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This paper proposes a bio-inspired middleware for selfadaptive software agents 
on distributed systems. It is unique to other existing approaches for software 
adaptation because it introduces the notions of differentiation, dedifferentiation, 
and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into 
real distributed systems. When an agent delegates a function to another agent 
coordinating with it, if the former has the function, this function becomes less-
developed and the latter’s function becomes welldeveloped. 
 

   

1 Introduction 

Cellular differentiation is the mechanism by 
which cells in a multicellular organism become spe-
cialized to perform specific functions in a variety of 
tissues and organs. Different kinds of cell behaviors 
can be observed during embryogenesis: cells double, 
change in shape, and attach at and migrate to various 
sites within the embryo without any obvious signs of 
differentiation. The mechanism is essential in the de-
velopment of a complex organism. 

This paper aims at introducing the notion of diffe-
rentiation into a distributed system as a mechanism 
for adapting software components, which may be 
running on different computers connected through a 
network. Software components in existing distributed 
systems only continue to offer their initial functions. 
Therefore, when constructing a distributed applica-
tion, we need to initially define the role of each of its 
components. However, it is almost impossible to 
exactly know the functions that each of the compo-
nents should provide, since distributed systems are 
dynamic and may partially have malfunctioned, e.g., 
network partitioning. 

In the remainder of this paper, we discuss the re-
quirements of the framework through reviewing rela-

ted work (Section 2), the design of our framework 
(Section 3), and an implementation of the framework 
(Section 4). We explain our evaluation of the frame-
work with some applications (Section 5) and provide 
a summary, discuss some future issues (Section 6). 

2 Related work 

Several researchers have explored evolutional 
computing approaches, including genetic computa-
tion and genetic programming [9] and swarm intelli-
gence [3, 5]. Many mechanisms from which self-
organization emerges are often too diverse, when the 
are applied to real distributed systems whose struc-
tures and applications may be dynamically changing. 
However, real systems may have no chance of ascer-
taining the fitness of randomly generated parameters 
or programs, because they have an effect on the real 
world and are used for mission-critical processing. 
Since the size and structure of real distributed sys-
tems have been designed and optimized to the needs 
of their applications, the systems have no room to ex-
ecute such large numbers of swarm agents. Conse-
quently, our software adaptation mechanism for dis-
tributed systems must involve as few computational 
resources as possible that the systems spend for soft-
ware adaptation. 
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There have been several attempts to support soft-
ware adaptation in the literatures on self-organizing 
properties, autonomic computing, and software engi-
neering. Autonomic computing was initiated by IBM 
and has encouraged research on providing self-
organizing properties to systems. Several existing 
studies primarily support middleware or higher layers 
as models and system architecture in a distributed 
computing setting like ours. Bigus et al. [1] proposed 
an agent-based toolkit for autonomic systems, where 
each agent has a closedloop controller as part of the 
whole hierarchy of distributed control. The toolkit 
was intended to customize groups of agents but not 
the functions inside agents. Blair et al. [2] tried to in-
troduce self-awareness and self-healing into a COR-
BAcompatible Object Request Broker (ORB). Their 
system was a meta-level architecture with the ability 
of dynamically binding CORBA objects. Jaeger et al. 
[8] introduced the notion of self-organization to ORB 
and a publish/subscribe system. 

Georgiadis et al. [6] presented connection-based 
architecture for self-organizing software components 
on a distributed system. Like other software compo-
nent architectures, they intended to customize their 
systems by changing connections between compo-
nents instead of internal behaviors inside compo-
nents. Like ours, Cheng at al. [4] presented an adap-
tive selection mechanism for servers by enabling 
selection policies, but they did not customize the 
servers themselves. They also needed to execute dif-
ferent servers simultaneously. 

Suda et al. proposed bio-inspired middleware, 
called BioNetworking, for disseminating network 
services in dynamic and large-scale networks where 
there were a large number of decentralized data and 
services [10, 15]. Although they introduced the no-
tion of energy into distributed systems and enabled 
agents to be replicated, moved, and deleted according 
to the number of service requests, they had no mech-
anism to adapt agents’ behavior unlike ours. Most of 
their parameters, e.g., energy, tend to depend on a 
particular distributed system. so that they may not be 
available in another system1. Our framework should 

                                                                    
1 To prevent malicious agents from being passed be-

tween computers, each runtime system supports a Kerberos-
based authentication mechanism for agent migration. Since 
it can inherit the security mechanisms provided in the Java 
language environment, the Java VM explicitly restricts 

be independent of the capabilities of distributed sys-
tems as much as possible. 

