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This work presents a software application to identify, in real time, the 
respiratory movements -inspiration and expiration- through a microphone. The 
application, which has been developed in Matlab and named ASBSLAB for the 
GUI version and ASBSLABCONSOLE for the command-line version, is the 
result of a research and experimentation process. A total of 48 minutes of 
breathing movements from four subjects was recorded and 18 acoustic features 
were extracted to generate the data model. A first level of identification, based 
on the classification of tiny audio segments, was designed using kNN supervised 
method. The second level of identification implements a state machine that takes 
the results ordered in the time from kNN as input and identifies the whole 
respiratory movement, achieving a level of positive identifications above 95%. 
As computation time is a handicap, the application let the user choose easily the 
sample rate, the audio segment size and the set of acoustic features to use in the 
identification process. In addition, based on the number of features selected, this 
works suggests those that achieve best results. 
 

   

1 Introduction 
Breathing is the physiological process by which 
organisms capture oxygen and get rid of carbon 
dioxide. In humans, the respiratory system 
consists of the respiratory muscles, the lungs 
and the airways. The exchange of air between 
the atmosphere and the lungs (inspiration) and 
vice-versa (expiration) generates an acoustic 
signal. 
Over the course of time, breath sound 
auscultation informs the specialist about the 
health of the respiratory system and about 
possible alterations or diseases. The 
breakthrough of digital signal processing led to 
new study mechanisms of the respiratory 
system, with additional advantages such as 
continual monitoring, objective diagnostics, 
remote diagnostics and others.    
Signal processing application in respiratory 
analysis is not recent. Already in 1980’s, works 
from Chowdhury and Majumder 

[CHOWDHURY, S.K. & MAJUMDER, A.K. 
1981] and Charbonneau et al. 
[CHARBONNEAU, G. et al., 1982] proposed 
signal processing techniques in the frequency 
domain to be applied in the analysis and 
classification of breath sounds. More recent 
works have highlighted a variety of approaches 
to analyse breath sounds for the detection of 
dysfunctions or diseases as apnoea 
[PETSATODIS, T. et al., 2012; MOEDOMO, 
R.L. et al., 2012], asthma [OUD, M. & 
DOOIJES, E.H., 1996; MOEDOMO, R.L. et al., 
2012], snores [PETSATODIS, T. et al., 2012; 
SNIDER, B.R. & KAIN, A., 2013; 
YADOLLAHI, A. & MOUSSAVI, Z., 2010], 
wheezes [SNIDER, B.R. & KAIN, A., 2013; 
PATEL, U., 2011; MOEDOMO, R.L. et al., 
2012] and crackles [AVALUR, D.S., 2013; 
PATEL, U., 2011]. 
Methods belonging to Artificial Intelligence 
disciplines are used to identify respiratory 
events. K-Nearest Neighbour [OUD, M. & 
DOOIJES, E.H., 1996], Naive Bayes 
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[ALSHAER, H. et al., 2014], Support Vector 
Machines [ALSHAER, H. et al., 2014], Random 
Forest [ALSHAER, H. et al., 2014], Neural 
Networks [YUAN, K. et al., 2011; PATEL, U., 
2011; MASON, L., 2002] and Hidden Markov 
Models [SNIDER, B.R. & KAIN, A., 2013] are 
common techniques that have been proven to 
achieve good results. 
A major challenge related to breath sound 
analysis is its detection. Normal breathing 
generates a very quiet sound, which is difficult 
to detect due to ambient noise interference. On 
the one hand, invasive capture methods like a 
tracheal microphone [YADOLLAHI, A. & 
MOUSSAVI, Z., 2010] or an acoustic sensor 
within a mask [AVALUR, D.S., 2013] are better 
options to obtain more robust signal but may 
cause discomfort to the user. On the other hand, 
non-invasive methods like a microphone 
oriented toward the user’s head at a short 
distance [PETSATODIS, T. et al., 2012; 
SNIDER, B.R. & KAIN, A., 2013] are easier to 
build but are more sensitive to external noises. 
In addition, the use of multiple microphones can 
be used to focus on breath signal, reducing 
ambient noise, but may complicate the system 
for a home based solution. 
The focus of this work differs substantially in 
several aspects from previous ones. Firstly, this 
work proposes a software solution where users 
are allowed to configure a set of parameters 
used for breath sound analysis. Secondly, the 
solution proposed is open source, enabling 
developers to customise or to add new features 
easily. Finally, preceding works treat breath 
sound analysis and identification as a two steps 
process, where respiratory sounds are analysed 
after the whole sound session is recorded. Here, 
breath sound analysis and identification is made 
in real time. More precisely, this work develops 
a software solution that captures the breath 
sound from a microphone located near the user 
and detects and identifies the respiratory 
movements of inspiration and expiration –either 
mouth or nasal- in real time. 
With this approach, it is plausible to think of 
new non-invasive breathing monitoring systems 
in practical applications such as: 
• Stress measurement in high demanding 

