
63

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 7 N. 3 (2018), 63-98

eISSN: 2255-2863
DOI: http://dx.doi.org/10.14201/ADCAIJ2018736398

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

JAMDER: JADE to MULTI-Agent
Systems Development Resource
Yrleyjander S. Lopesa, Mariela I. Cortésa,
Enyo José Tavares Gonçalvesb and Robson Oliveiraa

a Universidade Estadual do Ceará, Fortaleza, CE – Brazil
b Universidade Federal do Ceará, Quixadá, CE – Brazil
yrleyjander@gmail.com, mariela@larces.uece.br, enyo@ufc.br, rob.oliveira89@gmail.com

KEYWORD ABSTRACT

Multi-Agent
Systems;
Framework;
JADE;
Model-Driven
Architecture

The semantic gap is distinguished by the difference between two descriptions gen-
erated using different representations. This difference has a negative impact on the
developer productivity and probably, the quality of the written code. In software de-
velopment context, the coding phase aims at coding the system consistent with the
detailed project developed with a group of designed models. This paper presents an
endeavor to consolidate different agent type definitions and implementation concepts
for Multi-Agent Systems (MAS) involving the adaptation of the JADE framework re-
garding the theoretical concepts in MAS. Additionally, it contains a standardization
of code generation. The main benefit of the proposed extension is to include the agent
internal architectures, entities and relationships in an implementation framework and
increase the productivity by code generation, ensuring the consistency between design
and code. The applicability of the extension is illustrated by developing a multi-agent
system for Moodle.

1. Introduction
A Multi-Agent System (MAS) involves a rich variety of entities such as organizations, environments, agent and
object roles, that each one has relationships and associated behaviors (Freire et al., 2013). In particular, a single
MAS can be composed of agents with different architectures, where each architecture involves some specific
behaviors and attributes associated to the agent. In this context, the high complexity to develop MAS requires a
set of methods and tools to assist in the construction of this system considering the particularity of each entity.
Russell and Norvig (2002), defined initially four architectures for agents: simple reflex agents, model-based
reflex agents, goal-based agents and utility-based agents. BDI (belief-desire-intention) is another known archi-
tecture which involves the concept of one agent needs to store the steps (beliefs), according to its goals (desires)
and make plans (intentions).

On another hand, the agent-oriented development paradigm requires adequate techniques to explore its
benefits and features to support the construction and maintenance of this type of software. As it is the case
with any new software engineering paradigm, the successful and widespread deployment of MASs requires
modelling languages that explore the use of agent-related abstractions and promote the traceability from the

63 2018 7 3

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal. Vol. 7 N. 3 (2018), 63-98

mailto:yrleyjander@gmail.com
mailto:mariela@larces.uece.br
mailto:enyo@ufc.br
mailto:rob.oliveira89@gmail.com

64

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

design models to code. To reduce the risk when adopting new technology, it is convenient to present it as an
incremental extension of known and trusted methods and to provide explicit engineering tools that support in-
dustry-accepted methods of technology deployment (Castro et al., 2006). The transition between the modelling
and implementation stages is usually accomplished in a non-systematic way, and frequently, aspects considered
in the modelling have no counterpart in the implementation. In this context, the existence of a conceptual meta-
model is crucial since represents the ontology of the entities in a MAS. The framework TAO+ (Taming Agents
and Objects) provides an ontology that covers the fundamentals of software engineering based on agents and
objects and supports the development of MAS in large-scale (Freire, 2013). TAO+ presents the definition of
each abstraction, as a concept of its ontology, and establishes the relationships between them.

On another hand, the use of methods and tools to support the development activities allow an increase in
productivity and, in general, ensures the correctness of the generated artefacts (produced code). More specifical-
ly, frameworks and platforms provide an environment for implementation. Barely, a framework accomplishes
all characteristics for different types of agents and other entities to increase the complexity of agents in an
environment.

The Java Agent Development1 framework (JADE), widely used in the development of MAS, has the follow-
ing characteristics: (i) it has a platform in the Java language, (ii) supports distributed systems and (iii) is free.
However, the agent implementation in JADE is limited mainly to agents, behaviors and messages. JADE also
has a platform, which contains the necessary environment for the agent lifecycle and containers where agents
reside.

This paper presents an extension of the JADE framework to provide the adequate infrastructure focused on
implementation of agents according to the settings covered in (Freire, 2013). Additionally, an approach based
on model-driven architecture (MDA2) (Mellor, 2004) to support the code generation is presented in order to
promote a fast and consistent development for different types of agent architecture. The paper is organized as
follows: in Section 2, related works are presented. Section 3 presents the theoretical referential about the entities
in the TAO+ metamodel, JADE framework and the MDA approach. Section 4 presents the extension of JADE
and the code generation mechanism. Section 5 a case study is illustrated. Finally, Section 6 presents the conclu-
sions and suggestions for future works.