We proposed a nature-inspired approach to dy-
namically deploying agents at computers in our pre-
vious papers [11, 12]. The approach enabled each 
agent to describe its own deployment as a relation-
ship between its location and another agent’s loca-
tion. However, the approach had no mechanism for 
differentiating or adapting agents themselves. 

3 Background 

The basic inspiration for our approach lies in the 
development of multicellular organisms in nature. 
Cellular differentiation is the process by which a less 
specialized cell develops or matures to possess a mo-
re distinct form and function in developmental bio-
logy. For example, cellular slime molds, e.g., dic-
tyostelium discoideum, are eukaryotic 
microorganisms in the soil. They are solitary 
amoebae and feed on bacteria. Once food becomes 
scarce, the cells start to aggregate and differentiate 
themselves. Each amoebae secretes cyclic-
adenosinemonophosphate (cAMP) that chemotaxi-
cally leads the cells to aggregate. This multicellular 
mound goes on to form a colony. The mound has two 
distinct cell types: prespore cells and prestalk cells. 
Each cell initially intends to become the former and 
periodically secretes cAMP that chemotaxically leads 
other cells to the latter. Secreted cAMP only affects 
cells within a certain distance (6 to 10 cell diameters 
from the signaling cell). As a result, prespore cells 
comprise about 80% of the mound, while prestalk ce-
lls account for the remaining 20% of the mound. The 
mound becomes a mass of aggregated amoebae with 
the ability to move to a more desirable place. Diffe-
rentiation into mature spore and stalk cells proceeds. 
While stalk cells are programmed to die, spore cells 
germinate into single-celled amoebae. Dedifferentia-
tion is the process by which a partially or terminally 
differentiated cell reverts to an earlier developmental 
stage. The process is often seen in more basal life 
forms such as worms and amphibians. It may occur 
before the regeneration of appendages in plants and 
certain animals. 

                                                                                            
agents so that they can only access specified resources to 
protect computers from agents. 
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4 Approach 

The framework assumes that a distributed applica-
tion running on different computers consist of (au-
tonomous) programmable entities, called agents, cor-
respondings to cells. It emulates the above process 
between agents, which may be running on different 
computers. It also introduces the undertak-
ing/delegation of functions in agents from/to other 
agents as their differentiation factor. Agents are dif-
ferentiated according to demands from other agents. 
When an agent receives a request message to do a 
function from another agent, the function is more de-
veloped in the former and it is less developed in the 
latter (Figure 1). Finally, agents are only specialized 
to some of their functions. They undertake the spe-
cialized functions from other agents. Instead, they 
delegate other functions, which may be initially pro-
vided in them, to other agents that can provide the 
functions. Each agent has one or more functions with 
weights, where each weight corresponds to the 
amount of cAMP and indicates the superiority of its 
function. 

Agents may lose their functions due to differentia-
tion as well as be busy or failed. The approach also 
offers a mechanism to recover from such problems 
based on dedifferentiation, which a mechanism for 
regressing specialized cells to simpler, more embry-
onic, unspecialized forms. As in the dedifferentiation 
process, if there are no other agents that are sending 
restraining messages to an agent, the agent can per-
form its dedifferentiation process and strengthen their 
lessdeveloped or inactive functions again. 

5 Design and Implementation 

Our approach is maintained through two parts: 
runtime systems and agents. The former is a middle-
ware system for running on computers and the latter 
is a self-contained and autonomous software entity. It 
has three protocols for (de)differentiation and delega-
tion. 

5.1 Agent 

Each agent consists of one or more functions, 
called the behavior parts, and its state, called the body 
part, with information for (de)differentiation, called 
the attribute part. 

• The body part maintains program variables 
shared by its behaviors parts like instance vari-
ables in object orientation. When it receives a 
request message from an external system or 
other agents, it dispatches the message to the 
behavior part that can handle the message. 

• The behavior part defines more than one appli-
cation specific behavior. It corresponds to a 
method in object orientation. As in behavior in-
vocation, when a message is received from the 
body part, the behavior is executed and returns 
the result is returned via the body part. 

