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Ambient systems are characterized by their dynamics and their huge complexity. 
An important issue in this field is their capability to provide a relevant behav-
iour in order to satisfy users involved. Multi-agent systems, because of their 
ability to deal with dynamic, distributed and not deterministic environments, 
seem to be very promising to solve adaptation problems in ambient systems. The 
objective of our study is to propose Amadeus, a system able to learn the user’s 
behaviour in order to perform his recurrent actions on his behalf, independently 
of the ambient system in which it is applied. The originality of our contribution 
is to be generic and to promote a process able to learn at runtime without any 
prior learning phase and able to filter useful data for characterizing users' con-
text. 
 

   

1 Introduction 

Ambient systems consist of a large number of het-
erogeneous devices distributed in the environment; 
some of these devices can appear or disappear at 
runtime, sometimes temporarily. Moreover, these 
systems involve many users who make actions in the 
environment depending on their context and their 
evolving preferences. Such systems require adapta-
tion techniques to take into account the dynamics of 
their environment and in order to provide relevant 
services to users who have evolving preferences and 
uses. To our knowledge, existing systems only pro-
pose ad-hoc rules to tackle this dynamics but such a 
solution is not sufficient in real applications. 

Our contribution aims at proposing a solution to 
tackle the problem of adaptation in ambient systems. 
We propose to make an ambient system able to pro-
vide a relevant behaviour, based on the perceived us-
er’s actions, in order to assist him by realizing his ac-
tions on his behalf. It is based on the use of the multi-
agent paradigm. This choice is motivated by the fact 
that such a paradigm provides solutions to problems 

that evolve in dynamic, partially accessible and not 
deterministic environments [RUSSELL, 1995]. 

Thus, we propose Amadeus, an Adaptive Multi-
Agent System that is able to learn the user's contexts 
while he is performing actions in order to act on his 
behalf in similar situations. We make the assumption 
that if Amadeus performs actions on behalf of the us-
er, these actions may increase the user's satisfaction. 

Section 2 offers a review of the use of multi-agent 
systems in ambient systems. The general approach 
we propose to solve this problem is then detailed in 
section 3. After a general presentation of our multi-
agent system, Amadeus, in section 4, the explanation 
of its functioning is split into two parts: a description 
of its functioning in order to realize its learning and 
an explanation of its ability to filter useless data. 
Some results are included in these two subsections. 
We conclude and plan future work in section 5. 

2 The use of MAS in ambient 
systems: positioning 

In MAS approaches, context management is not 
directly addressed in order to develop a generic mul-
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ti-agent oriented framework dedicated to only man-
age context data. Conversely, MAS are used to man-
age applications in a "vertical'' axis, from low-level 
context data towards higher-level context data. How-
ever, we can distinguish two categories of MAS deal-
ing with context management: those that are strongly 
related to their application domains, and those that 
are more generic because they are not related to a 
specific application. Among the first ones we can dis-
tinguish DALICA [CONSTANTINI et al., 2008] de-
voted to context management in a museum, 
Dujardin's system [DUJARDIN et al., 2011] that ena-
bles context management for an automatic control of 
a house and ASK-IT [SPANOUDAKIS et al., 2006] 
that allows the users to reach easily the data and ser-
vices that are near them. Among the second ones we 
can distinguish LAICA [CABRI et al., 2005] that 
proposes an ambient infrastructure at the urban scale, 
Spatial Agents [SATOH, 2004] that is a localization-
aware system, Tapia's system [TAPIA et al., 2008] 
that is a CBR adaptation for ambient systems, and 
AmbieAgents [LECH et al., 2005] that enables con-
text-aware information sharing for mobile users.  

If we consider the capture of context data, the 
main common point between these various multi-
agents infrastructures is the agentification associated 
with this process. Except the data explicitly provided 
by the designer or the user (by completing a form for 
example), several agents are generally in charge of 
the data recovery. We can distinguish systems com-

posed of specific agents able to capture particular 
kinds of data (ASK-IT) from those composed of more 
generic agents able to capture any kind of data (Tapia 
and LAICA). Once perceived by an agent, the data 
are made available to the system. This can be done in 
a centralized way, from an agent to a central server or 
towards a central agent (Tapia). This can be also done 
in a distributed way, from an agent to all other agents 
(LAICA and Dujardin), or towards certain specific 
agents (ASK-IT system). 