concentration exercises in cabin simulators. 

• The control that a user with asthma is 
continually breathing with the nose, 
avoiding mouth breathing. 

• Respiratory movement pattern monitoring 
in relaxing techniques, alerting the user 
when his respiratory sequence does not 
match the initial configured pattern. 

To achieve the goal of this work, the result of 
breathing analysis from four subjects has been 
employed to generate a repository with eighteen 
acoustic features. Then, proven kNN method 
and an implemented upper level state machine 
have been applied to, eventually, identify 
respiratory movements. The fact that the 
identification is done in real time, determines 
the methodology as well as computation time 
thresholds. 

2 Material and Methods 
2.1. Breath sound recording and 
labelling 
 
Breath sounds were recorded from four healthy 
subjects (two male and two female) in 10 
minutes sessions, giving a total of 48 minutes of 
respiratory movements that corresponded to 
near 1,800 respiratory events. This would 
constitute the source for the training data set. 
Each session included inspirations and 
expirations, both mouth and nasal. The scenario 
for the recording was a standard room with the 
door closed to avoid ambient sound interference 
from outside. Inside the room, an armchair was 
provided for the subject. Breath sounds were 
captured with a cardioid pattern capacitor 
microphone with 32 dB of sensitivity, mounted 
on a tripod and pointing towards the face of the 
subject at a distance of 22 cm approximately. 
The recording was made at a sampling rate of 
44.1 KHz and 16 bits of resolution.  
An audio editor was used, from the signal plot 
in the time domain and its spectrogram, to 
manually label each respiratory movement. It 
was detected a continuous noise interference 
below 100 Hz. This noise prevented, in some 
subject recordings, from marking breath sounds 
transitions with enough accuracy. To avoid this, 
a 6th order elliptic filter with 0.1 dB of ripple 
and 50 dB of stopband attenuation was applied 
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to remove this noise. The filter would also be 
applied in the process of respiratory movement 
identification in real time while capturing its 
sound. 
To experiment with different sampling 
frequencies, breath sounds recorded were 
resampled to 22,050 Hz, 16,000 Hz, 11,025 Hz 
and 8,000 Hz. Moreover, the less was the 
frequency, the less was the amount of data to 
process.  
The labelling of the respiratory events was a 
manual process, using the audio editor and two 
columns in an external spreadsheet. The first 
column included the time mark from the 
recorded breathing of the transition point 
between two respiratory events. The second 
column labelled the event before the time mark, 
numerically codified (1 = mouth inspiration, 2 = 
mouth expiration, 3 = nasal inspiration, 4 = 
nasal expiration). 
 
2.2. Acoustic features extraction 
 
2.2.1. Windowing 
 
Acoustic features were extracted from tiny 
segments of size W from the recorded breathing 
using a moving Hamming window (9) with a 
50% overlap. A set of different predefined 
window sizes (see Table 1) was used according 
to sampling frequencies and optimizing FFT 
data points.  
 
