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The prevalence of situations of medical error and defensive medicine in 
healthcare institutions is a great concern of the medical community. Clinical 
Practice Guidelines are regarded by most researchers as a way to mitigate these 
occurrences; however, there is a need to make them interactive, easier to update 
and to deploy. This paper provides a model for Computer-Interpretable Guide-
lines based on the generic tasks of the clinical process, devised to be included in 
the framework of a Clinical Decision Support System. Aiming to represent medi-
cal recommendations in a simple and intuitive way. Hence, this work proposes a 
knowledge representation formalism that uses an Extension to Logic Program-
ming to handle incomplete information. This model is used to represent different 
cases of missing, conflicting and inexact information with the aid of a method to 
quantify its quality. The integration of the guideline model with the knowledge 
representation formalism yields a clinical decision model that relies on the de-
velopment of multiple information scenarios and the exploration of different 
clinical hypotheses.  

   

1 Introduction 

Given the stressful conditions that healthcare pro-
fessionals are subjected to, it is not surprising for sit-
uations of medical error and defensive medicine to 
occur. On one hand, the excessive workload of 
healthcare institutions may drive practitioners to 
commit errors of execution or errors of planning that 
are responsible for the occurrence of adverse events 
in patients (e.g., injuries, death) [KALRA, 2004]. On 
the other hand, they may choose to deliberately refuse 
a patient or order treatments, tests and procedures that 
are not really necessary, to avoid lawsuits and ac-
countability for the assessments and decisions they 
make based on the health condition of a patient, a 
practice that goes by the name of defensive medicine 
[CHAWLA & GUNDERMAN, 2008]. The frequency 
of these events in healthcare should not be neglected.  
For instance, in London hospitals, the rate of adverse 
events is about 10.8% and in Australian hospitals this 

number rises to 16.6% [KALRA, 2004], also, in the 
United States of America (USA) it is estimated that 
nearly 44 000 people die annually as a result of medi-
cal errors [BRENNAN, 2000]. These numbers are 
significant mainly because they reflect how a poorly 
conducted medical practice can affect a patient’s life 
and the worldwide concern with this aspect. Defen-
sive medicine is also among the primary concerns of 
the medical community, given the excessive spending 
that spawns from this practice and the increasing rate 
of false positives from excessive testing [CHAWLA 
& GUNDERMAN, 2008]. Both situations undermine 
the confidence of patients in healthcare professionals. 
To reduce their occurrence it is necessary an in-
creased compliance with Clinical Practice Guidelines 
(CPGs) [ROSENBRAND et al., 2008]. 

CPGs are documents based on scientific evidence 
that contain recommendations for healthcare profes-
sionals to deal with specific clinical cases. Their 
structure varies according to the organizations and 
countries that produce them, but normally they con-
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sist of sets of instructions displayed along extensive 
textual documents [ROSENBRAND et al., 2008]. 
However, this format does not facilitate the dissemi-
nation of CPGs and is difficult to consult, since it is 
hard for healthcare professionals to extract the rele-
vant information they need to manage patients 
[ROSENBRAND et al., 2008]. Furthermore, this type 
of format is not machine-readable. Therefore, it is 
impractical for the integration in Clinical Decision 
Support Systems (CDSSs). A machine-readable for-
mat would enable the encoding of the instructions in 
the computer system and thus the CDSS would be 
able to provide detailed instructions in real time to 
healthcare professionals in a truly interactive experi-
ence. Moreover, it would facilitate the development 
of automated mechanisms to update CPGs which 
would solve another current problem of the text for-
mat. Updating guidelines is a complex task and it 
usually involves the adaptation of whole documents. 
Given the difficulty of the task, most guidelines are 
only updated every five years, which is not suited for 
documents that intend to deliver the latest develop-
ments in medical science. 

Another problem that healthcare professionals are 
faced with is the existence of incomplete information 
(incoherent or missing) during the clinical process 
[STRASZECKA, 2006]. Frequently, these cases 
block the information flow during the clinical process 
and may impair the application of CPGs. The current 
CDSSs (most of which are still in an academic devel-
opment phase) do not cope with the issue of incom-
plete information in clinical careflows. 