All the MAS do not explain how data are mod-
eled. We can distinguish those that (i) use an ad-hoc 
format (DALICA) which simplifies processings but 
implies a design totally chargeable to the designer, 
from those that (ii) use existing technologies (such as 
an ontology, or cell in Satoh) that implies additional 
processings (deduction of information, logical rea-
soning) to convert the perceived data. 

The format used to model the data greatly influ-
ences the interpretation phase of these data. When the 
modeling uses an ad-hoc format (DALICA and 
Dujardin) the data semantics depends on its format. A 
more generic modeling implies an interpretation 
phase between the data perception and their model-
ing. In particular, the modeling by ontology implies 
the association of one semantic to every data. The in-
terpretation phase is generally chargeable to the de-
signer at the design time of every system, none of 
them being apparently capable of interpreting at 
runtime the semantics of the perceived data. 

Tab.1. Review of the use of multi-agent systems in ambient systems 
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The situations detection is, for the majority of the 
systems, based on ad-hoc rules. Only the Tapia’s sys-
tem proposes a generic situations' detection. This de-
tection remains most of the time very close to the sys-
tem goal, and only the particular situations described 
in advance by the designer are detectable. It is then 
impossible, except for the Tapia’s system that uses a 
Case-Based Reasoning, to dynamically detect new 
situations. 

From an architecture point of view, the existing 
MASs for context management differ from the type 
of agents they use. Some of them use cognitive 
agents (ASK-IT, AmbieAgents and Satoh) while 
Dujardin's system uses reactive agents and others 
conjugate the simultaneous use of cognitive and reac-
tive agents (LAICA and Tapia). Furthermore these 
systems are more or less heterogeneous: some of 
them have architectures composed of a small number 
of different types of agents (2 for Satoh and LAICA) 
while the others propose a bigger number of types of 
agents (6 for ASK-IT). Finally, the architectures dif-
fer from the complexity of their organizations. Some 
architectures limit themselves to agents all connected 
together through a common structure (a software bus 
for LAICA, a central server for DALICA), whereas 
the others adopt more complex organizations where 
every agent communicate with other agents according 
to their roles (Tapia and ASK-IT). However, the var-
ious organizations remain quite static, without evolu-
tion at runtime, and do not thus seems to take into ac-
count the environmental dynamics  

Finally, from the adaptation viewpoint depending 
on the users’ context, most of these systems are based 
on ad-hoc rules. Only the Tapia’s system possesses 
learning capacities, by using a CBR algorithm in or-
der to modify its behaviour when it is faced to new 
situations 

The main observations we can formulate regard-
ing these systems (Tab. 1) is that no proposal explic-
itly addresses context management independently of 
any kind of application and also the weakness of ex-
isting systems in terms of generic adaptation. Most of 
processings are performed in an ad-hoc way, some-
times in a centralized way, whereas the ambient sys-
tems imply a lot of dynamics. To overcome this lack, 
we propose to investigate on the use of a generic 
adaptive and distributed approach [GEORGE et al., 
2011] in order to study how a system can improve its 
functionality at run-time and especially each time an 
unforeseen situation appears. 

3 Our MAS proposition 

The objective of this study is to design a system 
able to adapt the behaviour of an existing ambient 
system in order to satisfy each user that uses it. Our 
contribution currently focuses on a single user (called 
"the user" in the rest of the paper). One of our per-
spectives is to extends our work to several users. 

We consider that the user is satisfied if the system 
is able to perform his recurring actions on his behalf. 
As highlighted in the previous section, the use of 
MAS is motivated by their ability to provide dynamic 
and distributed solutions. Moreover, our objective is 
to design a system able to work on any kind of ambi-
ent system rather than on a specific one.  

3.1 Requirements 

The first requirement concerns the genericity of 
the system to propose. It has to be able to deal with 
any kind of device, i.e. to integrate any type of data. 
This can be done either directly, using a generic 
modeling of data, or using an expandable model of 
data that can be improved with some new categories 
of data. For our system, we use all perceived data in a 
numerical form, directly usable. 