Sampling 

 Freq. (Hz) 
Window 

 Size (ms) 
Window 

points 
FFT 

points 
 

22,050 
 

92 
69 
46 
23 

2,028 
1,521 
1,014 
507 

2,048 
2,048 
1,024 
512 

 
16,000 

128 
96 
64 
32 

2,048 
1,536 
1,024 
512 

2,048 
2,048 
1,024 
512 

 
11,025 

92 
69 
46 
23 

1,014 
760 
507 
253 

1,024 
1,024 
512 
256 

 
8,000 

128 
96 
64 

1,024 
768 
512 

1,024 
1,024 
512 

32 256 256 
Table 1. Window sizes based on sampling frequencies. 

 
2.2.1. Acoustic features 
 
From each segment of size W, the following 18 
acoustic features were extracted: 
  
Root Mean Square (RMS): Also known as the 
quadratic mean, it is a statistical measure of the 
magnitude of the sound and it is given by: 
 

[ ]∑
=
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RMS

1
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   (1) 

 
The RMS is needed to compare its value to the 
threshold, below which, audio information 
should be ignored, as it is lower than a 
predefined value, which was considered enough, 
of 4 dB audio signal-to-noise ratio (SNR). 
From the analysis of the captured audio from 
the recording scenario, once have been removed 
the frequencies below 100 Hz, it is shown 
random residual noise with a magnitude 
between -65 dB and -62 dB (relative to 
amplitude 0). Setting -58 dB (0.00125 of 
amplitude) as the threshold value, would match 
the desired SNR value of 4 dB. 
 
Spectrum Centroid (SC): It is the centre of mass 
or point of balance of the signal spectrum. As it 
is an indication of the predominant frequency 
area of the signal, it is associated to the 
‘brightness’ of the sound, and it is defined by: 
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where n is the index of the nth frequency band 
of the spectrum and ][nX  is the magnitude of 
that band. 
   
Spectrum Flatness (SF): It is an indicator of the 
homogeneity of the signal spectrum and it is 
calculated from the ratio between geometric and 
arithmetic means, calculated as: 
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Zero-crossing rate (ZCR):  This is a temporal 
feature of the signal and tells us about the 
number of changes in the sign of the signal 
normalized by its length, given by: 
 

|])1[(])[sgn(|1
1

−−= ∑
=

nxnsgnx
N

ZCR
N

n

  (4) 

  
 where sgn is the sign function. 
 
Roll-Off (RO):  This is the frequency, below 
which, an 85% of the spectrum distribution is 
concentrated. The value is given by: 
 

∑∑
==

⋅=
N

n
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n
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11
][85.0][   (5) 

 
Cumulative Frequency RMS Ratio: It has been 
detected that at 2 KHz, the average ratio of 
cumulative energy between expiration and 
inspiration is at maximum for mouth respiratory 
events. This work includes this ratio as a 
feature. 
 
Mel Frequency Cepstral Coefficients (MFCCs): 
MFCCs are very common and an efficient 
technique for signal processing and they have 
been successfully used in speech analysis 
[YOUNG, S.J., et al. 1999] among others. It is a 
representation of the short-term power spectrum 
of a sound, based on a linear cosine transform of 
a log power spectrum on a non-linear Mel scale 
of frequency. They are calculated as: 
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MmmHnXmE
N

n
≤≤⋅=∑

=

1],[|][|][
1

  (7) 

 
])[][(][ nwnxFFTnX ⋅=   (8) 

 
being ][mH  the Mel filter bank of length M  
and ][nw  the Hamming window, given by: 
 

)2cos(46.054.0][
N
nnw π−=   (9) 

 
As the first coefficient has a high correlation 
with the energy, only coefficients 2-13 are 
extracted. 
 
2.3. Generation of the repository 
 
From the breath sounds recorded audio together 
with the spreadsheet with its labelling 
information, the data model was generated. It 
contains, by applying every combination of 
sampling rate and window size showed in table 
1, all the extracted 18 acoustic features 
explained before. The data model formed the 
training data set to which the system would 
query to label new unknown samples. 
 