The objective of the work presented in this paper 
is the development of a machine-readable representa-
tion model for CPGs that may be integrated in a 
CDSS and is able to encompass all the dimensions of 
the information in a clinical process, including the in-
complete one. In order to present the work we will 
start by a resumed state of the art in section 2, then 
we will present the CPG model in section 3. The de-
tails of the knowledge representation formalism and 
the management of incomplete information will be 
presented in section 4, followed by details of the as-
sessment of the quality of information, in section 5. 
In section 6, a clinical decision model based on the 
current developments will be presented. Finally, in 
the last section of the paper we will conclude about 
the utility of the model and point the future directions 
of our research.    

2 Related Work about Computer-
Interpretable Guidelines 

Computer-Interpretable Guidelines (CIGs) are 
computer representations of CPGs that are machine 
readable and may be integrated in CDSSs, thus allow-
ing immediate appliance. A digital support for CPGs 
may be a game changer in all the aspects that revolve 
around them, especially development, dissemination, 
implementation and execution. Researchers became 
interested in CIGs in the end of the 1980s. Currently, 
the most relevant approaches to the representation of 
CIGs are Arden Syntax [SAMWALD et al., 2012], 
Guideline Interchange Format (GLIF) [PATEL et al., 
1998], PROforma [FOX et al., 1998], Asbru 
[SHAHAR et al., 1998] and Standards-Based Shara-
ble Active Guideline Environment (SAGE) [TU et 
al., 2007]. 

Arden Syntax [SAMWALD et al., 2012] was ini-
tially presented in 1989 and is now a standard of 
Health Level 7 (HL7). It focuses on providing a sim-
ple representation for CPGs. In fact, an Arden Syntax 
file is only capable of accommodating knowledge for 
one decision. This excessive simplicity is among the 
criticisms made to this approach along with the ab-
sence of a standard support for the files containing 
the guidelines. GLIF [PATEL et al., 1998], and its 
current version, GLIF3, is a model that can accom-
modate a higher degree of complexity than Arden 
Syntax. Following the Task Network Model (TNM) 
paradigm, in which a guideline is represented as a set 
of steps. Each step corresponds to an instance of a 
primitive of the model. However, this model requires 
the use of a subset of Arden Syntax to express clini-
cal decisions and a subset of Asbru to express tem-
poral constraints on the execution of the steps. So, 
part of the criticisms that are made to Arden Syntax 
can also be made to GLIF3. Asbru [SHAHAR et al., 
1998] is a model that is mainly concerned with the 
temporal aspects of clinical guidelines. Thus, Asbru 
defines temporal annotations, which specify four 
points in time for the execution of plans and the veri-
fication of conditions. With the particularity of ena-
bling the expression of uncertainty in starting time, 
ending time and duration of a time interval, but this 
temporal representation is often regarded as too com-
plex for healthcare professionals to get familiar with. 
The PROforma [FOX et al., 1998] model was devel-
oped in 1998 and presents an abstract view of guide-
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lines as flowcharts where the nodes are instances of 
pre-defined classes of tasks. The syntax of PROfor-
ma, similarly to Arden Syntax, was defined in Back-
us-Naur Form in an ASCII file, so like its predeces-
sor, since it is not supported by a standard format it is 
necessary to develop applications to query specifical-
ly these files, which is not practical for a guideline 
format intended to be used by different organizations 
and software applications. SAGE is the latest of the 
presented models and depicts CPGs as recommenda-
tion sets displayed as a graph of nodes: context, ac-
tion, decision and routing. Being a recent project, 
SAGE [TU et al., 2007] is involved with organiza-
tions that promote standards for the representation of 
clinical information (e.g., HL7).  

The application of these models in real practice is 
very limited and it is normally oriented to a specific 
health condition, since most of them require a certain 
degree of customization to deal with particular health 
conditions.  

3 Guideline Depiction Model 

The proposed model represents guidelines as 
flowcharts and it is depicted in Fig. 1. The aim is to 
offer an intuitive representation of clinical concepts 
and procedures. The model was defined using the 
Ontology Web Language (OWL) and tasks are its 
basic unit, every procedure of the clinical process is 
viewed as a task. So, to represent different types of 
tasks, some types of primitives were created, namely 
Plan, Action, Question, Decision and Aggregation 
Module [OLIVEIRA et al., 2011]. 