The second requirement deals with the distribu-
tion aspect of the system to propose. An ambient sys-
tem is by nature composed of numerous and hetero-
geneous devices. So, interact with the totality of such 
a system in a decentralized way, without any central 
component, seems to be the more relevant solution. 
For our system, we propose an exclusively distributed 
solution, without any centralized component. 

Finally, the third requirement concerns the adapta-
tion of the system to a user’s actions. An ambient sys-
tem realizing actions depending on ad-hoc rules in 
order to satisfy the user can become inappropriate if it 
is not able to adapt its behaviour to the user’s prefer-
ences (that may evolve) or if the ambient system 
changes. So, our system has to be able to dynamically 
adapt its behaviour at runtime. With this aim in view, 
we propose to use the AMAS approach [GEORGE et 
al., 2011]. It is an organizational approach that con-
sists in endowing each agent with local cooperative 
behaviors that do not directly depend on the overall 
function the system has to achieve. 

These three requirements in mind, we designed an 
adaptive multi-agent system Amadeus. Its objective is 
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to observe the user’s actions on his environment, and 
to detect regularities in his behaviour in order to per-
form his actions on his behalf. 

3.2 Proposed approach 

We consider an ambient system as a set of devic-
es, themselves being composed of sensors and effec-
tors. These devices are distributed in the environ-
ment, and each device is connected with some of the 
other devices of the ambient system. An ambient sys-
tem possesses a strongly dynamic infrastructure: de-
vices can appear (new device) or disappear (removed 
or defective device), the connection between devices 
can evolve (mobile device can be temporally per-
ceived). 

A centralized solution to make such a dynamic 
system context-aware seems to be inappropriate, be-
cause such a solution requires being able to perceive, 
at any time, the state of the entire ambient system. 
That is why we propose to design Amadeus as a dis-
tributed and generic multi-agent system that has to be 
instantiate for every device composing the ambient 
system. To avoid any confusion, in this paper, 
“Amadeus” names the set of all the Amadeus instanc-
es in the ambient system, whereas an instance of 
Amadeus is always explicitly named “instance of 
Amadeus” (or “the instance”). 

An instance of Amadeus is in charge of the man-
agement of the device to which it is associated. Its 
objective is to perceive the user’s actions on the ef-
fectors of the device and to learn, based on theses 
perceptions, a relevant behaviour for these effectors. 
For this, the instance perceives the user’s actions on 
the effectors, observes in which situations these ac-
tions were performed, and tries progressively to learn 
what action it has to perform in every situation. As a 
matter of fact, we consider that the best solution in 
order to learn a relevant behaviour for a device with-
out a priori knowledge is to base this learning on the 
user’s actions. The objective of our contribution thus 
is to perform actions on behalf of the user. 

4 Amadeus 

This section is devoted to the presentation of the 
general functioning of the MAS Amadeus. After a 
brief presentation of Amadeus, we focus on the roles 
of two types of agents composing the system (con-

troller and context agents), which are in charge of the 
learning of a good behaviour for each effector of the 
device. Finally, we introduce the functioning of the 
Data, in charge of the filtering of useless perceived 
data. 

4.1 Architecture of Amadeus 

Figure 1 shows an instance of Amadeus associated 
to a device. An instance consists of four different 
types of agents: the Data agent dealing with the per-
ceived data, the User agent dealing with the user’s 
preferences, and the Context and Controller agents 
dealing with the learned behaviour for each effector 
of the device. 

 
Fig. 1.Representation of an instance of Amadeus 

 
The Data agents gather all data perceived by the 

instance in order to be available for the other agents 
of the instance. These data can result from local sen-
sors of the device, or from other instances of 
Amadeus. Indeed, to describe the context in which 
one user uses a device, the locally perceived data are 
not sufficient, so it is necessary for the different in-
stances of Amadeus to exchanges data between them. 

Each instance possesses a User agent that is in 
charge of the user’s preferences: based on a represen-
tation of the user’s preferences (currently explicitly 
written in a XML file), the User agent can evaluate, 
for any situation, if the user is satisfied with regard to 
the state of the effectors of the device. This satisfac-
tion level is represented by a numerical value that 
varies from 1 (he is very satisfied) to 0 (he is not sat-
isfied at all). One of our main perspectives for this 
work is to implement a User agent able to learn the 
user’s preferences by itself, without any static 
knowledge. Moreover, the actual solution deals with 
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only one user, but can be applied in a similar way 
with many users. 