• The attribute part maintains descriptive infor-
mation with regard to the agent, including its 
own identifier. The attributes contains a data-
base for maintaining the weights of its own be-
haviors and for recording information on the 
behaviors that other agents can provide. 

 
Figure 1: Cellular Differentiation-like approach for  

Software Adaptation 

 
 
There is no universal selection function, φ, for 

mapping from the weights of behaviors to at most one 
appropriate behavior like that in a variety of crea-
tures. Instead, the approach permits agents to use 
their own evaluation functions, because the selection 
of behaviors often depends on their applications. For 
example, one of the simplest evaluation functions 
makes the agent that wants to execute a behavior se-
lect one whose weight has the highest value and 
whose signature matches the wanted behavior if its 
database recognizes one or more agents that provide 
the same behavior, including itself. 

The agent has behaviors bk
1,...,bk

n and wik is the 
weight of behavior bk

i. Each agent (k-th) assigns its 
own maximum to the total of the weights of all its 
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behaviors. The Wk
i is the maximum of the weight of 

behavior bk
i . The maximum total of the weights of its 

behaviors in the k-th agent must be less than Wk . ( W 
k ≥ Ʃn

i = 1 wk
i ) , where wk

j − 1 is 0 if wk
j is 0. The Wk 

may depend on agents. In fact, Wk corresponds to the 
upper limit of the ability of each agent and may de-
pend on the performance of the underlying system, 
including the processor. Note that we never expect 
that the latter will be complete, since agents periodi-
cally exchange their information with neighboring 
agents. Furthermore, when agents receive no retrai-
ning messages from others for longer than a certain 
duration, they remove information about them.  

5.2 Function invocation 

When an agent wants to execute a behavior, it 
needs to select one of the available behaviors (bj

i 
,...,bm

i ), even if it has the behavior, according to the 
values of their weights. This involves three steps. 
• When an agent (k-th agent) wants to execute 

behavior bi, it looks up the weight (wi
k) of the 

same or a compatible behavior from its data-
base and the weights (wi

j,...,wi
m) of such behav-

iors (bj
i,...,bm

i ) from the database. 
• If multiple agents, including itself, can provide 

the wanted behavior, the k-th agent selects one 
of the agents according to selection function φk 
, which maps from wi

k and wi
j,...,wi

m to bl
i, 

where l is k or j,...,m. 
• The k-th agent delegates the selected agent to 

execute the behavior bl
i and waits for the result 

from the l-th agent. 
 

There is no universal selection function, φ, for 
mapping from the weights of behaviors to at most one 
appropriate behavior like that in a variety of crea-
tures. Instead, the approach permits agents to use 
their own evaluation functions, because the selection 
of behaviors often depends on their applications. For 
example, one of the simplest evaluation functions 
makes the agent that wants to execute a behavior se-
lect one whose weight has the highest value and 
whose signature matches the wanted behavior if its 
database recognizes one or more agents that provide 
the same behavior, including itself. 

5.3 Differentiation 

The approach introduces the undertak-
ing/delegation of behaviors in agents from other 
agents as a differentiation factor. Behaviors in an 
agent, which are delegated from other agents more 
frequently, are well developed, whereas other behav-
iors, which are delegated from other agents less fre-
quently, in the cell are less developed. Finally, the 
agent only provides the former behaviors and dele-
gates the latter behaviors to other agents. Our differ-
entiation mechanism consists of two phases. The first 
involves the progression of behaviors in three steps. 
• When an agent (k-th agent) receives a request 

message from another agent, it selects the be-
havior (bk

i) specified in the message from its 
behavior part and dispatches the message to the 
selected behavior. It executes the bk

i behavior 
and returns the result. 

• The k-th agent increases weight wk
i of the bk

i 
behavior. 

• The k-th agent multicasts a restraining message 
with the signature of the behavior, its identifier 
(k), and the behavior’s weight (wk

i) to other 
agents. 
 
When behaviors are internally invoked by their 

agents, their weights are not increased. If the total 
weights of the agent’s behaviors, Ʃw k

i , is equal to 
their maximal total weight Wk, it decreases one of 
the minimal (and positive) weights (wk

j is replaced 
by wk

j−1 where wk
j =min(wk

1,...,wk
n) and wk

j ≥ 0). Al-
though restraining messages correspond to the diffu-
sion of cAMP in differentiation, they can explicitly 
carry the weights of the agents that send them to re-
duce the number of restraining messages, because 
they can be substituted for more than one retaining 
message without weights. The second phase sup-
ports the retrogression of behaviors in three steps. 

