing actions on
the light (figure 8, right part). Conversely, the two
density functions of the useless data are very similar,
because there is not link between the value of the data
and its supposed utility (figure 8, right part).

So, it is possible, by only studying a representa-
tion of the density function of a data, to establish a
level utility, based on the difference between the two
density functions. This difference is calculated thanks
to the statistic indicator known as the Chi-square dis-
tance [MILLOT, 2009].

 Figure 9 shows the result of the Amadeus learn-
ing, once its Data agents are able to filter the useless
data. In this experiment, we used the same simulation
as the one presented in section 4.2.4, but we added
three useless data whose values evolve randomly. We

can then observe that, during the first days, the use-
less data prevent Amadeus realizing its learning cor-
rectly and acting on behalf of the user. However, after
few cycles of simulation, Amadeus learned what data
are useful.

Fig. 9.Number of actions performed by Amadeus de-

pending of the useless data number

5 Conclusions

This paper presents the multi-agent system
Amadeus, which purpose is to assist the user in an
ambient system. For this, it perceives the user's ac-
tions and learns, from its observations, how and in
what situations it has to perform the user’s actions on
his behalf.

We established three requirements for our system:
it has to be generic, distributed, and able to adapt its
behaviour to the user's recurrent actions. Amadeus re-
spects these three requirements. Firstly, it is generic
as it manages only numerical data without any asso-
ciated semantic information. Secondly, it is distribut-
ed because one instance of Amadeus is associated to
each device of the ambient system. And finally, we
have experimentally shown that it is able to adapt its
behaviour to the user’s actions, even if the user
changes his preferences at runtime.

The main originality of this proposal is that
Amadeus has been designed in a generic way that is
independently from any kind of ambient system. The
main assumption of Amadeus is that the “good” or

Fig. 8. Density functions for the luminosity and the useless data

Guivarch, V. et al Amadeus

10

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

“correct” behavior can be obtained from user's ac-
tions. Even if this assumption could be discussed, it is
very relevant in repeated everyday life situations. Fi-
nally, the behavior of the system is learned directly at
runtime, without classical learning prior phases. So,
Amadeus is able to deal with evolving behaviour of
the user, such as preferences changes.

Even if experiments are encouraging, some future
works can be sketched. On the one hand, the current
experiments, done on many simulations, have to be
extended in more realistic situations such as apart-
ments containing many rooms and/or many users. On
the other hand, the learning process and the useless
data filtering process, have to be enhanced in more
general cases dealing with a great number of data.

6 References

[CABRI et al.,
2005]

G. Cabri, L. Ferrari, L. Leonardi, and F. Zambonelli. The laica project: Supporting ambient
intelligence via agents and ad-hoc middleware
Enabling Technologies: Infrastructure for Collaborative Enterprise. 14th IEEE International
Workshops on, IEEE, 2005

[CONSTANTINI et
al., 2008]

S. Costantini, L. Mostarda, A. Tocchio, and P. Tsintza. Dalica: Agent-based ambient
intelligence for cultural-heritage scenarios
Intelligent Systems, IEEE, 23(2),2008

[DUJARDIN et al.,
2011]

T. Dujardin, J. Rouillard, J.C. Routier, J.C. Tarby, et al. Gestion intelligente d’un contexte
domotique par un système multi-agents
Actes Journées Francophones sur les Systèmes Multi-Agents, 2011

[GEORGE et al.,
2011]

Jean-Pierre Georgée, Marie-Pierre Gleizes, and Valérie Camps. Cooperation
In Giovanna Di Marzo Serugendo, Marie-Pierre Gleizes, and Anthony Karageorgos, editors,
Self-organising Software, Natural Computing Series,. Springer Berlin Heidelberg, 2011

[LECH et al., 2005]

T.C. Lech and L.W.M.Wienhofen. AmbieAgents: a scalable infrastructure for mobile and
context-aware information services
In Proceedings of the fourth international joint conference on Autonomous agents and multi-
agent systems, ACM, 2005

[LEMOUZY et al.,
2011]

S. Lemouzy, V. Camps and P. Glize. Principles and Properties of a MAS Learning Algo-
rithm: a Comparison with Standard Learning Algorithms Applied to Implicit Feedback As-
sessment
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2011),
Lyon, France, 2011.

[MILLOT, 2009] Millot, G. Comprendre et réaliser les tests statistiques à l'aide de R
Boeck université, Louvain-la-Neuve, Belgique, 1st edition, 2009.

[RUSSEL et al.,
1995]

S.J. Russell, P. Norvig, J.F. Canny, J.M. Malik, and D.D. Edwards. Articial intelligence: a
modern approach
Prentice hall Englewood Cliffs, NJ, 1995

[SATOH et al.,
2004]

I. Satoh. Mobile agents for ambient intelligence
Proceedings of Massively Multi-Agent Systems, first international workshop MMAS Kyoto,
Japan, December 2004

[SPANOUDAKIS
et al., 2006]

N. Spanoudakis and P. Moraitis. Agent based architecture in an ambient intelligence context
Proceedings of the 4th European Workshop on Multi-Agent Systems (EUMAS'06), Lisbon,
Portugal 2006.

[TAPIA et al.,
2008]

D.I. Tapia, J. Bajo, J.M. Sanchez, and J.M. Corchado. An ambient intelligence based multi-
agent architecture
Developing Ambient Intelligence, 2008.