Finally, a Controller agent is associated to each 
effector of the device. Its goal is to control the state 
of its effector in order to make the user’s satisfaction 
level as high as possible. For this, it is related to a set 
of Context agents whose aim at proposing actions as-
sociated to the forecast of their effect on the user’s 
satisfaction.  

4.2 Dynamic learning of a good 
behaviour 

The functioning of a Controller agent and its as-
sociated Context agents are strongly related. If we 
place ourselves in a more general point of view, these 
two agents can be seen as a single agent that (i) rec-
ords all the user’s actions and, for each of them, the 
situation where he/she performed it and (ii) uses these 
records to decide at runtime, faced to a new situation, 
the action that seems to be the more appropriate to be 
done. 

Currently, the Controller agent decides of the 
most appropriate action and the set of its Context 
agents represents the recorded previous cases. How-
ever, contrary to more classical learning algorithms 
(such as CBR) where the previous cases are generally 
recorded as static knowledge, a Context agent repre-
sents a dynamic knowledge that adapts itself if it be-
comes erroneous.  

The next two paragraphs are devoted to a more 
detailed presentation of the Controller agent and the 
Context agent. Next the joint behavior of these agents 
is detailed in order to explain how an instance of 
Amadeus is able to learn and to act on its effectors on 
behalf of the user. 

4.2.1 Controller agent 
A Controller agent is associated to each effector 

of a device. Its goal is to evaluate at any time what is 
the best action to keep the user’s satisfaction level as 
high as possible. We define an action as being the af-
fectation of a state to the effector. So, an action can 
be "to change the effector state", or "to maintain the 
actual effector state" (the action is to do nothing). 

A Controller agent begins every cycle by perceiv-
ing the propositions of actions made by the context 
agents. Each proposition of action PA includes the ac-
tion description A, associated with a forecast F on the 

effect of this action on the user’s satisfaction level U, 
and a confidence C about this forecast. So, each ac-
tion proposition PA can be expressed as “if the action 
A is performed now the user’s satisfaction level will 
pass from U to U+F with a confidence C”. 

The Controller agent has then to evaluate the best 
proposition of action received. However, two or more 
action propositions may be in conflict. For example, a 
Controller agent can receive two propositions of ac-
tions PA and PA’ with the same proposed action 
A=A’ but with a different forecast F≠F’. In this case, 
(and in similar cases where more than two proposi-
tions of actions are in conflict), the Controller agent 
eliminates the less confident proposition(s) of ac-
tion(s). 

Once this preprocessing realized, the Controller 
agent has propositions of actions, each of them hav-
ing only one forecast. Based on these forecasts, the 
Controller agent is then able to evaluate the better 
proposition of action in order to increase as much as 
possible (or decrease if it is not possible to do better) 
the user’s satisfaction level. 

Finally, the Controller agent selects the Context 
agent that sent the best proposition of action and un-
selects at the same time the other previously selected 
Context agents.  

Even if the Controller agent is the agent in charge 
of deciding what is the best action to be performed on 
the effector, we can notice that it does not possess 
any particular knowledge; all information to take its 
decision are provided by Context agents. 

4.2.2 Context agent 
A Context agent is a representation of an action 

previously performed by the user in a particular situa-
tion. Indeed it considers that, if the same situation 
happens once again, the realization of its action will 
have the same effect that the first time the action was 
performed. A Context agent is then created each time 
the user makes an action, in order to represent this ac-
tion in the associated situation. It also possesses a de-
scription of this action. 

The description of its situation is not based on a 
semantic representation, but only on the states of the 
perceive data. More precisely, when a Context agent 
is created, it creates a range values around the values 
of the perceived data, thanks to a data structure 
named Adaptive Range Tracker (ART). An ART is 
an interval where borders are managed by two AVT 
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[LEMOUZY et al., 2011]. An AVT is a tool based on 
an AMAS that enables to approximate as best as pos-
sible the real value of a changing variable. We fixed 
the initial wide of a range values to 5% of the possi-
ble values for a data. Each ART has a validity status: 
when the actual data value is included in the range of 
an ART, this ART is considered as valid. The Context 
agent has its own validity status, and when all the 
ART of a Context agent are valid, this Context agent 
becomes valid in its turn. This means it can send its 
proposition of action to the Controller agent. 