2. Related Works
A set of frameworks and modelling languages have been developed in order to support the implementation of
MAS. In general, these tools are associated with an object-oriented programming language, in order to compose
entities and provide an environment for their execution.

2.1. MAS Modeling Languages and Tools
Jadex (JADE XML) (Braubach, 2003) (Pokahr et al., 2005) is an agent-oriented reasoning mechanism that the
agents are written in XML and Java programming language. One of the main aspects of Jadex is not to present a
new programming language. It uses the already existent object-oriented environment. In adding, the utilization
of XML language in the definition of the agent features increases the development complexity. On another hand,
a platform update entails that code created using the previous version can be incompatible with the new one.

JaCaMo (Boissier et al., 2011) is a framework for Multi-Agent Programming builds upon three existing
platforms, Jason for programming autonomous agents, Moise for programming organizations, and CArtAgO
for programming shared environments. A software system programmed in JaCaMo is defined by the organiza-
tion of autonomous BDI agents based on concepts as roles, groups, mission and schemes; autonomous agents
are implemented in Jason; working in shared distributed artefact-based environments. The JaCaMo meta-model

1 Java Agent Development. http://jade.tilab.com/
2 Object Management Group. http://www.omg.org.

65

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

defines dependencies, connections and conceptual mappings and synergies between all the different abstrac-
tions available in the meta-models associated to each level of abstraction.

Opal (Purvis et al., 2002) is a platform for the development of MAS-based abstract architecture developed
by FIPA3. It provides a framework formed by specialist officers who provide essential services for the develop-
ment MAS, with, for example, registration and search of instantiated agents in the system. An agent is made of
a combination of several micro-agents. These micro-agents are lower levels in a MAS.

JADE (Castro et al., 2006) is widely used in various market sectors such as telecommunications, JADE pro-
vides a robust and mature infrastructure, and provides many features that are needed for implementing multi-
agent systems, which includes yellow pages, message exchange and support for ontologies. JADE implements
a task-oriented model, in which agents have a set of behaviors. No cognitive abilities, such as a reasoning cycle,
are provided for agents.

Santos (2006) provides a metamodel that represents the concepts that define an agent system, as well as the
relationships between them. The code generation uses a prototype tool developed in Velocity4 and the modeling
information is represented by XML (Extensible Markup Language) file that contains the agent structures. The
author uses a prototype of a modeling tool, called MAS Modeler (Santos, 2006), where the textual information
is filled through step-by-step screens. After that, this structure is stored in an XML file and can be used by the
Velocity template for code generation in the Semanticore framework (Blois and Lucena, 2004), but only for
agents.

TAOM4E (Morandini et at., 2011) is an agent-oriented modeling environment and supports a model-driven,
an agent-oriented software development. It has been designed taking into account MDA recommendations. The
TAOM4E architecture allows for a flexible integration of different tools. The tool is a plug-in for ECLIPSE
Platform, but it allows the code generation only to BDI agents.

The Prometheus Design Tool (PDT) (Padgham and Winikoff, 2004) is a graphical tool that is used to de-
sign a MAS following the Prometheus Methodology. PDT is integrated into the Eclipse platform, enabling the
users to accomplish the full development life-cycle of an agent-oriented application in one IDE. Similarly to
TAOM4E, the code generation is targeted only to BDI agents.

Among all the frameworks highlighted in this section, only JADEX and JADE have an IDE (Integrated De-
velopment Environment) with free support for code debugging. Considering that any of them would need the
extension to best suit the modelling language, then JADE showed the fittest since is not necessary the utilization
of another language for redefining the agent structure as JADEX (Nunes, 2008).

2.2. MDD Approaches for MAS Development
Several methodological approach and frameworks to the model-driven design of multiagent systems have al-
ready been proposed (Gómez-Sanz et al., 2010)(Ficher et al., 2012). In this context, model transformation
techniques are one of the key aspects of the model-driven development approach. In (Gascuena et al., 2014)
model-to-model and model-to-text transformations are presented to automate the development process to gen-
erate ICARO code from the INGENIAS model.

Studies on Domain-Specific Languages (DSLs) and Domain-Specific Modeling Languages (DSMLs) for
agents have emerged in the context of MAS development (Challenger, 2014). A DSML for MAS is presented
in (Gascuena et al., 2012), where the abstract and the concrete syntax was presented using the Meta-object Fa-
cility (MOF) and GMF, respectively. Finally, the code generation for the JACK5 agent platform. However, the
developed modeling language is based on the metamodel (Challenger et al., 2014) of one of the specific MAS
methodologies called Prometheus (Padgham and Winikoff, 2004). A similar study was done in Fuentes-Fer-
nandez et al. (2010) which is based on INGENIAS methodology (Pavon et al., 2005) for MAS development.