2.4. The classification method 
 
This work has been based on the supervised 
method k-Nearest Neighbour (kNN) 
[HARRINGTON, P., 2012] to classify samples. 
kNN method was chosen because it works with 
numeric data, has a high accuracy, is insensitive 
to outliers and is very easy to reuse in scenarios 
where the number of implied features changes. 
kNN measures the distance between an 
unknown item and a set of known items (the 
training set). Those k items to which the 
distance is minimal are the result of the 
classification. For this work, k is equal to 1 and 
the distance is measured by the Euclidean 
distance, given by: 
 

∑
=

−=
N

j
jj yxyxd

1
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where jx  and jy  are the feature j  from a 

total ofN features. 
One major drawback in calculating distances is 
that features have different measurement scales. 
Features with higher magnitude have 
predominant weight in the distance 
measurement. One solution is to standardize the 
training data by the given formula: 
 

j

jij
ij

x
z

σ

µ−
=    (11) 

 
where ijz  is the standardized value of item i  

for feature j , ijx  is the value before 

standardization and jµ , jσ are the mean and 

standard deviation of feature j from all item in 
the training set. 
Anyway, as it is a real time solution, 
standardization is not an optimal technique to 
homogenise the features measures scale because 
unknown samples do not participate in the 
calculation of statistical indicators. 
 
2.5. The state machine 
 
The classification method labels tiny segments 
of a few tens milliseconds length and, as 
expected, it would not be 100% accurate. A 
state machine, which is fed by the ordered 
output sequence from kNN method, is 
implemented to eventually identify respiratory 
movements. 
For example, for a rhythm of 40 respiratory 
movements per minute and a window length of 
128 ms, there would be about 20 audio 
segments per respiratory event to classify. If 
kNN method would be 100% accurate, its 
output for a sequence of a mouth inspiration – 
mouth expiration – nasal inspiration – nasal 
expiration would be something similar to 
 
00111111111111110000022222222222000033
3333333333000444444444440000 
 

where a ‘0’ means the audio segment below the 
energy threshold according to (1) and 
corresponding to respiratory movement 
transitions. 
However, output from kNN could be more 
probably something like 
 
00122112241111110000022111222122000031
1333344433000433341444440000 
 
due to some errors in the labelling process. 
Here in where the state machine takes part. It 
calculates some basic statistical indicators to 
eventually decide the respiratory movement 
detected. Its implementation took into 
consideration a new time domain feature, based 
on the phases of rising and decay of energy in 
respiratory movements. 
  

 
Fig. 1. Rising and decay of inspiration and expiration 

movements. 
 
As shown in figure 1, rising is normally longer 
in inspiration than in expiration, whereas the 
opposite occurs with decay. 
 
Figure 2 shows the state diagram of the 
implemented state machine. 
 

10

‘0’

2

‘0’

‘0’,‘1’,	  ‘2’,	  ‘3’,	  ‘4’
‘0’,	  ‘1’,	  ‘2’,	  ‘3’,	  ‘4’

‘1’,	  ‘2’,	  ‘3’,	  ‘4’  
Fig. 2. State machine for respiratory movement 

identification 
  
The initial state is state 0. It is the beginning of 
one respiratory movement identification. 
Identification must start at the initial phase of 
the respiratory movement, so it remains in state 
0 until a segment labelled ‘0’ has arrived. State 
1, starts from the moment a non-’0’ labelled 
segment arrives and updates the following 
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internal indicators from the successive output 
from kNN classification until it receives a new 
classified ‘0’ segment: 
• Consecutive number of non-‘0’ segments 

with rising energy. 
• Consecutive number of non-’0’ segments 

with decay energy. 
• Consecutive number of segments labelled 

as ‘1’. 
• Consecutive number of segments labelled 

as ‘2’. 
• Consecutive number of segments labelled 

as ‘3’. 
• Consecutive number of segments labelled 

as ‘4’. 
• Consecutive non-‘0’ labelled segments. 
• Time elapsed since the last ‘0’ labelled 