Each Plan models a guideline or a subguideline. It 
is a collection of tasks that may contain any number 
of instances of the other primitives. A Plan possesses 
administrative attributes with information about the 
guideline and attributes that express its clinical goal. 

An Action represents a task that must be 
performed by healtcare professionals, such as clinical 
procedures,  medication prescription, observations 
and simple recommendations. This primitive class 
possesses attributes that enable the expression of the 
scope of the Action and its detailed description.  

The following task is Question, which is used to 
obtain information about the state of a patient, more 
specifically, the values of the clinical parameters 
necessary in order to execute the guideline. Each 
question has attributes that specify the clinical 

parameters to be obtained and the type of value that is 
expected in return, i.e, if they are numeric or 
qualitative values and what units they are in. 

A Decision task is a bifurcation point in the 
clinical process. It requires the choice between two or 
more options, determined by rules. This task has 
attributes for the options and the conditions that 
compose the rules, with comparison operators and 
relational boolean operators. 

The last task is Aggregation Module and, as 
hinted by the name, it aggregates other tasks, forming 
a block bound by the same execution constraints. 
These constraints may be defined in terms of clinical 
goals or in terms of temporal restrictions such as 
periodicity, cyles, duration and repetitions.   

There are common attributes to all of the tasks, 
namely those that provide scheduling constraints and 
establish a connection between them, thus providing 
the order by which they should be executed.  

The case study depicted in Fig. 2, corresponds to a 
fragment of the Detection of High Blood Cholesterol 
in Children and Adults guideline, developed by the 
National Heart Lung and Blood Institute of the USA. 
It refers to the selection of the appropriate treatment 
for high levels of cholesterol, based on the presence 
of the following clinical parameters: coronary heart 
disease, risk factors and the ten year risk of coronary 
heart disease. 

Going from the top to the bottom, the guideline is 
represented as Plan 1. This plan initially contains 
Question 1, which is used to obtain the values of cor-
onary heart disease, risk factors and ten year risk. Af-
ter the input of these values by a healthcare profes-
sional, the next task, which is a Decision, is executed. 
The Decision task contains the rules for the estab-
lishment of the Low Density Lipoprotein (LDL) ther-
apy goal, based on the data that was previously col-
lected. The three available options are 100, 130 and 
160 mg/dL. After de decision about the therapy goal 

Fig. 1. Schematic view of the primitives of the repre-
sentation model, where each primitive denotes a task of 
the clinical process. 
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is made, the next task will be one of the three Aggre-
gation Modules in the figure, depending on the trig-
ger condition that matches the outcome of the previ-
ous task. Each Aggregation Module contains the 
necessary actions in order to achieve the goal that is 
expressed in its attributes. The execution of these 
tasks will stop only if the specified LDL blood level 
is achieved. 

4 Knowledge Representation and 
Incomplete Information 

The Logic Programming paradigm has been used 
by many approaches for knowledge representation 
and reasoning, namely by Model Theory and Proof 
Theory. In this work it is followed the proof theoreti-

cal approach and an extension to Logic Program-
ming. The representation of the state of a patient re-
sorts to Extended Logic Programming (ELP) 
[NEVES et al., 2012; NOVAIS et al., 2011]. ELP is 
one of the few non monotonic logic formalisms capa-
ble of representing the classic cases of incomplete in-
formation, such as uncertainty, incompleteness, inac-
curacy, and incoherence. ELP uses default negation 

(not p) along with classic negation (¬ p), to explicitly 
represent negative information, which is useful to dis-
tinguish what is false because it cannot be proven, 
from what is false because its negation can be proven 
[NEVES, 1984]. An ELP program possesses a finite 
set of clauses in the form: 

 
q ← p1 ˄ … ˄ pn ˄ not q1 ˄...˄ not qm 
? p1 ˄...˄ pn ˄ not q1 ˄...˄ not qm (n, m≥0) 

Fig. 2. Representation of a fragment of the Detection of  High Blood Cholesterol in Children and Adults guideline, devel-
oped by the National Heart Lung and Blood Institute, in the proposed model. 
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where ? is a domain atom denoting falsity, the pi, qj, 

and p are classical ground literals. In this representa-
tion formalism, every program is associated with a set 
of abducibles, given here in the form of exceptions to 
the extensions of the predicates that make the pro-
gram. To reason about the knowledge base presented 
in a particular set, that considers incomplete infor-
mation on the base of the formalism referred to 
above, let us consider a procedure given in terms of 
the extension of a predicate denoted as demo. This 
meta predicate is given by the signature demo:T,V → 
{true, false, unknown}, according to the following set 
of terms: 
 
demo(T, true) ← T.  

demo(T, false) ← ¬T.  

demo(T, unknown) ← not T, not ¬T. 