As explained in section 4.2.1, a proposition of ac-
tions consists of the value to affect to the effector, a 
forecast on the effect of this action on the user’s satis-
faction and the confidence level of this forecast. The 
forecast is initialized at the Context agent creation, 
and it is based on the comparison between the user’s 
satisfaction levels before and after he performs his 
action. The confidence level associated with this 
forecast is initialized at 0.5. The figure 2 represents 
the internal state of a Context agent, including a val-
ues range for each data, its validity status, its selec-
tion status, its forecast and the confidence associated 
to this forecast. 

 

 
Fig. 2.Representation of the Context agent 

 
The Context agent begins its cycle by validating 

its values ranges depending on perceived data up-
dates. Then, if these updates make it valid, it sends its 
proposition of action to the Controller agent. If its 
proposition of action is the most interesting for the 
Controller agent, it is then selected. In this case, the 
Context agent records the current user’s satisfaction 
level as perceived from the User agent. A Context 
agent is not a static representation of an action propo-
sition because it has the capabilities to observe the re-
al effect of its proposition on the user’s satisfaction 
level. Indeed, when the Controller agent unselects a 
Context agent, the Context agent compares the previ-
ous and actual user’s satisfaction levels, and evalu-

ates if the real effect of its action fits with the reality.  
If it is the case, the proposition of action sent to the 
Context agent was perfectly correct; so it increases 
the confidence level of its forecast. When the forecast 
value differs from the reality, but the forecast mean-
ing is correct (for example, the action increased the 
user’s satisfaction level, but not as much as ex-
pected), the Context agent adapts its forecast to make 
it more correct. However, it considers that its action 
proposition was correct enough to increase the confi-
dence level of its forecast. If the user’s satisfaction 
level has increased in the opposite direction of what it 
expected (the user’s satisfaction level has decreased 
whereas the Context agent has forecasted an in-
crease), the Context agent first decreases the confi-
dence level of its forecast. Then it adjusts its values 
ranges. Indeed it considers that making such an error 
means that it sent its proposition of action in a wrong 
situation (maybe the initial values ranges were too 
wide, or maybe the user’s preferences changed).  

To summarize, when the Context agent is selected 
by the Controller agent, it adjusts its proposition of 
action. If its proposition was good, it can progressive-
ly refine its action proposition: the values ranges ena-
bling it to consider itself as valid become then more 
precise. It is then able to send its proposition of action 
in more correct situations with a forecast more accu-
rate and a higher confidence. If its proposition was 
not good, the Context agent decreases the possible 
situations where it can send its proposition, and it de-
creases the confidence on the forecast on the effect of 
the proposition of action. 

Finally, if the Context agent sends too much bad 
propositions of actions, it can be considered as inap-
propriate. So, if a Context agent possesses a confi-
dence level equal to zero, it decides to disappear.   

4.2.3 How Amadeus is learning? 
This paragraph aims at explaining how the set of 

Context agents and the Controller agent, by working 
together, can make the instance of Amadeus able to 
learn a good behaviour for each effector of a device. 

The first point concerns the Context agents' crea-
tion. These agents represent knowledge about the us-
er’s behaviour, but the Controller agent does not have 
to manage them. Every Context agent possesses an 
autonomous behavior and sends by itself its proposi-
tions when it seems appropriate to the actual situa-
tion. 
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Moreover, contrary to classical learning algo-
rithms where it is necessary, at every change in the 
environment, to start again the learning from the be-
ginning (and so, to record all previous cases), every 
Context agent autonomously observes in which situa-
tion its proposition of action becomes inappropriate. 
For that it evaluates each time it is selected, if its 
proposition of action has the expected effect; if it is 
the case, it adapts itself by adjusting its values ranges 
and by updating its confidence level. Finally, the 
suppression of a part of the effector behaviour that 
became incorrect is also chargeable to every Context 
agent. 

4.2.4 Results 

In order to evaluate the ability of Amadeus to 
learn the user’s recurring actions, we established a 
simulation of a simple example of ambient system. 
Figure 3 represents an example of an apartment with 
a light and an electric shutter, as well as a presence 
sensor and a luminosity sensor.   