More specifically, DSM and DSML may provide the required abstraction and support a more fruitful meth-
odology for the development of the development of Semantic Web enabled MASs. In this domain, autonomous

3 http://www.fipa.org/.
4 Velocity. Apache Velocity Project. http://velocity.apache.org).
5 http://www.agent-software.com.au/products/jack/.

https://www.sciencedirect.com/science/article/pii/S0952197613002297#bbib33
https://www.sciencedirect.com/science/article/pii/S0952197613002297#bib83
https://www.sciencedirect.com/science/article/pii/S0952197613002297#bib32
https://www.sciencedirect.com/science/article/pii/S0952197613002297#bib32
https://www.sciencedirect.com/science/article/pii/S0952197613002297#bib84
http://velocity.apache.org
http://www.agent-software.com.au/products/jack/

66

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

agents can evaluate semantic data and collaborate with semantically-defined entities of the Semantic Web, like
Semantic Web Services. Challenger et al. (2016) presents a new DSL-base methodology for the development of
MAS with semantic web. This study presented a DSL called Semantic web-Enabled Agent Language (SEA_L)
(Demirkol, 2013) (Getir et al., 2014) and includes code generation and constraints to check the programs re-
garding the implementation of SEA_L agents.

3. Theoretical Referential
This section describes the concepts related to the TAO+ metamodel including the entities needed for MAS and
Jade definitions.

3.1. MAS Entities in Taming Agents and Objects (TAO+)
The framework TAO+ provides an ontology that covers the fundamentals of Software Engineering based on
agents and objects and supports the development of MAS in large-scale (Freire, 2013). TAO+ presents the defi-
nition of each abstraction, as a concept of its ontology, and establishes the relationships between them (Figure
1). Gonçalves et al. (Gonçalves et al., 2010) (Gonçalves et al., 2015) describe the entities needed for a MAS as
such as the internal architectures of agents as follow:

• Object: It is a passive element that has state and behavior and can be related to other elements.
• Agent: It is an autonomous, adaptive and interactive element. Its basic behavioral feature is action and

Structural/Mental and behavioral aspects depends of its internal architecture:
• The Simple reflex Agent has not structural/mental features and it has Perception and Action (oriented by

Condition-Action Rules) as behavioral features;
o The Model-based reflex Agent has the structural/mental feature Belief and it has Perception, Next-func-

tion and Action (oriented by Condition-Action Rules) as behavioral features;
o The MAS-ML agent has goal and belief as structural/mental features and it has Plan and Action (ori-

ented by the Plan chosen according to the goal);
o Goal-based Agent has goal and belief as structural/mental features and it has Perception, Next Func-

tion, Goal-formulation Function, Problem-formulation function, Planning and Action as behavioral
features;

o The Utility-based Agent has goal and beliefs as structural/mental features and it has Perception, Next
Function, Goal-formulation Function, Problem-formulation function, Utility Function Planning and
Action as behavioral features.

67

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Figure 1: Entities and Relationships on TAO (Gonçalves et al., 2010)

• Organization: It is an element that groups agents, which play roles and have common goals. It may re-
strict the behavior of their agents and their sub-organizations through the concept of axiom, which define
the actions that must be performed.

• Object Role: It is an element that guides and restricts the behavior of an object in the organization. An
object role can add information, behavior and relationships to the object that plays the role.

• Agent Role: It is an element that guides and restricts the behavior of an agent in the organization. An
agent role defines (i) duties that define an action that must be performed by an agent, (ii) rights that define
an action that can be performed by an agent and (iii) protocol that defines an interaction with the other
elements.

• Environment: It is an element that represents the habitat for agents, objects and organizations. An envi-
ronment can be heterogeneous, dynamic, open and distributed.

Silva et al. (2007) define the following relationships in TAO+: Inhabit, Ownership, Play, Specialization/
Inheritance, Control, Dependency, Association and Aggregation /Composition. The relationships will not be
described here since the framework and code generation proposed in this work approaches implicitly from the
diagram projected and all validations of these relationships are also now covered by the modelling tool.

3.2. JADE Agent Definitions
JADE framework includes classes and services to facilitate the MAS coding phase. Among the available fea-
tures, some are listed below: publishing services through yellow pages, location service through white pages,
support to ontologies and communication of protocols compatible with FIPA6 (Foundations of Intelligent Phys-
ical Agents) standard. Indeed, JADE is an object-oriented framework written in Java.

The architecture in JADE contains containers where the agents reside and the system can be distributed
on different platforms. Each agent is registered in the service AMS (Agent Management System) provided by
JADE that guarantees the oneness of the agents. To find other agents, another service is provided, DF (Directory
Facilitator) and it works like a Yellow Pages service.

JADE agent classes inherit (in) directly from jade.core.Agent (Bellifemine et al., 2007), that represents a
common basic class for the agent definition by the user. Therefore, from the programmer standpoint, a JADE
agent is simply an instance of Java class that inherits from Agent class (Castro et al. 2006). This implies, in
case of feature inheritance, in order to support the basic interactions with the agent platform (registration,

6 http://www.fipa.org.

http://www.fipa.org

68

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

remote configuration and management). Initially, a basic set of methods must be coded to run the basic agent’s
behaviors, such as methods to send or receive messages, related to the utilization of standard communication
protocols, registration of several domains, among others.

