
Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

49

KEYWORD

 ABSTRACT

Adaptive Agents
Distributed Systems

This paper proposes a bio-inspired middleware for selfadaptive software agents
on distributed systems. It is unique to other existing approaches for software
adaptation because it introduces the notions of differentiation, dedifferentiation,
and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into
real distributed systems. When an agent delegates a function to another agent
coordinating with it, if the former has the function, this function becomes less-
developed and the latter’s function becomes welldeveloped.

1 Introduction

Cellular differentiation is the mechanism by
which cells in a multicellular organism become spe-
cialized to perform specific functions in a variety of
tissues and organs. Different kinds of cell behaviors
can be observed during embryogenesis: cells double,
change in shape, and attach at and migrate to various
sites within the embryo without any obvious signs of
differentiation. The mechanism is essential in the de-
velopment of a complex organism.

This paper aims at introducing the notion of diffe-
rentiation into a distributed system as a mechanism
for adapting software components, which may be
running on different computers connected through a
network. Software components in existing distributed
systems only continue to offer their initial functions.
Therefore, when constructing a distributed applica-
tion, we need to initially define the role of each of its
components. However, it is almost impossible to
exactly know the functions that each of the compo-
nents should provide, since distributed systems are
dynamic and may partially have malfunctioned, e.g.,
network partitioning.

In the remainder of this paper, we discuss the re-
quirements of the framework through reviewing rela-

ted work (Section 2), the design of our framework
(Section 3), and an implementation of the framework
(Section 4). We explain our evaluation of the frame-
work with some applications (Section 5) and provide
a summary, discuss some future issues (Section 6).

2 Related work

Several researchers have explored evolutional
computing approaches, including genetic computa-
tion and genetic programming [9] and swarm intelli-
gence [3, 5]. Many mechanisms from which self-
organization emerges are often too diverse, when the
are applied to real distributed systems whose struc-
tures and applications may be dynamically changing.
However, real systems may have no chance of ascer-
taining the fitness of randomly generated parameters
or programs, because they have an effect on the real
world and are used for mission-critical processing.
Since the size and structure of real distributed sys-
tems have been designed and optimized to the needs
of their applications, the systems have no room to ex-
ecute such large numbers of swarm agents. Conse-
quently, our software adaptation mechanism for dis-
tributed systems must involve as few computational
resources as possible that the systems spend for soft-
ware adaptation.

Bio-inspired Self-Adaptive Agents
in Distributed Systems
Ichiro Satoh
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

50

There have been several attempts to support soft-
ware adaptation in the literatures on self-organizing
properties, autonomic computing, and software engi-
neering. Autonomic computing was initiated by IBM
and has encouraged research on providing self-
organizing properties to systems. Several existing
studies primarily support middleware or higher layers
as models and system architecture in a distributed
computing setting like ours. Bigus et al. [1] proposed
an agent-based toolkit for autonomic systems, where
each agent has a closedloop controller as part of the
whole hierarchy of distributed control. The toolkit
was intended to customize groups of agents but not
the functions inside agents. Blair et al. [2] tried to in-
troduce self-awareness and self-healing into a COR-
BAcompatible Object Request Broker (ORB). Their
system was a meta-level architecture with the ability
of dynamically binding CORBA objects. Jaeger et al.
[8] introduced the notion of self-organization to ORB
and a publish/subscribe system.

Georgiadis et al. [6] presented connection-based
architecture for self-organizing software components
on a distributed system. Like other software compo-
nent architectures, they intended to customize their
systems by changing connections between compo-
nents instead of internal behaviors inside compo-
nents. Like ours, Cheng at al. [4] presented an adap-
tive selection mechanism for servers by enabling
selection policies, but they did not customize the
servers themselves. They also needed to execute dif-
ferent servers simultaneously.