 

The first clause establishes that a theorem to be 
proved is put to a knowledge base of positive infor-
mation returning the truth-value true. The second 
clause denotes that the theorem to be proved recurred 
to the negative information presented in the 
knowledge base, returning the truth-value false. The 
third clause stands for itself, introducing another pos-
sibility besides true or false in the universe of dis-
course, the truth value unknown. As an example, let 
us consider the case showed in Fig. 3, with respect to 
two patients, James and Paul. James does not have 

coronary heart disease. However, the clinical staff is 
unable to detect exactly how many risk factors he 

shows, but they believe the number to be in the set 
{1, 2, 3}. The ten year risk of coronary heart disease 
is also impossible to determine with accuracy, given 
the uncertainty about the risk factors, yet the 
healthcare professionals know it is either 19% or 
21%. The health condition of Paul is significantly dif-
ferent, the healthcare professionals are unable to de-
termine if he has coronary heart disease or not, but 
the number of risk factors and the ten year risk of 
coronary heart disease are known to be 1 and 18 %, 
respectively. In the context of ELP, the information 
about the presence of coronary heart disease, the 
number of risk factors and the ten year risk of coro-
nary heart disease can be represented with the follow-
ing extensions of predicates chd, risk_factors and 
ten_year_risk, in the forms of Programs 1 and 2. 
¬chd(X,Y) ← not chd(X,Y), not abducblechd(X,Y). 

abduciblechd(X,Y) :- chd(+,Y). 

chd(no,no_unit). 

 

¬risk_factors(X,Y) ← not risk_factors(X,Y),  

not abduciblerisk_factors(X,Y). 

abduciblerisk_factors(X,Y) :- risk_factors(+,Y). 

abduciblerisk_factors(1,no_unit).  

Program 1. Extensions of the predicates that model 
the health condition of patient James. 

 

Fig. 3. Representation of a relational model that describes the state of patients. 
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abduciblerisk_factors(2,no_unit).  

abduciblerisk_factors(3,no_unit). 

 

¬ten_year_risk(X,Y) ← not ten_year_risk(X,Y),  

not abducibleten_year_risk(X,Y). 

abducibleten_year_risk(X,Y) :- ten_year_risk(+,Y). 

abducibleten_year_risk(19,%).  

abducibleten_year_risk(21,%). 

? (ten_year_risk(X1,Y1) ˅ 

ten_year_risk(X2,Y2))˄ ¬ (ten_year_risk(X1,Y1) 

˄ ten_year_risk(X2,Y2)). 

 
Program 2. Extensions of the predicates that model the 

health condition of patient Paul. 
 

¬chd(X,Y) ← not chd(X,Y), not abduci-

blechd(X,Y). 

abduciblechd(X,Y) :- chd(+,Y). 

chd(+,no_unit). 

 

¬risk_factors(X,Y) ← not risk_factors(X,Y),  

not abduciblerisk_factors(X,Y). 

abduciblerisk_factors(X,Y) :- risk_factors(+,Y). 

risk_factors(1,no_unit).  

 

¬ten_year_risk(X,Y) ← not ten_year_risk(X,Y),  

not abducibleten_year_risk(X,Y). 

abducibleten_year_risk(X,Y) :- ten_year_risk(+,Y). 

ten_year_risk(18,%).  

? (ten_year_risk(X1,Y1) ˅ 

ten_year_risk(X2,Y2))˄ ¬ (ten_year_risk(X1,Y1) 

˄ ten_year_risk(X2,Y2)). 