The JADE life cycle for an agent is defined according to FIPA. The first step is the execution of the agent’s
constructor, followed by the assignment of an identifier for the agent to be entered into the system. The setup()
method runs from the time that the agent starts its activities. A agent behavior is designed by the overridden of
the setup().

The kinds of behaviors in JADE represent the actions of agents (Castro et al. 2006). The main class related
to behavior is the jade.core.Behavior, whose subclasses implement specific purposes, such as behavior compo-
sition or task duration. This class defines two basic methods: action() and done(). The action() method contains
the code of the behavior to be executed by the agent. After its execution, the done() method is automatically
executed to check if the behavior has been finalized or not. The class must maintain the state of the execution,
so the done() method returns a logical value false (equivalent to the false literal in Java) as long as necessary to
perform the action() method. Otherwise, it must return a logical value true (equivalent to the true literal in Java).

3.3. Model-Driven Architecture
The model-driven architecture (MDA) is presented as an appropriate approach to assist in the code generation
because the code can be generated several times without compromising the model. The OMG7 defines some
standardization in this process that is not necessarily associated with a specific platform. Thus, the concepts may
be applied to different modeling and implementation languages.

The transformation process takes place through the steps proposed by OMG. The generated artifacts in
each of these steps are independent of a specific tool to be used, for example, when the same application can
be implemented in different languages. The concepts of each of these steps are described as follows (Beydeda
et al., 2005):

• CIM (Computation Independent Model): rules for functional requirements;
• PIM (Platform-Independent Model): relations between properties and their entity relationships.
• PSM (Platform-Specific Model): definition of how the system will work on a specific platform.
• PDM (Platform Description Model): definition of how the PIM to PSM will work.

Model transformation is the process of converting one model to another model of the same system and rep-
resents the central point in the model-driven development. High-level models are transformed into low-level
models. In this sense, the idea of generating one model from another in an automatic/semi-automatic manner
intends to provide a simple and fast way of software development.

4. Jade Extension and Mapping for MAS
As explained in the previous section, besides agent concept, the conceptual framework TAO+ offers other as-
pects that can be involved in a MAS like object, organization, object role and agent role. Each entity specifies
different structural properties and behaviors.

Considering the resources and features offered at the conceptual level, adjustments in JADE are required in
order to turn the properties and behaviors to corresponding implementation components. The resultant JADE
extension is called JAMDER8 (JADE to MAS Development Resource).

7 Object Management Group. http://www.omg.org.
8 https://bitbucket.org/yrley/jamder/src.

69

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

4.1. Agents
Agents have their architecture definition and interact with an environment. Beside the BDI definition, there
are the reactive and proactive agents defined by Russell and Norvig. Taking this knowledge, five different
architectures or types of agents can be identified: (i) simple reflex agents, (ii) model-based reflex agents, (iii)
goal-based agents with searching (planning), (iv) utility-based agents, and (v) goal-oriented agents with plans.
On this assumption, the JADE Agent class must be extended to incorporate these five agent types (Figure 2).

Except for goal-based agents with plans, the other architectures have similar characteristics according to
perception and functions used, but agents based on goals with planning and utility-based agents do not share the
condition-action rules. Therefore, three hierarchies of agents at modeling level were established, (i) goal-based
agent with plan, (ii) reflex agents (simple reflex agent and model-based reflex agent) and (iii) cognitive agents
(goal-based agent with planning and utility-based agent). This classification is based on the structural and be-
havioral characteristics of the agents.

Figure 2: JAMDER Agent Hierarchy

The class jamder.agents.GenericAgent, which extends jade.core.Agent, was defined to represent these prop-
erties and other common attributes between the three branches. The common attributes are: (i) the list of agent
roles, (ii) the list of organizations which the agent can be participating, (iii) the environment where it is, and (iv)
the list of actions that it can perform. These lists are instances of java.util.Hashtable class. Except for the list of
agent roles, the other lists are protected to ensure access only by its sub-classes. All lists with their five access
methods are defined as following headers:

• getXXX(name) - returns the instance of the element name of the list;
• addXXX(name, XXX) - adds the element XXX in the list;
• removeXXX(name) - removes the element name from the list and returns the list;
• removeAllXXX() - removes all elements of the list;
• getAllXXX() - returns the list of elements XXX;

The agents need sensors to capture the perceptions; this concept is represented by the new class jamder.
behavioral.Sensor which inherits from jade.core.behaviors. TickerBehavior. It is responsible for capturing per-
ceptions from the environment, time by time. The period should be defined by the developer in Sensor. The
perception is handled by the abstract method called percept(perception) of GenericAgent.