 

 
Fig. 3.Illustration of the apartment of the study 

 
In this simulation, the user moves in and out of the 

room during the day, looking for a satisfying lumi-
nosity. More precisely, if the luminosity is too low 
when the user is in the room, the user opens the elec-
tric shutter, and if it is not enough, he turns on the 
light. In the same way, with a strong luminosity, he 
begins to turn off the light, and eventually he closes 
the shutter. When the user leaves the room, it turns 
off the light if it was turned on, but does not care if 
the shutter is opened or closed when he is absent. 

Figure 4 represents the number of actions per-
formed by the user during a simulation of fifty days; 
the user performs on average ten actions by days. 
 

 
Fig. 4.Number of user’s actions by day without Amadeus 
 
Then, in a first study, we add an instance of 

Amadeus to every device of the ambient system. So, 
we have an instance of Amadeus in charge of learning 
the correct behaviour for the light, and another in-
stance for the electric shutter. 

Figure 5 represents the user’s actions as well as 
the Amadeus actions. We can observe that, the first 
day, the user performs all the actions. Indeed, 
Amadeus begins its process without any initial 
knowledge (without any Context agent). But after the 
first day, some Context agents are created and begin 
to send their propositions of actions. So, considering 
the static user’s preferences of this study, Amadeus 
performs most of the actions on behalf of the user. 
And progressively, as the different Context agents ac-
curate their own behaviors, the user’s actions go to 
disappear and be made by Amadeus, and the last us-
er’s actions allow the creation of other Context 
agents. 

 

 
Fig. 5.Number of user’s actions by day with Amadeus 

 
We can notice that whereas the user performed 

495 actions during the 50 days without Amadeus, this 
number decreases until 25, when Amadeus is added. 
This study shows the capability of Amadeus to learn a 
correct behaviour in order to act on behalf of the user 
(having static preferences).  
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To study now the capability of Amadeus to deal 
with a change in the user’s preferences we realized 
the same simulation but at the 25th day, we modify 
the user’s preferences: he is now supposed to prefer a 
lower level of luminosity. He turns on the light or 
opens the shutter later, whereas he turns off the light 
or closes the shutter sooner. 

 

 
Fig. 6.Number of user’s actions by day with a user’s 

preferences change in the 25th day 
 
Figure 6 shows that during the 25th day, the user 

starts again to act because the action provided by 
Amadeus is not appropriate for him. However, 
Amadeus progressively learns new actions to make its 
behaviour adapted to the new user’s preferences. 
More precisely, the existing Context agents that be-
came inappropriate progressively disappear whereas 
new Context agents, based on the new user’s actions, 
are created. 

We can notice many properties for this learning. It 
is realized exclusively in a in a local way, inde-
pendently of the other instances learning, and without 
any initial knowledge. The data themselves are not 
associated with any a priori knowledge about its se-
mantic, the perceived data being processed as numer-
ical data. Moreover, each instance makes its learning 
at runtime: there are not two different phases with a 
first phase where the instance only observes what it 
happens, and a second phase where, after the use of a 
learning algorithm on the recorded data, the instance 
uses its learned behaviour to act on the effectors. On 
the contrary, an instance adapts its learned behaviour 
without recording perceived data, but only by adapt-
ing its learned behaviour when new perceptions ar-
rive. So, any new action of the user can modify or 
improve the learning at any moment.  

4.3 Filtering Data 
In section 4.2 we described the ability of an in-

stance of Amadeus to associate, for each occurred sit-
uation, an action with a forecast on the effect of this 
action on the user’s level satisfaction. However, the 
main limit of our contribution concerns the number of 
data that our system has to process. Indeed, it seems 
easy to describe correctly the situations in which the 
instance of Amadeus can act when all perceived data 
are useful to describe this situation. Nevertheless, in a 
real ambient system, considering the large number of 
devices, we can consider that generally, only a part of 
the perceived data is really useful and that a lot of 
perceived data is useless. 

 

 
Fig.7. Number of actions performed by Amadeus de-

pending on the useless data number 
 
Figure 7 represents the number of Amadeus ac-

tions depending of the useless data number, the use-
less data values evolving in a random way. It shows a 
strong decrease of the Amadeus's performances when 
useless data are added to the ambient system.  