segment. 
State 2 takes the decision of the respiratory 
movement captured, based on the following 
calculation: 
N = NumOf_1 + NumOf_2 + NumOf_3 + 
NumOf_4; 
p1 = NumOf_1 / N; 
p2 = NumOf_2 / N; 
p3 = NumOf_3 / N; 
p4 = NumOf_4 / N; 
pMouth = (NumOf_1 + NumOf_2) / N;  
pNasal = (NumOf_3 + NumOf_4) / N; 
pIns = (NumOf_1 + NumOf_3) / N; 
pExp = (NumOf_2 + NumOf_4) / N; 
RisingDecay  = NumRising + NumDecay; 
pIns2 = NumRising / RisingDecay; 
pExp2 = NumDecay / RisingDecay; 
pMouthIns = 0.70 * p1 + 0.10 * pMouth + 

0.10 * pIns + 0.10 * pIns2; 
pMouthExp = 0.70 * p1 + 0.10 * pMouth + 

0.10 * pExp + 0. 10 * pExp2; 
pNasalIns = 0.70 * p1 + 0.10 * pNasal + 

0.10 * pIns + 0.10 * pIns2;  
pNasalExp = 0.70 * p1 + 0.10 * pNasal + 

0.10 * pExp + 0.10 * pExp2;  
Event = max(pMouthIns,pMouthEsp,pNasalIns 
pNasalEsp);  
 
2.6. Implementation 
 
The solution was implemented in Matlab 
version 7.12.0.365 (R2011a) using a laptop 

computer with Intel Core i7 2GHz and 8 GB of 
RAM. 
In order to save computation time, common 
calculations are executed at the time the 
sampling rate, the window size and the set of 
selected acoustic features are chosen. These 
operations included, among others, intermediate 
calculations for MFCC and initialization of the 
kNN through knncreatens Matlab function. 

3 Results/Discussion 
3.1. Acoustic features analysis 
 
Distributions of the four respiratory movements 
of the the group of selected acoustic features 
mentioned in the previous section are shown in 
Figures 3 and 4. As expected, spectrum centroid 
was higher in nasal breaths than in mouth 
breaths. Also, the spectrum flatness showed that 
nasal breath took more bandwidth while mouth 
breath concentrates its energy in much lower 
bands.  
 

 
Fig. 3. Plot of extracted acoustic features (except MFCC) 
showing normalized distributions from the 4 respiratory 
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movements analysed at 22,050 Hz of sampling rate and 92 
ms of window size. 
 
However, as individual distributions were 
clearly differentiated for nasal and mouth 
respiratory movements, it was not the same 
situation for inspiration and expiration 
movements. Although there was a light 
distinction between nasal inspiration and 
expiration, mouth inspiration and expiration 
distribution were almost overlapped, except for 
RMSRatio and roll-off features. 
Regarding Mel Frequency Cepstral Coefficients, 
the coefficients distributions showed that, 
individually, some coefficients are most robust 
than others. For example, coefficient 2 clearly 
differentiates between nasal and mouth, and 
coefficients #4 and #11 do distinguish between 
mouth inspiration and expiration.  
 

 
Fig. 4. Plot of MFCC 2 to 13 showing normalized 

distributions from the 4 respiratory movements analysed at 
22,050 Hz of sampling rate and 92 ms of window size. 

 
3.2. Training data set validation 
 

In order to validate the training data set, cross 
validation method was applied. The data set was 
divided randomly into three parts. One third was 
used as samples to classify and the other two 
thirds were use as the model. This validation 
was done three times, rotating the roles of every 
third. After, the whole training data set was used 
to classify new unknown samples. The results 
are shown in Table 2. 
 