In JADE, the agent plays at least one agent role which contains the beliefs, goals and actions. By acquiring
the role, the agent acquires the beliefs and goals of the role. The agent can only perform their actions if the same
actions are defined by the agent role.

70

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

4.1.1. Agent’s Structural Characteristics
JADE classes that can be used to represent the properties of agents are essential. So, it is needed to verify the
concepts of each one, which is: beliefs (Belief), goals (Goal), plans (Plan), messages (ACLMessage) (FIPA),
actions (Action) and condition (Condition).

In JADE were not found correlatives for beliefs and goals. Due to the similar structure between belief and
goal (each one is composed of fields: name, type and value) and like these fields are the properties of each agent,
except for simple reflex agent and model-based reflex agent, the jamder.structural.Property class was created
and contains these fields, which are inherited by jamder.structural.Belief and jamder.structural.Goal represent-
ing the beliefs and goals, respectively.

Goals can be simple or composed, then, the respective classes’ jamder.structural.LeafGoal and jamder.
structural.CompositeGoal represent these features and inherit from Goal. Also, the Goal class contains a list
of plans that are associated with a goal and the boolean attribute, achieved, indicates if the goal was achieved
or not.

4.1.2. Agent’s Behavioral Characteristics
Actions are the behavioral characteristics of agents (Weiss, 1999), and therefore should be implemented in as-
sociation with the JADE class, jade.core.behaviors.Behavior. A class called jamder.behavioral.Action is created
for this purpose as a subclass of Behavior. A list of actions indicates the actions which the agent can take. An
action in the list is actually performed by calling the addBehavior(action) method.

The execution of actions only occurs if all its preconditions are attended. In contrast, post-conditions define
the conditions that will be true when the execution of the action is completed successfully. In this sense, the
Action class defines two attributes: the pre-conditions and post-conditions lists, both represented by a jamder.
behavioral.Condition, defined as a subclass of Property. Action has a method called execute(), responsible for
implementing the concrete actions for the Action. The pre-conditions and post-conditions also have five access
methods, in a manner analogous to the list.

Each plan defines a set of actions and the execution order. The corresponding class in JADE is SequentialBe-
havior. Thus, the jamder.behavioral.Plan was created and inherits from SequentialBehavior. This class defines
the associated goal and an action list, whose basic sorting in the plan is determined by the abstract method
execute(). The agent’s actions in the plan have to match with the actions in the agent role, i.e., actions must be
defined in both, the agent and the agent role.

The agents communicate with each other through messages, which are stored in a queue. Asynchronously,
the agent decides what to do when reading each message. According to Weiss (1999), a message is defined by
a label that specifies the type of message, content, sender (agent responsible for sending the message) and the
recipient. In JADE there is a corresponding class named jade.lang.acl.ACLMessage (JADE).

The basic class jade.core.Agent defines a list of received messages of ACLMessage type. Considering that
the proposed agent types inherit from this class, this feature also is inherited by the agents in JAMDER. The
received messages from the queue are stored until it is read and can be retrieved through the receive() method
of Agent.

MAS-ML defines that the agent has a queue of incoming messages and a queue of the sent messages, but in
JADE the track of sent messages is not stored. To attend this requirement, the GenericAgent class is defined to
store the sent messages by an agent through of the method sendMessage(ACLMessage).

JADE provides an identifier for each agent, consisting of an internal body of jade.core.AID. This attribute
is created automatically and contains only the elements needed to be located, their addresses access and local
name. It can be retrieved through the method getAID() of Agent. This feature is important to address and handle
the sending of messages. Agent Types in JAMDER In the following subsections, each internal architecture is
described how it is structured in JAMDER according to its type defined by TAO+.

Simple Reflex Agent. In JAMDER, this agent is defined by the jamder.agents.ReflexAgent class, which in-
herits from GenericAgent. This class contains a list of condition-action rules with the type Hashtable<String,
String>, where the first name represents the perception and the second one corresponds to the action’s identifier.

71

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Beliefs and goals are not components of the agent role structure, in consistence with the corresponding agent
structure.

Model-based Reflex Agent is characterized by storing the history of actions, which can be used in the de-
cision-making, for example, it does not perform the same step (Russell and Norvig, 2002). This agent is rep-
resented by the class jamder.agents.ModelAgent that extends the ReflexAgent class and includes an attribute to
represent the historical knowledge or beliefs as a list of jamder.structural.Belief. Additionally, the ReflexAgent
class incorporates the abstract method nextFunction(belief, perception), responsible for mapping the percep-
tions and the current internal state (representation of model or environment) to a new updated internal state,
showing the next action to be selected (Russell and Norvig, 2002).

Other agents can not access beliefs, but the concrete class that inherits from this agent can change their
beliefs. So, their methods are protected. This kind of agent by acquiring the role will incorporate all the beliefs
come from role, i.e., if there are similar beliefs, the agent’s beliefs will be replaced by the role ones. The method
addAgentRole(name, role) is overloaded to incorporate this principle. As the goals are not a part of this agent
type, its respective agentRole (ModelAgentRole) also does not have this characteristic.

