Variants in RIPOR2 gene related to hearing loss are infrequent in Northern Spain
Abstract Introduction and objective: To assess the prevalence and clinical characterization of variants in the RIPOR2 gene among patients with bilateral sensorineural hearing loss (SNHL) of unknown etiology in northern Spain. Method: This 7-year (2018–2024) observational, retrospective, and descriptive study involved patients with bilateral SNHL treated at a tertiary hospital. Genetic analysis was performed using next-generation sequencing (NGS), employing a gene panel for sensorineural hearing loss. The presence of RIPOR2 gene variants was specifically analyzed. Results: Among the 381 patients, two variants in the RIPOR2 gene were identified in three individuals (0.8 %): c.1879G>A (p.Asp627Asn) and c.3193G>A (p.Ala1065Thr). The variant c.1879G>A was detected in two patients, while the c.3193G>A variant was found in only one patient who also carried other pathogenic variants associated with hearing loss. The three patients exhibited cookie-bite hearing loss, predominantly affecting the 1000, 2000, and 4000 Hz frequencies, respectively, without associated vestibular symptoms. Conclusions: variants in the RIPOR2 gene are infrequent among patients with SNHL in northern Spain (Cantabria). Moreover, there is no conclusive evidence supporting their pathogenicity in cases of SNHL with unknown etiology. Further studies are needed to clarify their clinical significance.
- Referencias
- Cómo citar
- Del mismo autor
- Métricas
Lu Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci. 2022;18(2):800-8. https://doi.org/10.7150/ijbs.65457.
Diaz-Horta O, Subasioglu-Uzak A, Grati M, DeSmidt A, Foster J 2nd, Cao L, et al. FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing. Proc Natl Acad Sci U S A. 2014;111(27):9864-8. https://doi.org/10.1073/pnas.1322632111.
Zhao B, Wu Z, Muller U. Murine Fam65b forms ring-like structures at the base of stereocilia critical for mechanosensory hair cell function. eLife. 2016;5:e14222. https://doi.org/10.7554/eLife.14222.
Goutman JD, Elgoyhen AB, Gomez-Casati ME. Cochlear hair cells: The sound-sensing machines. FEBS Lett. 2015;589(22):3354-61. https://doi.org/10.1016/j.febslet.2015.09.004.
Manor U, Kachar B. Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol. 2008;19(6):502-10. https://doi.org/10.1016/j.semcdb.2008.09.005.
Diaz-Horta O, Abad C, Cengiz FB, Bademci G, Blackwelder P, Walz K, et al. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation. J Mol Med (Berl). 2018;96(11):1227-38. https://doi.org/10.1007/s00109-018-1704-6.
de Bruijn SE, Smits JJ, Liu C, Lanting CP, Beynon AJ, Blankevoort J, et al. A RIPOR2 in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss. J Med Genet. 2020 Jul 6;57(12):861-7. https://doi.org/10.1136/jmedgenet-2020-106863.
Velde HM, Homans NC, Goedegebure A, Lanting CP, Pennings RJE, Kremer HJ. Analysis of Rotterdam Study cohorts confirms a previously identified RIPOR2 in-frame deletion as a prevalent genetic factor in phenotypically variable adult-onset hearing loss (DFNA21) in the Netherlands. J Med Genet. 2023;60(11):1061-6. https://doi.org/10.1136/jmg-2023-109146.
Mardakheh FK, Self A, Marshall CJ. Rho binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci. 2016;129(24):4466-79. https://doi.org/10.1242/jcs.196717.
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004;32(Database issue):D452-5. https://doi.org/10.1093/nar/gkh052.
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell. 2022 Sep 26;57(18):2204-20.e6. https://doi.org/10.1016/j.devcel.2022.08.011.
Bischoff AM, Huygen PL, Kemperman MH, Pennings RJ, Bom SJ, Verhagen WI, et al. Vestibular deterioration precedes hearing deterioration in the P51S COCH mutation (DFNA9): an analysis in 74 mutation carriers. Otol Neurotol. 2005 Sep;26(5):918-25. https://doi.org/10.1097/01.mao.0000185048.84641.e3.