Suda et al. proposed bio-inspired middleware,
called BioNetworking, for disseminating network
services in dynamic and large-scale networks where
there were a large number of decentralized data and
services [10, 15]. Although they introduced the no-
tion of energy into distributed systems and enabled
agents to be replicated, moved, and deleted according
to the number of service requests, they had no mech-
anism to adapt agents’ behavior unlike ours. Most of
their parameters, e.g., energy, tend to depend on a
particular distributed system. so that they may not be
available in another system1. Our framework should

1 To prevent malicious agents from being passed be-

tween computers, each runtime system supports a Kerberos-
based authentication mechanism for agent migration. Since
it can inherit the security mechanisms provided in the Java
language environment, the Java VM explicitly restricts

be independent of the capabilities of distributed sys-
tems as much as possible.

We proposed a nature-inspired approach to dy-
namically deploying agents at computers in our pre-
vious papers [11, 12]. The approach enabled each
agent to describe its own deployment as a relation-
ship between its location and another agent’s loca-
tion. However, the approach had no mechanism for
differentiating or adapting agents themselves.

3 Background

The basic inspiration for our approach lies in the
development of multicellular organisms in nature.
Cellular differentiation is the process by which a less
specialized cell develops or matures to possess a mo-
re distinct form and function in developmental bio-
logy. For example, cellular slime molds, e.g., dic-
tyostelium discoideum, are eukaryotic
microorganisms in the soil. They are solitary
amoebae and feed on bacteria. Once food becomes
scarce, the cells start to aggregate and differentiate
themselves. Each amoebae secretes cyclic-
adenosinemonophosphate (cAMP) that chemotaxi-
cally leads the cells to aggregate. This multicellular
mound goes on to form a colony. The mound has two
distinct cell types: prespore cells and prestalk cells.
Each cell initially intends to become the former and
periodically secretes cAMP that chemotaxically leads
other cells to the latter. Secreted cAMP only affects
cells within a certain distance (6 to 10 cell diameters
from the signaling cell). As a result, prespore cells
comprise about 80% of the mound, while prestalk ce-
lls account for the remaining 20% of the mound. The
mound becomes a mass of aggregated amoebae with
the ability to move to a more desirable place. Diffe-
rentiation into mature spore and stalk cells proceeds.
While stalk cells are programmed to die, spore cells
germinate into single-celled amoebae. Dedifferentia-
tion is the process by which a partially or terminally
differentiated cell reverts to an earlier developmental
stage. The process is often seen in more basal life
forms such as worms and amphibians. It may occur
before the regeneration of appendages in plants and
certain animals.

agents so that they can only access specified resources to
protect computers from agents.

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

4 Approach

The framework assumes that a distributed applica-
tion running on different computers consist of (au-
tonomous) programmable entities, called agents, cor-
respondings to cells. It emulates the above process
between agents, which may be running on different
computers. It also introduces the undertak-
ing/delegation of functions in agents from/to other
agents as their differentiation factor. Agents are dif-
ferentiated according to demands from other agents.
When an agent receives a request message to do a
function from another agent, the function is more de-
veloped in the former and it is less developed in the
latter (Figure 1). Finally, agents are only specialized
to some of their functions. They undertake the spe-
cialized functions from other agents. Instead, they
delegate other functions, which may be initially pro-
vided in them, to other agents that can provide the
functions. Each agent has one or more functions with
weights, where each weight corresponds to the
amount of cAMP and indicates the superiority of its
function.

Agents may lose their functions due to differentia-
tion as well as be busy or failed. The approach also
offers a mechanism to recover from such problems
based on dedifferentiation, which a mechanism for
regressing specialized cells to simpler, more embry-
onic, unspecialized forms. As in the dedifferentiation
process, if there are no other agents that are sending
restraining messages to an agent, the agent can per-
form its dedifferentiation process and strengthen their
lessdeveloped or inactive functions again.

5 Design and Implementation

Our approach is maintained through two parts:
runtime systems and agents. The former is a middle-
ware system for running on computers and the latter
is a self-contained and autonomous software entity. It
has three protocols for (de)differentiation and delega-
tion.

5.1 Agent

Each agent consists of one or more functions,
called the behavior parts, and its state, called the body
part, with information for (de)differentiation, called
the attribute part.