Goal-based Agent with Planning can generate an action plan at runtime. This kind of agent also has a set of
goals to be achieved by the agent. Plans are composed by actions, sequentially. The class for this agent, which
inherits from GenericAgent, is jamder.agents.GoalAgent. This class incorporates three additional abstract meth-
ods, the formulate goal function that takes the current state (belief or model) and returns a goal formulated, the
formulate problem function that identifies the necessary actions for attempt the state and the goal and the plan-
ning method that returns a result of the actions. Also, this agent has perceptions and the next function which are
present in this hierarchy trough the perceives list and nextFunction(belief, perception) method.

By purchasing the role, the goal-based agent will also incorporate the goals of the role. If there are the same
goals, the agent’s goals will be replaced. The addAgentRole (name, role) method in this class is overloaded to
incorporate this principle.

The abstract method to implement the formulate goal function, represented by formulateGoalFunction (be-
lief), receives a belief and returns the formulated goal. The developer must provide the algorithm that imple-
ments this method. Similarly, the abstract method responsible for formulating problem function represented by
formulateProblemFunction (belief, goal), returns a problem to be used in planning. The problem is an action
subset of agent actions (Russell and Norvig, 2002). Finally, the planning method, planning(actions), receives the
problem (action list) and returns a sequential list of these actions to achieve the goal. According to Gonçalves et
al. (2011), the planning is based on the available actions in the action list, to create a sequence of actions (plan).
Such as the reactive agents, this hierarchy also needs a sensor to take care of the environment perceptions. There
is the percept(perception) method in this agent which uses the Sensor class to achieve this purpose.

Utility-based Agent has the same structure of the goal-based agent with planning. Also, the utility function
is incorporated to guide the agent behavior. When the design can be linked to more than one goal to be reached,
these goals can be conflicting, and so the utility function is inserted to determine the degree of value to the
goals associated. Therefore, the class that represents this kind of agent is jamder.agents.UtilityAgent. This class
inherits from GoalAgent. The utility provides a way that the probability of success can be considered about the
goal importance (Russell and Norvig, 2002).

The utilityFunction(action) abstract method is used to identify the priority of the actions, based on the re-
ceived action, and checks the priority of the goals about the agent. This method is called multiple times when at
the formulation of the problem, it identifies the actions that will be executed. The return of this method consists
of a value indicating the action with the highest priority.

Goal-based Agent with Plan. The goal-based agent with plan is frequently named BDI agent by in the con-
text of agent-oriented software engineering too (Nunes et al., 2011). It inherits from GenericAgent and contains
beliefs and goals attributes and the plans and actions. The formulate goal function, formulate problem function,
next function, utility function and perception are not considering in this case. An important difference is that its
plans are defined in modeling time, which makes them statics. The class that represents this agent is the jamder.
agents.MASMLAgent.

72

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

4.2. The other entities in MAS
In addition to the agent concept, JAMDER considers the representation of the other entities that frequently
appear in MAS. Thus, specific representations of the implementation of agent role, organization, environment,
object and object role are included in the framework.

4.2.1. Agent Roles
A role is an element that guides and restricts the social behavior of an agent or sub-organization in the organi-
zation. Each instance of the agent role is a member of an organization and determines what the agent can and
should do within an organization (Silva et al., 2003). To represent the agent role concept in MAS, JAMDER
follows the agent hierarchy defined in Figure 4, which assigns a specific agent role related to the specific agent
type. This definition of agent roles was necessary because an agent role adds new beliefs and goals to the beliefs
and goals in the agent, but depending on the agent, some of them do not contain these characteristics. Based
on the definition, it was created the jamder.role.AgentRole class and other associated classes to adequate the
properties for it. This class is related to ReflexAgent and any structural attribute is required in this case because
the selection process is based on condition-action rules. The basic properties for agent roles are:

• owner – Organization instance where the role is defined. This property can be recovered through getOwn-
er() method. As owner does not change, its definition is done inside the AgentRole constructor;

• name – agent role identifier (String), defined and recovered by the access methods respectively, get-
Name() and setName(String name);

• player – indicates who is exercising the role. It is represented by the GenericAgent class. It can be an
agent or organization instance, this last one in case of a sub-organization. As player also does not change,
its definition is done inside the AgentRole constructor;

The life-cycle of an agent role starts when it is associated to an entity (agent or sub-organization) (Silva et
al., 2003) (Silva et al. 2007) (Gonçalves et al., 2010). This means that agent role instance is created after the
creation of the associated entity. The link between the entity and the agent role can be canceled, in this case, it
is needed that the entity has other agent roles in the same organization. Otherwise, the entity instance is also
canceled, because the entity should have a link with at least one organization.