 
When an agent (k-th agent) receives a restrain-

ing message with regard to bj
j from another agent (j-

th), it looks for the behaviors (bk
m , ... bk

l) that can 
have the signature specified in the received message. 

If it has such behaviors, it decreases their 
weights (wk

m,..., wk
l) in its database and updates the 

weight (wj
i) in its database. 

If the weights (wk
m,...,wk

l) are under a specified 
value, e.g., 0, the behaviors (bk

m,...,bk
l) are inactivat-

ed. 
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5.4 Dedifferentiation 

Distributed systems may be damaged or stop due 
to disasters and problems. We need a mechanism for 
detecting and remedying failures in networking, 
computers, agents, remote computers, and other 
agents. To do this, each agent (j-th) periodically mul-
ticasts messages, called heartbeat messages, for be-
havior (bj

i), which is still activated with its identifier 
(j-th). This involves two cases. 

i) When an agent (k-th) receives a heartbeat mes-
sage with regard to behavior (bj

i) from another agent 
(j-th), it retains the weight (wj

i) of the behavior (bj
i) in 

its second database. 
ii) When an agent (k-th) does not receive any 

heartbeat messages with regard to behavior (bj
i) from 

another agent (j-th) for a specified time, it automati-
cally decreases the weight (wj

i) of the behavior (bj
i) in 

its second database, and resets the weight (wk
i) of the 

behavior (bk
i) to the initial value or increases the 

weight (wk
i) in its first database. 

Note that behavior bk
i is provided by the k-th agent 

and behavior bj
i is provided by the j-th agent. The 

weights of behaviors provided by other agents auto-
matically decrease without any heartbeat messages 
from the agents. Therefore, when an agent terminates 
or fails, other agents decrease the weights of the be-
haviors provided by the agent. If they have the same 
or compatible behaviors, they can then activate the 
behaviors, which may be inactivated. After a request 
message is sent to another agent, if the agent waits for 
the result to arrive for longer than a specified time, it 
selects one of the agents that can handle the message 
from its database and requests the selected agent. If 
there are no agents that can provide the behavior that 
can handle the behavior quickly, it promotes other 
agents that have the behavior in less-developed form 
(and itself if it has the behavior). 

5.5 Implementation 

Each runtime system is constructed as a middle-
ware system with Java based on several technologies 
of mobile agent platforms [13]. It is responsible for 
executing agents and exchanging messages in 
runtime systems on other computers through a net-

work23. It allow each agent, i.e., component, to have 
at most one activity through the Java thread library. It 
cooperates with an existing web server, called Jetty, 
to receive requests from external systems and return 
the results of agents through HTTP-based protocols. 

When a runtime system detects failure in another, 
it removes information, including weights, about the 
behaviors of agents running on the systems. When a 
runtime system is (re)connected to a network, it mul-
ticasts heartbeat messages to other runtime systems to 
advertise itself, including its network address. 

Our mechanism itself must be tolerant to network 
or system problems, e.g., network partitioning and 
node failure. The approach classifies communica-
tions, which may be between different computers, in-
to two types. The former supports system-level com-
munications between runtime systems, i.e., agent 
migration, and application-specific communications, 
i.e., request and reply messages. It is implemented 
through TCP sessions as reliable communications. 
When typical network problems occur, e.g., network 
partitioning and node failure during communication, 
the TCP session itself can detect such problems and it 
notifies runtime systems on the both sides to execute 
the exception handling defined in runtime systems or 
agents. 

The latter supports messages for differentiation-
based adaptation, e.g., restraining and heartbeat mes-
sages. These messages are transmitted as multicast 
UDP packets, which are unreliable. Restraining mes-
sages for behaviors that do not arrive at agents do not 
seriously affect our differentiation, because such 
messages decrease weights regarding behaviors but 
do not increase the weights. Since our mechanism 
does not assume that each agent has complete infor-
mation about all agents, it is available even when 
some heartbeat messages are lost. 

                                                                    
2 Our system was implemented independently of any ex-

isting middleware or frameworks for component oriented 
computing. But, it enabled us to implement components as 
JavaBeans components. 