• The body part maintains program variables
shared by its behaviors parts like instance vari-
ables in object orientation. When it receives a
request message from an external system or
other agents, it dispatches the message to the
behavior part that can handle the message.

• The behavior part defines more than one appli-
cation specific behavior. It corresponds to a
method in object orientation. As in behavior in-
vocation, when a message is received from the
body part, the behavior is executed and returns
the result is returned via the body part.

• The attribute part maintains descriptive infor-
mation with regard to the agent, including its
own identifier. The attributes contains a data-
base for maintaining the weights of its own be-
haviors and for recording information on the
behaviors that other agents can provide.

Figure 1: Cellular Differentiation-like approach for

Software Adaptation

There is no universal selection function, φ, for

mapping from the weights of behaviors to at most one
appropriate behavior like that in a variety of crea-
tures. Instead, the approach permits agents to use
their own evaluation functions, because the selection
of behaviors often depends on their applications. For
example, one of the simplest evaluation functions
makes the agent that wants to execute a behavior se-
lect one whose weight has the highest value and
whose signature matches the wanted behavior if its
database recognizes one or more agents that provide
the same behavior, including itself.

The agent has behaviors bk
1,...,bk

n and wik is the
weight of behavior bk

i. Each agent (k-th) assigns its
own maximum to the total of the weights of all its

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

52

behaviors. The Wk
i is the maximum of the weight of

behavior bk
i . The maximum total of the weights of its

behaviors in the k-th agent must be less than Wk . (W
k ≥ Ʃn

i = 1 wk
i) , where wk

j − 1 is 0 if wk
j is 0. The Wk

may depend on agents. In fact, Wk corresponds to the
upper limit of the ability of each agent and may de-
pend on the performance of the underlying system,
including the processor. Note that we never expect
that the latter will be complete, since agents periodi-
cally exchange their information with neighboring
agents. Furthermore, when agents receive no retrai-
ning messages from others for longer than a certain
duration, they remove information about them.

5.2 Function invocation

When an agent wants to execute a behavior, it
needs to select one of the available behaviors (bj

i
,...,bm

i), even if it has the behavior, according to the
values of their weights. This involves three steps.
• When an agent (k-th agent) wants to execute

behavior bi, it looks up the weight (wi
k) of the

same or a compatible behavior from its data-
base and the weights (wi

j,...,wi
m) of such behav-

iors (bj
i,...,bm

i) from the database.
• If multiple agents, including itself, can provide

the wanted behavior, the k-th agent selects one
of the agents according to selection function φk
, which maps from wi

k and wi
j,...,wi

m to bl
i,

where l is k or j,...,m.
• The k-th agent delegates the selected agent to

execute the behavior bl
i and waits for the result

from the l-th agent.

There is no universal selection function, φ, for
mapping from the weights of behaviors to at most one
appropriate behavior like that in a variety of crea-
tures. Instead, the approach permits agents to use
their own evaluation functions, because the selection
of behaviors often depends on their applications. For
example, one of the simplest evaluation functions
makes the agent that wants to execute a behavior se-
lect one whose weight has the highest value and
whose signature matches the wanted behavior if its
database recognizes one or more agents that provide
the same behavior, including itself.

5.3 Differentiation

The approach introduces the undertak-
ing/delegation of behaviors in agents from other
agents as a differentiation factor. Behaviors in an
agent, which are delegated from other agents more
frequently, are well developed, whereas other behav-
iors, which are delegated from other agents less fre-
quently, in the cell are less developed. Finally, the
agent only provides the former behaviors and dele-
gates the latter behaviors to other agents. Our differ-
entiation mechanism consists of two phases. The first
involves the progression of behaviors in three steps.
• When an agent (k-th agent) receives a request

message from another agent, it selects the be-
havior (bk

i) specified in the message from its
behavior part and dispatches the message to the
selected behavior. It executes the bk

i behavior
and returns the result.

• The k-th agent increases weight wk
i of the bk

i
behavior.