 
Feature 

Accuracy (%) 
Cross 

validation 
Unknown 
Samples 

RMS 
SC 
SF 
RO 

ZCR 
RMSRatio 

MFCC2 
MFCC3 
MFCC4 
MFCC5 
MFCC6 
MFCC7 
MFCC8 
MFCC9 

MFCC10 
MFCC11 
MFCC12 
MFCC13 

MFCC(2-13) 
ALL 

25.8 
47.4 
47.9 
44.2 
42.1 
48.6 
46.7 
33.9 
43.6 
36.8 
31.4 
35.6 
35.7 
39.1 
31.5 
38.4 
28.5 
28.6 
95.9 
96.6 

26.1 
45.6 
44.6 
34.5 
31.8 
44.4 
45.9 
21.1 
31.9 
27.7 
28.4 
36.2 
28.2 
36.6 
24.6 
38.2 
25.6 
18.5 
69.5 
64.7 

Table 2. Results from cross validation and from unknown 
samples. Done at 22,050 Hz of sampling and 92 ms window 

size.  
 
The results showed that features used 
individually were not very robust. An accuracy 
of as much as 48% (with RMSRatio) when the 
probability of a random right classification was 
25% means it is not a big success. However, 
taking multiple features simultaneously in the 
classification had high accuracy. Just all MFCC 
coefficients at the time gave an accuracy of 96% 
in cross validation and 69.5% for new unknown 
samples. 
The same process was done for the rest of 
combinations of sampling rates and window 
sizes. The results were proportionally similar to 
those shown on Table 2. Nevertheless, changes 
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in sampling rates and window sizes revealed 
some difference in the accuracy level, as shown 
in table 3. 
The best results belonged to the combinations 
22,050 Hz – 92 ms and 16,000 Hz – 128 ms, 
where accuracy was above 96.6%. Moreover, 
the combination 16 KHz – 128 ms were 
computationally more efficient: the samples per 
seconds decreased in 6,050 , the window was 36 
ms wider and the samples in the training set 
were reduced from 48,685 to 35,362.  
 
Sampling

Hz 128 92-96 64-69 46 32 23
22.050 96.6 96.5 95.4 91.9
16.000 96.9 96.7 96.0 92.8
11.025 96.5 95.8 94.0 87.9
8.000 96.2 96.0 94.6 89.1

Window length (ms)

 
Table 3. Accuracy level using all simultaneous features. 

 
Furthermore, the reduction of the sampling 
frequency from 16 KHz decreased accuracy, but 
very light and hardly perceptible (it continued 
above 96%). 
The reduction of the window size, however, 
altered significantly the accuracy, whatever the 
sampling frequency was. Computationally, 
those results were desirable because wide 
window sizes and high sampling rates need 
much less data to process. 
Furthermore, it was seen that features used 
individually had poor accuracy in comparison to 
the whole set of MFCC or all features. As the 
calculation of every feature had some CPU cost, 
cross validation accuracy was calculated for 
each combination from 1 to 17 simultaneous 
features (without considering RMS). That meant 
a total of 131,070 possible combinations and 
results are shown on figure 5 and table 4. 
 

 
Fig. 5. Boxplot showing accuracy for every possible 

combination for every number of simultaneous features  
analysed at 22,050 Hz of sampling rate and 92 ms of 

window size. 
 

#
Accuracy 

(%) SC SF RO ZCR
M

FCC2

M
FCC3

M
FCC4

M
FCC5

M
FCC6

M
FCC7

M
FCC8

M
FCC9

M
FCC10

M
FCC11

M
FCC12

M
FCC13

RATIO

1 49.0 ü
2 67.5 ü ü
3 79.1 ü ü ü
4 86.6 ü ü ü ü
5 89.4 ü ü ü ü ü
6 91.5 ü ü ü ü ü ü
7 93.1 ü ü ü ü ü ü ü
8 94.2 ü ü ü ü ü ü ü ü
9 95.2 ü ü ü ü ü ü ü ü ü
10 95.9 ü ü ü ü ü ü ü ü ü ü
11 96.3 ü ü ü ü ü ü ü ü ü ü ü
12 96.8 ü ü ü ü ü ü ü ü ü ü ü ü
13 96.8 ü ü ü ü ü ü ü ü ü ü ü ü ü
14 96.9 ü ü ü ü ü ü ü ü ü ü ü ü ü ü
15 96.9 ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü
16 97.0 ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü
17 97.0 ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü  
Table 4. Best combination for every simultaneous number 

of features. 
 