Alonso AV, Aguado RG, Camerano AM, Enseñat JF, de la Fuente EO, Angulo CM. Hearing and vestibular impairment related to a variant (c.263G>C) of the COCH gene. Otolaryngol Head Neck Surg. 2024 Dec 12. https://doi.org/10.1002/ohn.1074. Epub ahead of print.
International Organization for Standardization (ISO 7029:2017). Edition 3, 2017 [Internet]. Available from: https://www.iso.org/standard/42916.html
Degree of hearing loss. American Speech-Language-Hearing Association [Internet]. [cited 2024 Aug 14]. Available from: https://www.asha.org/public/hearing/degree-of-hearing-loss
Li MM, Tayoun AA, DiStefano M, et al. ACMG Professional Practice and Guidelines Committee. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2022;24(7):1392-406. https://doi.org/10.1016/j.gim.2022.03.018.
González-Aguado R, Gallo-Terán J, Onecha E, Morales-Angulo C. Cochleo-vestibular phenotype in patients with pathogenic variations in the ACTG1 gene. Acta Otorrinolaringol Esp. 2024. In press.
Kim SY, Kim BJ, Oh DY, et al. Improving genetic diagnosis by disease-specific, ACMG/AMP variant interpretation guidelines for hearing loss. Sci Rep. 2022;12(1):12457. https://doi.org/10.1038/s41598-022-16661-x.
Usami S, Nishio S. The genetic etiology of hearing loss in Japan revealed by the social health insurance-based genetic testing of 10K patients. Hum Genet. 2022;141(5-6):665-81. https://doi.org/10.1007/s00439-021-02371-3.
Aliazami F, Gilani S, Farhud D, Naraghi M, Afshari M, Eslami M. Epidemiology, etiology, genetic variants in non-syndromic hearing loss in Iran: A systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol. 2023;168:111512. https://doi.org/10.1016/j.ijporl.2023.111512.
Reda del Barrio S, García Fernández A, Quesada-Espinosa JF, et al. Genetic diagnosis of childhood sensorineural hearing loss. Acta Otorrinolaringol Esp. 2024;75(2):83-93. https://doi.org/10.1016/j.otoeng.2023.09.005.
Reda Del Barrio S, de Vergas Gutiérrez J, Quesada-Espinosa JF, et al. Diagnostic yield of genetic testing in adults with sensorineural hearing loss. Acta Otorrinolaringol Esp. 2024;10:S2173-5735(24)00026-7. https://doi.org/10.1016/j.otoeng.2023.10.007.
Cabanillas R, Diñeiro M, Cifuentes GA, et al. Comprehensive genomic diagnosis of nonsyndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics. 2018;11:58. https://doi.org/10.1186/s12920-018-0375-5.
Del Castillo I, Morín M, Domínguez Ruiz M, Moreno Pelayo MA. Genetic etiology of non-syndromic hearing loss in Europe. Hum Genet. 2022;141(5-6):683-96. https://doi.org/10.1007/s00439-021-02425-6.
Seligman KL, Shearer AL, Frees K, Nishimura C, Kolbe D, Dunn C, et al. Genetic causes of hearing loss in a large cohort of cochlear implant recipients. Otolaryngol Head Neck Surg. 2022;166(4):734-7. https://doi.org/10.1177/01945998211021308.
Diaz-Horta O, Subasioglu-Uzak A, Grati M, DeSmidt A, Foster J 2nd, Cao L, et al. FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing. Proc Natl Acad Sci U S A. 2014;111(27):9864-8. https://doi.org/10.1073/pnas.1322632111.
Zhao B, Wu Z, Muller U. Murine Fam65b forms ring-like structures at the base of stereocilia critical for mechanosensory hair cell function. eLife. 2016;5:e14222. https://doi.org/10.7554/eLife.14222.