• The k-th agent multicasts a restraining message
with the signature of the behavior, its identifier
(k), and the behavior’s weight (wk

i) to other
agents.

When behaviors are internally invoked by their

agents, their weights are not increased. If the total
weights of the agent’s behaviors, Ʃw k

i , is equal to
their maximal total weight Wk, it decreases one of
the minimal (and positive) weights (wk

j is replaced
by wk

j−1 where wk
j =min(wk

1,...,wk
n) and wk

j ≥ 0). Al-
though restraining messages correspond to the diffu-
sion of cAMP in differentiation, they can explicitly
carry the weights of the agents that send them to re-
duce the number of restraining messages, because
they can be substituted for more than one retaining
message without weights. The second phase sup-
ports the retrogression of behaviors in three steps.

When an agent (k-th agent) receives a restrain-

ing message with regard to bj
j from another agent (j-

th), it looks for the behaviors (bk
m , ... bk

l) that can
have the signature specified in the received message.

If it has such behaviors, it decreases their
weights (wk

m,..., wk
l) in its database and updates the

weight (wj
i) in its database.

If the weights (wk
m,...,wk

l) are under a specified
value, e.g., 0, the behaviors (bk

m,...,bk
l) are inactivat-

ed.

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

5.4 Dedifferentiation

Distributed systems may be damaged or stop due
to disasters and problems. We need a mechanism for
detecting and remedying failures in networking,
computers, agents, remote computers, and other
agents. To do this, each agent (j-th) periodically mul-
ticasts messages, called heartbeat messages, for be-
havior (bj

i), which is still activated with its identifier
(j-th). This involves two cases.

i) When an agent (k-th) receives a heartbeat mes-
sage with regard to behavior (bj

i) from another agent
(j-th), it retains the weight (wj

i) of the behavior (bj
i) in

its second database.
ii) When an agent (k-th) does not receive any

heartbeat messages with regard to behavior (bj
i) from

another agent (j-th) for a specified time, it automati-
cally decreases the weight (wj

i) of the behavior (bj
i) in

its second database, and resets the weight (wk
i) of the

behavior (bk
i) to the initial value or increases the

weight (wk
i) in its first database.

Note that behavior bk
i is provided by the k-th agent

and behavior bj
i is provided by the j-th agent. The

weights of behaviors provided by other agents auto-
matically decrease without any heartbeat messages
from the agents. Therefore, when an agent terminates
or fails, other agents decrease the weights of the be-
haviors provided by the agent. If they have the same
or compatible behaviors, they can then activate the
behaviors, which may be inactivated. After a request
message is sent to another agent, if the agent waits for
the result to arrive for longer than a specified time, it
selects one of the agents that can handle the message
from its database and requests the selected agent. If
there are no agents that can provide the behavior that
can handle the behavior quickly, it promotes other
agents that have the behavior in less-developed form
(and itself if it has the behavior).

5.5 Implementation

Each runtime system is constructed as a middle-
ware system with Java based on several technologies
of mobile agent platforms [13]. It is responsible for
executing agents and exchanging messages in
runtime systems on other computers through a net-

work23. It allow each agent, i.e., component, to have
at most one activity through the Java thread library. It
cooperates with an existing web server, called Jetty,
to receive requests from external systems and return
the results of agents through HTTP-based protocols.

When a runtime system detects failure in another,
it removes information, including weights, about the
behaviors of agents running on the systems. When a
runtime system is (re)connected to a network, it mul-
ticasts heartbeat messages to other runtime systems to
advertise itself, including its network address.

Our mechanism itself must be tolerant to network
or system problems, e.g., network partitioning and
node failure. The approach classifies communica-
tions, which may be between different computers, in-
to two types. The former supports system-level com-
munications between runtime systems, i.e., agent
migration, and application-specific communications,
i.e., request and reply messages. It is implemented
through TCP sessions as reliable communications.
When typical network problems occur, e.g., network
partitioning and node failure during communication,
the TCP session itself can detect such problems and it
notifies runtime systems on the both sides to execute
the exception handling defined in runtime systems or
agents.