 
In both programs, the first clause of each exten-

sion denotes its closure, i.e., the application of the 
Closed World Assumption to the predicate, meaning 
that a statement is considered to be false if it is nei-
ther represented as negative information in the 
knowledge base nor as an abducible statement. The 
second clause of each predicate means that a state-
ment is abducible if it is represented as positive in-
formation with the symbol ‘+’ that stands for a null 
value, meaning that the variable X may take any val-
ue of the X domain. In Program 1, the third clause of 
predicate chd is a case of positive information in 
which the value of this parameter is no. In the same 
program, the last three clauses of risk_factors denote 
that the number of risk factors is in the set 
{1,2,3,{1,2},{1,3},{2,3},{1,2,3}}, since there is not a 
clause stating that the values are disjoint. Clauses 

four and five of ten_year_risk put the value of this 
parameter in the set {19, 21} and the sixth clause is 
an invariant that denotes that the value of the ten year 
risk is either 19% or 21%, but not both. The infor-
mation cases presented in Program 2 are similar to 
the ones presented in Program 1, with the exception 
of the value of chd, which is represented as positive 
information with the symbol ‘+’.  Now it is possible 
to build different information scenarios, like those of 
Table 1, with the cases of incomplete information and 
present them to healthcare professionals along with 
the conclusions drawn from the application of the 
recommendations contained in the digital guideline, 
developed in the previous section, to each scenario.  

5 Providing a measure of the 
Quality-of-Information 

We have already covered two essential aspects of 
the development of CDSSs, the representation of 
clinical recommendations and the representation of 
the information about the health condition of patients 
(including incomplete information). Now, based on 
the recommendations of the CPGs and the state of a 
patient it is necessary to make decisions about the 
tasks to be performed after the decision point in the 
context of a clinical process. To do that with incom-
plete information, it becomes necessary to measure 
the reliability of the available information. ELP ap-
pears here associated with an evaluation method 
called the Quality-of-Information (QoI) [NEVES et 
al., 2012; NOVAIS et al., 2011]. The QoI of an ex-
tension of a predicate i is defined in terms of truth 
values in the interval [0,1], i.e., if the information is 
known (positive) or false (negative), the QoI for the 
extension of predicate i is 1. For cases in which the 
information is unknown (like chd in Program 2) the 
QoI is given by Equation 1. 

 
)0(0/1lim >>== →∞ NNQoI Ni   (1) 
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Information Scenarios QoI Inferable Options and Scores 

From Program 1 

1 

¬chd(QOI,X,Y) ← not chd(QOI,X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y) 

risk_factors(0.143,1,no_unit). 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk((QOI,X,Y) 
). 

ten_year_risk(0.500,19,%). 
 

QoIchd= 1.000 
 

QoIrisk_factors=1/(23-
1)= 0.143 

 
QoIten_year_risk= ½= 

0.500 

Vldl_goal < 160= 0.5*1.00+0.5*0.143= 0.573 

2 

¬chd(QOI,X,y) ← not chd(QOI,X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y). 

risk_factors(0.143,1,no_unit). 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk(QOI,X,Y). 
ten_year_risk(0.500,21,%). 

 

QoIchd= 1.000 
 

QoIrisk_factors= 0.143 
 

QoIten_year_risk=0.500 

Vldl_goal < 100=1*0.500=0.500 
 

Vldl_goal < 160=0.573 

3 

¬chd(QOI,X,Y) ← not chd(X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(X,Y) ← not risk_factors(X,Y). 

risk_factors(0.143,2,no_unit). 
 

¬ten_year_risk(X,Y) ← not ten_year_risk(X,Y). 
ten_year_risk(0.500,19,%). 

 

QoIchd= 1.000 
 

QoIrisk_factors= 0.143 
 

QoIten_year_risk=0.500 

Vldl_goal < 130=0.33*1+0.33*0.143*0.33*0,500 
= 0.542 

 

4 

¬chd(QOI,X,Y) ← not chd(QOI,X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y). 

risk_factors(0.143,2,no_unit). 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk(QOI,X,Y). 
ten_year_risk(0.500,21,%). 

 

QoIchd= 1.000 
 

QoIrisk_factors= 0.143 
 

QoIten_year_risk=0.500 

Vldl_goal < 100=1*0.500=0.5 
 

5 

¬chd(QOI,X,Y) ← not chd(QOI,X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y). 

risk_factors(0.143,3,no_unit). 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk(QOI,X,Y). 
ten_year_risk(0.500,19,%). 