Goutman JD, Elgoyhen AB, Gomez-Casati ME. Cochlear hair cells: The sound-sensing machines. FEBS Lett. 2015;589(22):3354-61. https://doi.org/10.1016/j.febslet.2015.09.004.
Manor U, Kachar B. Dynamic length regulation of sensory stereocilia. Semin Cell Dev Biol. 2008;19(6):502-10. https://doi.org/10.1016/j.semcdb.2008.09.005.
Diaz-Horta O, Abad C, Cengiz FB, Bademci G, Blackwelder P, Walz K, et al. Ripor2 is involved in auditory hair cell stereociliary bundle structure and orientation. J Mol Med (Berl). 2018;96(11):1227-38. https://doi.org/10.1007/s00109-018-1704-6.
de Bruijn SE, Smits JJ, Liu C, Lanting CP, Beynon AJ, Blankevoort J, et al. A RIPOR2 in-frame deletion is a frequent and highly penetrant cause of adult-onset hearing loss. J Med Genet. 2020 Jul 6;57(12):861-7. https://doi.org/10.1136/jmedgenet-2020-106863.
Velde HM, Homans NC, Goedegebure A, Lanting CP, Pennings RJE, Kremer HJ. Analysis of Rotterdam Study cohorts confirms a previously identified RIPOR2 in-frame deletion as a prevalent genetic factor in phenotypically variable adult-onset hearing loss (DFNA21) in the Netherlands. J Med Genet. 2023;60(11):1061-6. https://doi.org/10.1136/jmg-2023-109146.
Mardakheh FK, Self A, Marshall CJ. Rho binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci. 2016;129(24):4466-79. https://doi.org/10.1242/jcs.196717.
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004;32(Database issue):D452-5. https://doi.org/10.1093/nar/gkh052.
Li J, Liu C, Müller U, Zhao B. RIPOR2-mediated autophagy dysfunction is critical for aminoglycoside-induced hearing loss. Dev Cell. 2022 Sep 26;57(18):2204-20.e6. https://doi.org/10.1016/j.devcel.2022.08.011.
Bischoff AM, Huygen PL, Kemperman MH, Pennings RJ, Bom SJ, Verhagen WI, et al. Vestibular deterioration precedes hearing deterioration in the P51S COCH mutation (DFNA9): an analysis in 74 mutation carriers. Otol Neurotol. 2005 Sep;26(5):918-25. https://doi.org/10.1097/01.mao.0000185048.84641.e3.
Alonso AV, Aguado RG, Camerano AM, Enseñat JF, de la Fuente EO, Angulo CM. Hearing and vestibular impairment related to a variant (c.263G>C) of the COCH gene. Otolaryngol Head Neck Surg. 2024 Dec 12. https://doi.org/10.1002/ohn.1074. Epub ahead of print.
International Organization for Standardization (ISO 7029:2017). Edition 3, 2017 [Internet]. Available from: https://www.iso.org/standard/42916.html
Degree of hearing loss. American Speech-Language-Hearing Association [Internet]. [cited 2024 Aug 14]. Available from: https://www.asha.org/public/hearing/degree-of-hearing-loss
Li MM, Tayoun AA, DiStefano M, et al. ACMG Professional Practice and Guidelines Committee. Clinical evaluation and etiologic diagnosis of hearing loss: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2022;24(7):1392-406. https://doi.org/10.1016/j.gim.2022.03.018.
González-Aguado R, Gallo-Terán J, Onecha E, Morales-Angulo C. Cochleo-vestibular phenotype in patients with pathogenic variations in the ACTG1 gene. Acta Otorrinolaringol Esp. 2024. In press.
Kim SY, Kim BJ, Oh DY, et al. Improving genetic diagnosis by disease-specific, ACMG/AMP variant interpretation guidelines for hearing loss. Sci Rep. 2022;12(1):12457. https://doi.org/10.1038/s41598-022-16661-x.