The agent roles work as actions that the agents need to execute and when the agent has some role, it incor-
porates the beliefs or goals from the role, if it has. In JAMDER, the status defined for an agent role include:
ACTIVATE, DEACTIVATE and CHANGE. This information is obtained using getAgentRoleStatus() method in
AgentRole class. The status CHANGE informs that the agent is migrating from one environment to another or
from one organization to another. The activeRole restarts the actions of the agent playing the role and in the
other hand, the changeDeactivateRole(AgentRoleStatus) method returns the status and deactivates the role.

The duties and rights of the roles define the actions assigned to the agent playing the role related to respon-
sibilities and permissions, respectively (Weiss, 1999). These attributes in AgentRole are defined as an instance
of Hashtable<String, XXX> class, where XXX represents an instance of jamder.behavioral.Duty or jamder.
behavioral.Right. The classes Duty and Right were created in JAMDER to identify an attribute that defines the
associated action. The Action class used by the agents also represents an action associated to duties and rights,
which each duty or right has only one action. The creation of an agent role instance involves the analysis of right
and duties calling the initialize method in the class constructor.

A protocol defines a group of messages that an agent can send to other agents (Bellifemine, 2007). In JADE
there are several protocols FIPA compliant to standardize the communication between the agents. A communi-
cation protocol is defined by the type and the behavior of the communication attendees. Thus, the protocols in
the AgentRole class are defined using an instance of Hashtable<String, Behavior> where Behavior represents
an extension of the starter or participant class. Roles played by model-based agents (ModelAgent) require the
definition of beliefs that are incorporated by the agent when committing to the role. The belief of the agent role
also is defined by Belief class. In case of the agent has beliefs with the same name defined in its agent role,
the belief in the role replaces the belief in agent. The class to represent this type of agent role in JAMDER is

73

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

jamder.role.ModelAgentRole that extends the AgentRole class and incorporates the belief attribute. This agent
role is related only to model agents, which means, only ModelAgent instances can exercise this agent role type.

Finally, the jamder.role.ProactiveAgentRole class inherits from ModelAgentRole class and incorporates
goals. The goal characteristic also is represented by Goal class. Proactive agents can play this role, i.e., GoalA-
gent, UtilityAgent and MASMLAgent. As sub-organization behaves like an agent, it also can exercise this agent
role type.

4.2.2. Object and Object Role
In the other hand, the object and the object role are represented by the classes Object from Java and jamder.
roles.ObjectRole in JAMDER, respectively. The object only answers requests that were asked. The ObjectRole
class defines three attributes: role name, the object that will play the role and the organization to which it be-
longs. This role assists the execution of an object similar to what happen with agent role regarding and agent.
It also is defined in an organization and its attributes are explained as follow: object role identifier (name); an
object that will exercise this role (object); and the organization which this role is a member (owner).

4.2.3. Organization
The organization is a place where the agents act, it is in one environment and can stay in only one, it means, it
cannot change or move to another environment. It is defined in JAMDER as Organization class is defined as an
extension of MASMLAgent (Figure 3) and describes a JADE container where agent roles and object roles are
defined. An organization can contain sub-organizations, recursively. The attribute Hashtable<String, Organi-
zation> are used to represent sub-organizations including the name and the sub-organization instance, respec-
tively. Analogously, a sub-organization instance is an organization and can contain a new sub-organization, thus
this relationship is established with the superOrganization attribute.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 13

4.2.2 Object and Object Role
In the other hand, the object and the object role are represented by the classes Object from Java and

jamder.roles.ObjectRole in JAMDER, respectively. The object only answers requests that were asked.
The ObjectRole class defines three attributes: role name, the object that will play the role and the
organization to which it belongs. This role assists the execution of an object similar to what happen with
agent role regarding and agent. It also is defined in an organization and its attributes are explained as
follow: object role identifier (name); an object that will exercise this role (object); and the organization
which this role is a member (owner).

4.2.3 Organization
The organization is a place where the agents act, it is in one environment and can stay in only one, it

means, it cannot change or move to another environment. It is defined in JAMDER as Organization class
is defined as an extension of MASMLAgent (Figure 3) and describes a JADE container where agent roles
and object roles are defined. An organization can contain sub-organizations, recursively. The attribute
Hashtable<String, Organization> are used to represent sub-organizations including the name and the sub-
organization instance, respectively. Analogously, a sub-organization instance is an organization and can
contain a new sub-organization, thus this relationship is established with the superOrganization attribute.

Figure 3: Organization hierarchy in JAMDER

JADE has a class named ContainerID that represents the identifier for the organization. Each
Organization instance contains the attribute containerID with the respective container (JADE) associated
to the organization on JAMDER. As Organization inherits from MAS_MLAgent, the inheritance of
ContainerID is not possible.