 

QoIchd= 1.000 
 

QoIrisk_factors= 0.143 
 

QoIten_year_risk=0.500 

Vldl_goal < 130=0.33*1+0.33*0.143+0.33*0,500 
= 0.542 

 

6 

¬chd(QOI,X,Y) ← not chd(QOI,X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y). 

risk_factors(0.143,3,no_unit). 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk(QOI,X,Y). 
ten_year_risk(0.500,21,%). 

 

QoIchd= 1.000 
 

QoIrisk_factors= 0.143 
 

QoIten_year_risk=0.500 

Vldl_goal < 100=1*0.5=0.5 
 

7 

¬chd(QOI,X,Y) ← not chd(QOI,X,Y). 
chd(1,no,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y). 

risk_factors(0.072,1,no_unit). 
risk_factors(0.072,2,no_unit). 

 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk(QOI,X,Y). 
ten_year_risk(0.500,21,%). 

 

QoIchd= 1.000 
 

QoIrisk_factors= 
0.143/2= 0.072 

 
QoIten_year_risk=0.500 

Vldl_goal < 130=0.33*1+0.33*0.072+0.33*0,500 
= 0.519 

 
Vldl_goal < 160= 0.5*1.00+0.5*0.072= =0.536 

From Program 2 

1 

¬chd(QOI,X,Y) ← not chd(QOI,X,Y). 
chd(0,unknown,no_unit). 

 
¬risk_factors(QOI,X,Y) ← not risk_factors(QOI,X,Y) 

risk_factors(1,1,no_unit). 
 

¬ten_year_risk(QOI,X,Y) ← not ten_year_risk((QOI,X,Y) 
). 

ten_year_risk(1,18,%). 
 

QoIchd= 0 
 

QoIrisk_factors=1 
 

QoIten_year_risk= 1 

Vldl_goal < 100= 0 
 

Vldl_goal < 160= 0.5*0+0.5*1=0.5 

Table. 1. Description of the information scenarios generated by Programs 1 and 2. 
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Information Charts 
From Program 1 

 

From Program 2 
 

Table. 2. Information charts about the inferable options of each scenario from Programs 1 and 2, with the partial scores 
for the clinical parameters. 
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In Equation 1, N represents the cardinality of the 
set of terms and clauses of the extension of predicate 
i, so basically the number the number of abducible 
values is so great that N tends to infinite. For cases 
where the extension of i is unknown but can be taken 
from a set of values, the QoI is given by Equation 2. 

 
CardQoIi /1=   (2) 

 
The Card variable in Equation 2 denotes the car-

dinality of the set of abducibles for i. This equation is 
used only if the set of abducibles is disjoint. If the set 
of abducibles is not disjoint, then the QoI is calculat-
ed with Equation 3. 

 

)12/(1)1/(1

).../(1

0

1

−=−

=++=

∑
=

Card
Card

j

Card
j

Card
Card

Card
i

C

CCQoI
  (3) 

 
 The denominator of Equation 3 corresponds to 

the sum of the possible combinations of the values of 
the set of abducibles with size Card. When transition-
ing from the original programs to the scenarios, the 
predicates acquire the following form: 
 

predicate(QoI, X, Y).  
 
As it was seen in section 3, the selection of the op-

tions at a decision task determines the selection of the 
following task in the clinical process. The choice is 
determined by rules contained in the instance of the 
decision task and these rules comprise conditions rel-
ative to the parameters that are part of the patient’s 
state.  The possible information scenarios are depict-
ed in Table 1 with the QoI of each clinical parameter 
(represented as a predicate) thus enabling the applica-
tion of the rules to these scenarios. The next element 
of the model is a scoring system that assigns to each 
option a score (Voption) based on the QoI of the clinical 
parameters that act as conditions for its validation. As 
so, it is necessary to assert the relative importance 
(wk

option ) of clinical parameter k  in option. Equation 4 
illustrates this relationship, by stating that the sum of 
the values of relative importance of the n clinical pa-
rameters that condition an option must be equal to 1.  

optionw
nk

option
k ∀=∑

≤≤

,1
1

  (4) 

It is now possible to define the scoring function 
for each option according to Equation 5.The option 
with the highest score is the one to be selected in each 
decision task. The number of scenarios generated by 
Program 1 should be 14, but Table 1 only depicts 7. 
This is due to the low values of QoI and thus lower 
scores of the remaining scenarios, generated from the 
combination of the values for the risk factors. 