Usami S, Nishio S. The genetic etiology of hearing loss in Japan revealed by the social health insurance-based genetic testing of 10K patients. Hum Genet. 2022;141(5-6):665-81. https://doi.org/10.1007/s00439-021-02371-3.
Aliazami F, Gilani S, Farhud D, Naraghi M, Afshari M, Eslami M. Epidemiology, etiology, genetic variants in non-syndromic hearing loss in Iran: A systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol. 2023;168:111512. https://doi.org/10.1016/j.ijporl.2023.111512.
Reda del Barrio S, García Fernández A, Quesada-Espinosa JF, et al. Genetic diagnosis of childhood sensorineural hearing loss. Acta Otorrinolaringol Esp. 2024;75(2):83-93. https://doi.org/10.1016/j.otoeng.2023.09.005.
Reda Del Barrio S, de Vergas Gutiérrez J, Quesada-Espinosa JF, et al. Diagnostic yield of genetic testing in adults with sensorineural hearing loss. Acta Otorrinolaringol Esp. 2024;10:S2173-5735(24)00026-7. https://doi.org/10.1016/j.otoeng.2023.10.007.
Cabanillas R, Diñeiro M, Cifuentes GA, et al. Comprehensive genomic diagnosis of nonsyndromic and syndromic hereditary hearing loss in Spanish patients. BMC Med Genomics. 2018;11:58. https://doi.org/10.1186/s12920-018-0375-5.
Del Castillo I, Morín M, Domínguez Ruiz M, Moreno Pelayo MA. Genetic etiology of non-syndromic hearing loss in Europe. Hum Genet. 2022;141(5-6):683-96. https://doi.org/10.1007/s00439-021-02425-6.
Seligman KL, Shearer AL, Frees K, Nishimura C, Kolbe D, Dunn C, et al. Genetic causes of hearing loss in a large cohort of cochlear implant recipients. Otolaryngol Head Neck Surg. 2022;166(4):734-7. https://doi.org/10.1177/01945998211021308.
Veiga Alonso, A., Fernández Enseñat, J., Martínez Camerano, A., González Aguado, R., Onecha de la Fuente, E., & Morales Angulo, C. (2025). Variants in RIPOR2 gene related to hearing loss are infrequent in Northern Spain. Revista ORL, e32877. https://doi.org/10.14201/orl.32877
Most read articles by the same author(s)
- Patricia Corriols Noval, Maria Teresa Gil Aguilar, Aiara Viana Cora, Nathalia Castillo Ledesma, Rocío González Aguado, Carmelo Morales Angulo, Transcartilaginous ear piercing complications , Revista ORL: Segovia 2018
- Nathalia Margarita Castillo Ledesma, Patricia Corriols Noval, Aiara Viana Cora, Maria Teresa Gil Aguilar, Rocio Gonzalez Aguado, Tumoración maligna amigdalar, Linfoma de Burkitt. , Revista ORL: Segovia 2018
- Patricia Corriols-Noval, Beatriz Palmero-Sánchez, Gianni Faelens, Carmelo Morales-Angulo, Eugenia López-Simón, Head and neck manifestations of cocaine abuse. Review , Revista ORL: Vol. 13 No. 1 (2022)
- Natalia Castañeda Curto, Rocío González Aguado, Degeneración cerebelosa subaguda paraneoplásica: caso clínico , Revista ORL: Segovia 2018
- Patricia Corriols Noval, Maria Costales Marcos, Rocío González Aguado, Ana Fontalba, Juan Cardiño, Marta Diñeiro, Rubén Cabanillas Farpón, Secuenciación genómica para el diagnóstico etiológico de la hipoacusia del adulto , Revista ORL: SORIA 2019
- Aiara Viana Cora, Maria Teresa Gil Aguilar, Nathalia Margarita Castillo Ledesma, Remigio Mazorra Horts, Rocío Gonzalez Aguado, Plasmocitoma extramedular hipofaríngeo , Revista ORL: Segovia 2018
Downloads
Download data is not yet available.
+
−