Results from figure 5, showed that the average 
of accuracy increased when the number of 
features did it as well. But, it also showed a high 
difference in accuracy that exists for the same 
number of features. For example, four well-
chosen features gave better accuracy than 10 
bad selected; for five simultaneous features, the 
difference of accuracy between the best and 
worst combination is 25%. Table 4 shows the 
best found combination and accuracy level for 
each number of simultaneous features.  
 
Simultaneous 

features 
Best Comb. Accuracy (%) 

Cross 
validation 

Unknown 
Samples 

1 
2 

49.0 
67.5 

44.4 
54.2 
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3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

79.1 
86.6 
89.4 
91.5 
93.1 
94.2 
95.2 
95.9 
96.3 
96.8 
96.8 
96.9 
96.9 
97.0 
97.0 

61.3 
63.0 
65.6 
69.3 
69.6 
67.0 
69.1 
65.3 
62.3 
69.8 
69.6 
69.5 
69.3 
69.4 
69.0 

Table 5. Cross validation and unknown samples accuracy 
using best combination from Table 4. 

Best combinations from Table 4 were used to 
run again cross-validation of training data set 
and classify new unknown samples. The results 
are shown in table 5, showing that accuracy 
grew quickly: with 6 simultaneous features, the 
accuracy was more than 90% in the cross 
validation and reached the highest value for 
unknown samples. 
 
3.3. Computational cost 
 
The solution had to identify respiratory 
movements in real time. So, breath sounds 
recording, sound segmentation, segment 
features extraction and labelling through the 
classifier have to be done at a faster pace than 
the data input speed, that is, the sampling rate. 
Otherwise, there would be buffer overruns that 
would imply loss of data. 
Table 5 shows computational cost for two 
selections: one is the optimal combinations of 
sampling rate – window size and the other is the 
most CPU cost expensive one. 
 

Function 
 

Cost (ms) 
22,050 Hz 

92 ms 
22,050 Hz 

23 ms 
Filtering 

RMS 
ZCR 

Windowing & FFT 
SC 
SF 
RO 

0.062 
0.020 
0.062 
0.607 
0.661 
0.804 
0.842 

0.052 
0.016 
0.036 
0.353 
0.401 
0.491 
0.531 

12 MFCC 
RMSRatio 

kNN 

1.189 
1.257 
7.495 

0.692 
0.785 

27.978 
Total 13.56 31.34 

Table 6. Computational cost of iterative analysis functions 
involved in audio segment process and labelling. 

 
As seen from the results, computational cost for 
configuration 22,050 Hz - 92 ms was far from 
its threshold (46 ms). So, keeping the window 
size high and lowering the sampling rate would 
increase that gap. However, computational cost 
for configuration 22,050 Hz - 23 ms overpassed 
its threshold (12 ms), due to the cost of the 
classifier, basically, as it had a number of 
records much higher. In this case, this 
configuration, even it has shown not to be as 
optimal, it would not run appropriately unless 
the software was executed in a faster computer.  
 
3.4. Respiratory movement 
identification 
 
Breath sound segments validation has been 
shown so far, using the training set as the 
classifier. The state machine implemented 
(section 2.5. The state machine) identified the 
respiratory movement as a whole. 
A set of test were done, mixing mouth and nasal 
breathing from external subjects. The averages 
of positive identifications using the 
configuration of 22,050 Hz – 92 ms are 
displayed in Table 7. 
 