To solve this problem, we propose to endow every 
instance of Amadeus with learning capabilities in or-
der to filter at runtime the useless perceived data. 
Considering our data modeling only based on numer-
ical values, we have to realize this filtering process 
without any semantic data. Moreover, our objective is 
to realize this process at runtime, without saving any 
data. 

We propose in that sense to agentify each data. 
The filtering process is performed by the Data 
agents: each Data agent has to learn if its associated 
data is useless to the Context agents related to a Con-
troller agent. For that, when an action is performed 
by the system, if this action is a relevant one, every 
Context agent proposing a different action observes 
the list of its invalid values ranges. Indeed, if its 
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proposition of action is different from the performed 
one, it considers that it was right to not be valid be-
cause its action would not have been relevant. So, it 
considers that all its invalid values ranges helped it to 
do not wrongly propose its action in the current situa-
tion. In this data list, it may exist useless data that are 
invalid in this situation, but we can be sure that at 
least one data of the list is useful. So, the Context 
agent sends a utility signal to the associated Data 
agent. This signal is in the form “I was invalid par-
tially thanks to you and my invalid status was the 
right one; you have been useful for me”. 

To determine the uselessness of a data, we ob-
serve a difference between useful and useless data. 
On the one hand, the state of a useless data is inde-
pendent of the performed actions, so it can have any 
value when it is included in a Context agent 's utility 
signal. On the other hand, a useful data has a specific 
value when it is included in a utility signal. So, we 
can distinguish useful and useless data by comparing 
their values at runtime with their values when they 
are considered as useful. Figure 8 represents the den-
sity functions of two data of the simulation: the lumi-
nosity data and a useless data. We can observe that 
there is a big difference between the two density 
functions of the luminosity data, because this piece of 
data is linked to the decisions of realizing actions on 
the light (figure 8, right part). Conversely, the two 
density functions of the useless data are very similar, 
because there is not link between the value of the data 
and its supposed utility (figure 8, right part). 

So, it is possible, by only studying a representa-
tion of the density function of a data, to establish a 
level utility, based on the difference between the two 
density functions. This difference is calculated thanks 
to the statistic indicator known as the Chi-square dis-
tance [MILLOT, 2009]. 

 Figure 9 shows the result of the Amadeus learn-
ing, once its Data agents are able to filter the useless 
data. In this experiment, we used the same simulation 
as the one presented in section 4.2.4, but we added 
three useless data whose values evolve randomly. We 

can then observe that, during the first days, the use-
less data prevent Amadeus realizing its learning cor-
rectly and acting on behalf of the user. However, after 
few cycles of simulation, Amadeus learned what data 
are useful. 

 

 
Fig. 9.Number of actions performed by Amadeus de-

pending of the useless data number 

5 Conclusions 

This paper presents the multi-agent system 
Amadeus, which purpose is to assist the user in an 
ambient system. For this, it perceives the user's ac-
tions and learns, from its observations, how and in 
what situations it has to perform the user’s actions on 
his behalf. 

We established three requirements for our system: 
it has to be generic, distributed, and able to adapt its 
behaviour to the user's recurrent actions. Amadeus re-
spects these three requirements. Firstly, it is generic 
as it manages only numerical data without any asso-
ciated semantic information. Secondly, it is distribut-
ed because one instance of Amadeus is associated to 
each device of the ambient system. And finally, we 
have experimentally shown that it is able to adapt its 
behaviour to the user’s actions, even if the user 
changes his preferences at runtime. 

The main originality of this proposal is that 
Amadeus has been designed in a generic way that is 
independently from any kind of ambient system. The 
main assumption of Amadeus is that the “good” or 

Fig. 8. Density functions for the luminosity and the useless data 
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“correct” behavior can be obtained from user's ac-
tions. Even if this assumption could be discussed, it is 
very relevant in repeated everyday life situations. Fi-
nally, the behavior of the system is learned directly at 
runtime, without classical learning prior phases. So, 
Amadeus is able to deal with evolving behaviour of 
the user, such as preferences changes. 

Even if experiments are encouraging, some future 
works can be sketched. On the one hand, the current 
experiments, done on many simulations, have to be 
extended in more realistic situations such as apart-
ments containing many rooms and/or many users. On 
the other hand, the learning process and the useless 
data filtering process, have to be enhanced in more 
general cases dealing with a great number of data.
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