The latter supports messages for differentiation-
based adaptation, e.g., restraining and heartbeat mes-
sages. These messages are transmitted as multicast
UDP packets, which are unreliable. Restraining mes-
sages for behaviors that do not arrive at agents do not
seriously affect our differentiation, because such
messages decrease weights regarding behaviors but
do not increase the weights. Since our mechanism
does not assume that each agent has complete infor-
mation about all agents, it is available even when
some heartbeat messages are lost.

2 Our system was implemented independently of any ex-

isting middleware or frameworks for component oriented
computing. But, it enabled us to implement components as
JavaBeans components.

3 To prevent malicious agents from being passed be-
tween computers, each runtime system supports a Kerberos-
based authentication mechanism for agent migration. Since
it can inherit the security mechanisms provided in the Java
language environment, the Java VM explicitly restricts
agents so that they can only access specified resources to
protect computers from agents.

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

54

6 Evaluation

Although the current implementation was not con-
structed for performance, we evaluated that of several
basic operations in a distributed system where eight
computers (Intel Core 2 Duo 1.83 GHz with MacOS
X 10.6 and J2SE version 6) were connected through a
giga-ethernet. The cost of transmitting a heartbeat or
restraining message through UDP multicasting was
11ms. The cost of transmitting a request message be-
tween two computers was 22 ms through TCP. These
costs were estimated from the measurements of
round-trip times between computers. We assumed in
the following experiments that each agent issued
heartbeat messages to other agents every 100 ms
through UDP multicasting.

The first experiment was carried out to evaluate
the basic ability of agents to differentiate themselves
through interactions in a reliable network. Each agent
had three behaviors, called A, B, and C. The A be-
havior periodically issued messages to invoke its B
and C behaviors or those of other agents every 200ms
and the B and C behaviors were null behaviors. Each
agent that wanted to execute a behavior, i.e., B or C,
selected a behavior whose weight had the highest
value if its database recognized one or more agents
that provided the same or compatible behavior, in-
cluding itself. When it invokes behavior B or C and
the weights of its and others behaviors were the same,
it randomly selected one of the behaviors. We as-
sumed in this experiment that the weights of the B
and C behaviors of each agent would initially be five
and the maximum of the weight of each behavior and
the total maximum Wk of weights would be ten.

Figure 2 presents the results we obtained from the
experiment. Both diagrams have a timeline in
minutes on the x-axis and the weights of behavior B
in each agent on the y-axis. Differentiation started af-
ter 200ms, because each agent knows the presence of
other agents by receiving heartbeat messages from
them. Figure 2 (a) details the results obtained from
our differentiation between two agents. Their weights
were not initially varied and then they forked into
progression and regression sides. Figure 2 (b) shows
the detailed results of our differentiation between four
agents and Figure 2 (c) shows those of that between
eight agents. The results in (b) and (c) fluctuated
more and then converged faster than those in (a), be-
cause the weights of behaviors in four are increased
or decreased more than those in two agents. Although

the time of differentiation depended on the period of
invoking behaviors, it was independent of the number
of agents. This is important to prove that this ap-
proach is scalable.

Our parameters for (de)differentiation were basi-
cally independent of the performance and capabilities
of the underlying systems. For example, the weights
of behaviors are used for relatively specifying the
progression/repression of these behaviors.

The second experiment was carried out to evaluate
the ability of the agents to adapt to two types of fail-
ures in a distributed system (3). The first correspond-
ed to the termination of an agent and the second to
the partition of a network. We assumed in the follow-
ing experiment that three differentiated agents would
be running on different computers and each agent had
four behaviors, called A, B, C, and D, where the A
behavior invokes other behaviors every 200 ms. The
maximum of each behavior was ten and the agents’
total maximum of weights was twenty. The initial
weights of their behaviors (wi

B, wi
C, wi

D) in i-th agent
were (10, 0, 0) in the first, (0, 10, 0) in the second,
and (0, 0, 10) in the third.