 

∑
≤≤

×=
nk

k
option
koption QoIwV

1

  (5) 

In the case of patient James, the appropriate sce-
narios would be scenario 1 and 4, since they are the 
scenarios with the option that has the highest score 
(Voption=0,573) and the selected option is an LDL goal 
of less than 160 mg/dL. For patient Paul there is only 
one available scenario with two inferable options. 
The option with the highest score is, again, the one 
that establishes an LDL goal for the therapy of 160 
mg/dL. The circular charts of Table 2 provide another 
perspective of the state of the information that could 
be helpful to a healthcare professional in order to as-
sess the correct course of the clinical process. 

6 The Decision Model 

The computational model for the representation of 
CPGs provides a basis for the automatic processing 
(creation and execution) of medical recommendations 
and the integration of this model with a knowledge 
representation formalism of the clinical parameters of 
a patient’s stat will provide a decision framework ca-
pable of reproducing the decision process of 
healthcare professionals. To do so, the CDSS must 
have an inference engine that mimics the decision 
stages of clinicians, extracting knowledge from the 
recommendations of CPGs and the database of the 
patient´s state.  

The decision model proposed in this paper is de-
picted in Fig. 4, and it is comprised of four stages 
with different objectives. The first stage of the model 
is the Formulation of Clinical Hypotheses and it con-
sists of a survey of the available options of a Decision 
task. In the case study presented previously in this 
paper, the Decision task has the following options for 
consideration in the form of LDL blood levels: 100 
mg/dL, 130 mg/dL and 160 mg/dL. These levels are 
goals for the cholesterol lowering therapy.  
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As seen in Fig. 2, each option is associated with a 
set of rules. These rules are the focus of the Voting 
stage, which is divided in two sub-stages: Evaluation 
of Conditions and Evaluation of the QoI. In the Eval-
uation of Conditions a verification of the conditions 
of each rule is performed, i.e., the engine checks if 
the conditions hold true. A condition is considered to 
hold true if it is represented either as positive infor-
mation or as an abducible. Once it is determined 
which conditions hold true and which options are in-
ferable, in each scenario, the engine moves to the 
next stage, the Evaluation of the QoI. In this stage, 
the inference engine calculates the QoI for the clini-
cal parameters and computes the scores for the op-
tions in each scenario. As a whole, the Voting stage is 
used for the assessment of the state of the available 
information and to provide confidence measures in 
the possible outcomes.  At the end of this stage, one 
should obtain the contents displayed in Tables 1 and 
2. 

The next stage is the Selection of the Clinical Op-
tion in which the option that has the highest score is 
selected, thus being regarded as the most reliable one. 
Based on the data of Table 1, the scenarios selected 
for patient James are scenarios 1 and 4 which deter-
mine that the LDL goal for the therapy is 160 mg/dL. 
For patient Paul, the selected option is also 160 
mg/dL. 

Now, based on the options selected in the Deci-
sion task, the next task of the careflow is selected. 

 According to Fig. 2 the next task is Aggregation 
Module 6, for both individuals, because it is the one 
activated by the trigger condition stating that the LDL 
goal should be inferior to 160 mg/dL. 

7 Conclusions  

This paper introduces a new way to represent 
medical recommendations extracted from CPGs and 
information that composes a patient’s state, for use in 
CDSSs.  

The representation model for CPGs mimics a 
model of human task execution to provide intuitive 
an intuitive of representing medical knowledge that is 
easily understood and, at the same time, has enough 
expressivity to represent all the types of information 
contained in these medical recommendations. Also, 
since the model was created using OWL, it is 
achieved the representation of guidelines in a portable 
format, that enables people to explore the collected 
knowledge with a wide variety of applications.  

The introduction of ELP and the QoI in health in-
formation systems would be useful to represent cases 
of missing, conflicting and inexact information, thus 
helping the decision process by assuring the continu-
ous flow of information. It offers mechanisms to rea-
son with incomplete information and to measure the 
confidence in that information, with the capacity to 
distinguish different cases of uncertainty. 
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Fig. 4. Schematic representation of the clinical decision 
model with the its four stages in sequence: Formulation 
of Clinical Hypotheses, Voting, Selection of the Clinical 
Option and Clinical Task Assignment.  
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