Microencapsulation of antifungal agents in albumin coated liposomes
Abstract Triazole antifungal agents as Fluconazole or Itraconazole are usal drugs for treatment and prophylaxis of fungal diseases. Liposomes are ideal vehicles for hydrophilic and lipophilic drug transport and new strategies are being studied about them in order to improve drug transport and release. The objective of the study was evaluating and comparing the importance of the grade of albumin binding of Itraconazole and Fluconazole in the formulation, as well as assessing the incorporation of a cationic lipid: dimethyldioctadecylammonium and determinating its influence in the binding grade of the antifungal drugs. Liposomes were prepared using the sonication method, in absence of organic solvents, and they were albumin coated to form the microparticles. The drug concentration of them was determinated by an high-performance liquid chromatography technique. The drug fraction in the microparticles was higher for Itraconazole ones. Albumin solubilized part of the Itraconazole, but in that case the presence of dimethyldioctadecylammonium is needed to microparticles forming.
- Referencias
- Cómo citar
- Del mismo autor
- Métricas
Alomrani AH, Shazly GA, Amara AA, Badran MM. Itraconazole-hydroxypropyl-?-cyclodextrin loaded deformable liposomes: in vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloid Surface B. 2014; 121: 74-81.
Carrillo-Muñoz AJ, Giusiano G, Arechavala A, Tur-Tur C, Eraso E, Jauregizar N, Quindós G, Negroni R. La utilidad clínica de los derivados triazólicos en el tratamiento de las infecciones fúngicas. RevEspQuimioter. 2015; 28(4): 169-182.
Chen W, Gu B, Wang H, Pan J, Lu W, Hou H. Development and evaluation of novel itraconazole-loaded intravenous nanoparticles. Int J Pharm. 2008; 362(1-2):133-140.
De Jesús-Valle MJ, Sánchez-Navarro A. Liposomes Prepared in Absence of organic solvents: sonication versus lipid film hydration method. Curr Pharm Anal. 2015; 11(2): 86-91.
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012; 157(2):168-182.
Fica A. Tratamiento de infecciones fúngicas sistémicas. Parte I: Fluconazol, itraconazol y voriconazol. RevChilInfect. 2004; 21: 28-38.
Gregorí-Valdés BS. Estructura y actividad de los antifúngicos. Rev Cubana Farm. 2005; 39(2).
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015; 6:219.
Lass-Flörl C. Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs. 2011; 71(18): 2405-2419.
Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, Ndesendo VMK. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011; 2011:93985.
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
Vázquez-López L. Importancia cli?nica de los azoles en la terapia antifu?ngica: tratamiento o profilaxis con los nuevos azoles en hematologi?a. RevEspQuimioterap. 2004; 17(1): 98-100.
Carrillo-Muñoz AJ, Giusiano G, Arechavala A, Tur-Tur C, Eraso E, Jauregizar N, Quindós G, Negroni R. La utilidad clínica de los derivados triazólicos en el tratamiento de las infecciones fúngicas. RevEspQuimioter. 2015; 28(4): 169-182.
Chen W, Gu B, Wang H, Pan J, Lu W, Hou H. Development and evaluation of novel itraconazole-loaded intravenous nanoparticles. Int J Pharm. 2008; 362(1-2):133-140.
De Jesús-Valle MJ, Sánchez-Navarro A. Liposomes Prepared in Absence of organic solvents: sonication versus lipid film hydration method. Curr Pharm Anal. 2015; 11(2): 86-91.
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012; 157(2):168-182.
Fica A. Tratamiento de infecciones fúngicas sistémicas. Parte I: Fluconazol, itraconazol y voriconazol. RevChilInfect. 2004; 21: 28-38.
Gregorí-Valdés BS. Estructura y actividad de los antifúngicos. Rev Cubana Farm. 2005; 39(2).
Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015; 6:219.
Lass-Flörl C. Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs. 2011; 71(18): 2405-2419.
Mufamadi MS, Pillay V, Choonara YE, Du Toit LC, Modi G, Naidoo D, Ndesendo VMK. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011; 2011:93985.
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
Vázquez-López L. Importancia cli?nica de los azoles en la terapia antifu?ngica: tratamiento o profilaxis con los nuevos azoles en hematologi?a. RevEspQuimioterap. 2004; 17(1): 98-100.
Viruega-Encinas, S., & De Jesús-valle, M. J. (2017). Microencapsulation of antifungal agents in albumin coated liposomes. FarmaJournal, 2(2), 117–126. Retrieved from https://revistas.usal.es/cinco/index.php/2445-1355/article/view/16019
Most read articles by the same author(s)
- Oscar Delgado-Rubio, María José De Jesus-valle, Amparo Sanchez-Navarro, Design of a liposomal formulation aimed to vaccines administration , FarmaJournal: Vol. 1 No. 1 (2016)
- María José Sanchez-Carpintero, Amparo Sanchez-Navarro, María José De Jesus-valle, Liposomes isolation and characterization by microencapsulation , FarmaJournal: Vol. 1 No. 1 (2016)
- Jimena Barbero, Amparo Sánchez Navarro, María José de Jesús-Valle, Ergosterol Liposomes in Lyophilized Formulations for Buccal Administration , FarmaJournal: Vol. 9 No. 2 (2024)
Downloads
Download data is not yet available.
+
−