7 Conclusion

This paper proposed a framework for adapting
software agents on distributed systems. It is unique to
other existing software adaptations in introducing the
notions of (de)differentiation and cellular division in
cellular slime molds, e.g., dictyostelium discoideum,
into software agents. When an agent delegates a func-
tion to another agent, if the former has the function,
its function becomes less-developed and the latter’s
function becomes well-developed. When agents have
many requests from other agents, they create their
daughter agents. The framework was constructed as a
middleware system on real distributed systems in-
stead of any simulation-based systems. Agents can be
composed from Java objects.

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

Figure 2: Degree of progress in
differentiation-based adaptation

Figure 3: Degree of progress
in adaptation to failed agent

Ichiro Satoh Bio-inspired Self-Adaptive Agents in Distributed Systems

56

9 References

[1] J.P. Bigus, D.A. Schlosnagle, J.R. Pilgrim, W.N. Mills, Y. Diao: ABLE: A toolkit for building multiagent au-
tonomic systems, IBM Systems Journal vol.41, no.3, pp.350-371, IBM, 2002.

[2] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Moreira, and N. Parlavantzas: Reflec-
tion, selfawareness and self-healing in OpenORB, in Proceedings of 1st Workshop on Self-healing sys-
tems (WOSS’2002), pp.9-14, ACM Press, 2002.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz: Swarm Intelligence: From Natural to Artificial Systems, Ox-
ford University Press, 1999.

[4] S. Cheng, D. Garlan, B. Schmerl: Architecture-based self-adaptation in the presence of multiple objec-
tives, in Proceedings of International Workshop on Selfadaptation and Self-managing Systems
(SEAMS’2006), pp.2-8, ACM Press, 2006.

[5] M.Dorigo and T. Stutzle: Ant Colony Optimization,MIT Press, 2004.
[6] I. Georgiadis, J. Magee, and J. Kramer: Self-Organising Software Architectures for Distributed Systems

in Proceedings of 1st Workshop on Self-healing systems (WOSS’2002), pp.33-38, ACM Press, 2002.
[7] K. Herrman: Self-organizing Replica Placement A

Case Study on Emergence, in Proceedings of 2nd
IEEE International Conference on Self-Adaptive and 10 Self-Organizing Systems (SASO’2007), pp.13-
22, IEEE
Computer Society, 2007.

[8] M. A. Jaeger, H. Parzyjegla, G. Muhl, K. Herrmann: Self-organizing broker topologies for pub-
lish/subscribe systems, in Proceedings of ACM symposium on Applied Computing (SAC’2007), pp.543-
550, ACM, 2007.

[9] J.R. Koza: Genetic Programming: On the Programming of Computers by Means of Natural Selection,
MIT Press, 1992

[10] T. Nakano and T. Suda: Self-Organizing Network Services With Evolutionary Adaptation, IEEE Trans-
actions on Neural Networks, vol.16, no.5, pp.1269-1278, 2005.

[11] I Satoh: Self-organizing Software Components in Distributed Systems, in Proceedings of 20th Interna-
tional Conference on Architecture of Computing Systems System Aspects in Pervasive and Organic
Computing (ARCS’07), Lecture Notes in Computer Science (LNCS), vol.4415, pp.185-198, Springer,
March 2007.

[12] I Satoh: Test-bed Platform for Bio-inspired Distributed Systems, in Proceesings of 3rd International
Conference on Bio-Inspired Models of Network, Information, and Computing Systems, November 2008.

[13] I Satoh: Mobile Agents, Handbook of Ambient Intelligence and Smart Environments, pp.771-791,
Springer 2010.

[14] P. L. Snyder, R. Greenstadt, G. Valetto: Myconet: A Fungi-Inspired Model for Superpeer-Based Peer-to-
Peer Overlay Topologies, in Proceedings of 3rd IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO’2009), pp.40-50, 2009.

[15] T. Suda and J. Suzuki: A Middleware Platform for a Biologically-inspired Network Architecture Sup-
porting Autonomous and Adaptive Applications. IEEE Journal on Selected Areas in Communications,
vol.23, no.2, pp.249-260, 2005.