Best combination 
of simultaneous 

features 

Accuracy (%) 
Positive 

identifications 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

56.3 
66.7 
71.7 
72.9 
66.7 
72.9 
81.3 
89.6 
85.4 
70.8 
77.1 
95.8 
95.8 
93.8 



Castro & Marti-Puig Real-time Identification of Respiratory 
Movements through a Microphone 

 
 
 
 

 

Regular Issue vol 3 n 3 
http://adcaij.usal.es 

 
 
10 

Advances in Distributed Computing  
And Artificial Intelligence Journal 

 
 
 
 

15 
16 
17 

93.8 
93.8 
95.8 

Table 7. Accuracy level of positive respiratory movements  
 
Positive identifications were very high, even 
with a low number of features. Maximum 
accuracy was 95.8%, achieving this value with 
12 simultaneous features. 
 
3.5. User interface 
 
The software runs in Matlab, either as a high 
level function or in a window interface. To run 
the solution in a GUI it is just necessary to call 
the asbslab module, which opens the window 
interface. 
 

 
Fig. 6. User interface for the window version solution 

 
The window interface version allows the user to 
choose the desired running configuration in a 
more friendly way, as shown in figure 6.  
If users want to run the solution directly over 
the Mathlab console, it is just necessary to call 
the function asbslabconsole passing the 
following parameters: 
• the combination of sampling frequency – 

window size as a string (from a predefined 
list). 

• the set of chosen features to be used in the 
identification separated by the plus sign (+). 

For example, executing the software using a 
sampling rate of 22,050 Hz, a window size of 92 
ms and the features MFCC3, MFCC4 and 
RMSRatio, would be as following: 
 
asbslabconsole('s22w92',ASBS_MFCC3+ASBS_MFCC4+
ASBS_RMSRATIO) 

Monitoring now... Press CTRL+C to stop 
 
mouth inspiration with 82.44% of reliability 
mouth espiration with 70.80% of reliability 
mouth inspiration with 85.39% of reliability 
mouth espiration with 67.19% of reliability 
nasal inspiration with 73.51% of reliability 
nasal espiration with 89.80% of reliability 
nasal inspiration with 70.44% of reliability 
nasal espiration with 63.05% of reliability 

 
Running the software using a sampling rate of 
8,000 Hz, a window size of 128 ms and the 
features Centroid, MFCC3 and RMSRatio, 
would be as following (in this case the output 
did a false identification, marked here with two 
asterisks (**)): 
 
asbslabconsole('s8w128',ASBS_CENTROID+ASBS_MFC
C3+ASBS_RMSRATIO) 
Monitoring now... Press CTRL+C to stop. 
 
nasal inspiration with 91.54% of reliability 
mouth espiration with 75.35% of reliability 
nasal inspiration with 95.00% of reliability 
mouth espiration with 53.83% of reliability 
**mouth espiration with 81.37% of reliability 
mouth espiration with 68.43% of reliability 
mouth inspiration with 88.96% of reliability 
nasal espiration with 55.89% of reliability 
nasal inspiration with 95.43% of reliability 
nasal espiration with 57.25% of reliability 

4 Conclusions 
This paper has presented a software application 
to identify in real time the respiratory 
movements either mouth or nasal, which can be 
used for newer and practical monitoring 
solutions. The combination of signal processing 
analysis, classification method kNN and an 
implemented state machine has achieved more 
than 95% positive identifications. It has been 
implemented to work with predefined 
combinations of sampling frequencies and 
window segmentation sizes. Best accuracy is 
achieved at 22,050 KHz of sampling rate and 92 
ms of window size. Also, it allows users to 
customize the subset of acoustic features 
implied in the respiratory movement 
identification. Moreover, the paper suggests, 
from each subset of simultaneous features, those 
that achieve higher accuracy. Computation cost 
has been proven to be far from critical, even for 
high sampling frequencies in combination with 
windows from middle sizes. This leads to think 
of the possibility to adapt the software to mobile 
phone  platforms.  
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