3 To prevent malicious agents from being passed be-
tween computers, each runtime system supports a Kerberos-
based authentication mechanism for agent migration. Since 
it can inherit the security mechanisms provided in the Java 
language environment, the Java VM explicitly restricts 
agents so that they can only access specified resources to 
protect computers from agents. 



Ichiro Satoh                                                                   Bio-inspired Self-Adaptive Agents in Distributed Systems 

 
 

54 
 

6 Evaluation 

Although the current implementation was not con-
structed for performance, we evaluated that of several 
basic operations in a distributed system where eight 
computers (Intel Core 2 Duo 1.83 GHz with MacOS 
X 10.6 and J2SE version 6) were connected through a 
giga-ethernet. The cost of transmitting a heartbeat or 
restraining message through UDP multicasting was 
11ms. The cost of transmitting a request message be-
tween two computers was 22 ms through TCP. These 
costs were estimated from the measurements of 
round-trip times between computers. We assumed in 
the following experiments that each agent issued 
heartbeat messages to other agents every 100 ms 
through UDP multicasting. 

The first experiment was carried out to evaluate 
the basic ability of agents to differentiate themselves 
through interactions in a reliable network. Each agent 
had three behaviors, called A, B, and C. The A be-
havior periodically issued messages to invoke its B 
and C behaviors or those of other agents every 200ms 
and the B and C behaviors were null behaviors. Each 
agent that wanted to execute a behavior, i.e., B or C, 
selected a behavior whose weight had the highest 
value if its database recognized one or more agents 
that provided the same or compatible behavior, in-
cluding itself. When it invokes behavior B or C and 
the weights of its and others behaviors were the same, 
it randomly selected one of the behaviors. We as-
sumed in this experiment that the weights of the B 
and C behaviors of each agent would initially be five 
and the maximum of the weight of each behavior and 
the total maximum Wk of weights would be ten. 

Figure 2 presents the results we obtained from the 
experiment. Both diagrams have a timeline in 
minutes on the x-axis and the weights of behavior B 
in each agent on the y-axis. Differentiation started af-
ter 200ms, because each agent knows the presence of 
other agents by receiving heartbeat messages from 
them. Figure 2 (a) details the results obtained from 
our differentiation between two agents. Their weights 
were not initially varied and then they forked into 
progression and regression sides. Figure 2 (b) shows 
the detailed results of our differentiation between four 
agents and Figure 2 (c) shows those of that between 
eight agents. The results in (b) and (c) fluctuated 
more and then converged faster than those in (a), be-
cause the weights of behaviors in four are increased 
or decreased more than those in two agents. Although 

the time of differentiation depended on the period of 
invoking behaviors, it was independent of the number 
of agents. This is important to prove that this ap-
proach is scalable. 

Our parameters for (de)differentiation were basi-
cally independent of the performance and capabilities 
of the underlying systems. For example, the weights 
of behaviors are used for relatively specifying the 
progression/repression of these behaviors. 

The second experiment was carried out to evaluate 
the ability of the agents to adapt to two types of fail-
ures in a distributed system (3). The first correspond-
ed to the termination of an agent and the second to 
the partition of a network. We assumed in the follow-
ing experiment that three differentiated agents would 
be running on different computers and each agent had 
four behaviors, called A, B, C, and D, where the A 
behavior invokes other behaviors every 200 ms. The 
maximum of each behavior was ten and the agents’ 
total maximum of weights was twenty. The initial 
weights of their behaviors (wi

B, wi
C, wi

D) in i-th agent 
were (10, 0, 0) in the first, (0, 10, 0) in the second, 
and (0, 0, 10) in the third. 

7 Conclusion 

This paper proposed a framework for adapting 
software agents on distributed systems. It is unique to 
other existing software adaptations in introducing the 
notions of (de)differentiation and cellular division in 
cellular slime molds, e.g., dictyostelium discoideum, 
into software agents. When an agent delegates a func-
tion to another agent, if the former has the function, 
its function becomes less-developed and the latter’s 
function becomes well-developed. When agents have 
many requests from other agents, they create their 
daughter agents. The framework was constructed as a 
middleware system on real distributed systems in-
stead of any simulation-based systems. Agents can be 
composed from Java objects. 
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Figure 2: Degree of progress in 
differentiation-based adaptation 

 
 

Figure 3: Degree of progress 
in adaptation to failed agent
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