Due the Organization class extends the MASMLAgent class. Thus, the structural features and access
methods of this entity, such as Beliefs, Goals, Plans and Actions are incorporated. Additionally, an
organization includes axioms used to govern the agent actions. The axiom concept is represented by
jamder.Structural.Axiom, it is a subclass of Property since shares the same structure and restricts the
actions of agents and sub-organizations that dwell on the organization. Axiom is an organization
particularity and is handled in Organization class.

The agents in the organization are obtained through the roles that the organization has once the agent
role knows the organization is involved and the agent who performs. As Organization inherits the list of
roles from MAS_MLAgent, this list can be performed in two ways:

Figure 3: Organization hierarchy in JAMDER

JADE has a class named ContainerID that represents the identifier for the organization. Each Organization
instance contains the attribute containerID with the respective container (JADE) associated to the organization
on JAMDER. As Organization inherits from MAS_MLAgent, the inheritance of ContainerID is not possible.

Due the Organization class extends the MASMLAgent class. Thus, the structural features and access meth-
ods of this entity, such as Beliefs, Goals, Plans and Actions are incorporated. Additionally, an organization in-
cludes axioms used to govern the agent actions. The axiom concept is represented by jamder.Structural.Axiom,
it is a subclass of Property since shares the same structure and restricts the actions of agents and sub-organiza-
tions that dwell on the organization. Axiom is an organization particularity and is handled in Organization class.

The agents in the organization are obtained through the roles that the organization has once the agent role
knows the organization is involved and the agent who performs. As Organization inherits the list of roles from
MAS_MLAgent, this list can be performed in two ways:

• In the case of an organization, the list consists of all agents roles accepted by the organization, or the roles
to be stored or played by an agent or by a sub-organization;

74

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

• If the instance has the function of sub-organization, the list of agent roles consists in the agent roles ex-
erted by sub-organization. The superOrganization attribute must contain the instance of the Organization
which belongs regarding to execute as sub-organization.

This class also defines the agent roles and object roles. The attribute is specified as an instance of Hasht-
able<String, XXX>, where XXX can be performed by AgentRole or ObjectRole. This attribute stores all the
agent roles or object roles that the agent or object can perform. Its access methods follow the same way of the
other attributes. In the Organization, the properties of sending and receiving messages are treated as the same
way as agents.

4.2.4. Environment
Finally, the environment represents the JADE platform, where reside the containers (represented by the organi-
zation entity) and agents, and defines methods for managing (adding and removing) other entities. This entity
is represented by the Environment class in JAMDER. When an environment instance is created, the Environ-
ment(name, host, port) constructor receives the platform name, the machine name (host) and the machine port
that will be stored at platform. By creating an environment, the platform creates the main container that will
hold the platform services like Directory Facilitator (yellow pages) and Agent Management System, where this
last one manages the next organizations (containers) and agents that will be created in this platform.

When the JADE platform is started, it can provide services needed for the other entities’ lifecycle, as for an
example, the agent searching service. In this case, as Environment class in JAMDER does not have super class
from JADE, it acts as an adapter of one environment using the JADE platform. Each platform acquires naturally
one identifier that is an instance of jade.core.PlatformID. Similarly, Enviroment class has the ID attribute, where
it is an instance of PlatformID. Additionally, other attributes compound the environment as: name, address and
so on. In addition to these properties, the Environment class also has other methods that will manage the envi-
ronment, for example, by adding an organization in the environment, addOrganization(String, Organization)
method increases one Organization instance in the list of organizations, it also creates a container in the JADE
platform.

The reverse process, i.e., the organization and agent removal, needs to be analyzed with caution because
several dependencies need to be observed. Firstly, the relationships with agents, sub-organizations and objects
that inhabit the organization must be disposed. If an organization has agents and objects, but if some agent also
participates in another organization, only this will cancel the agent roles linked to the organization being de-
leted. Otherwise, the agent itself is also deleted. The removeOrganization(String key) method implements this
behavior if the organization contains sub-organizations, will run recursively.

Assuming that the environment knows all agents the supports, the creation procedure for agents is required
in this class through addAgent(String key, GenericAgent agent), where the key is the agent’s name and agent
instance. Remove an agent is simpler than remove of an organization because the agent has fewer dependencies.
The agent removal process initially verifies the roles which organizations the agent is packed. When removing
the contract with the agent role, the instance of the agent turns out not to exist. The removeAgent(String name)
performs this behavior. The changes that the agent perceives happen in own environment. These changes come
from the actions that the agents themselves perform, that is, when an agent performs some action, it can change
any state of the environment.

Even if the agent can move between environments, it is not possible be in both environments at the same
time. Consequently, the agent must cancel all roles and relationships that it exercises before getting to another
environment, as well as in organizations in which it exercises a role. Upon entering the new environment, the
agent is instantiated in an organization and starts to exercise an agent role in this organization. If the migration
happens between organizations, it changes the status of agent roles to CHANGE and its actions are completed
or ended.

In JADE, every agent has three methods that help when that it is moving around. These methods are over-
loaded in GenericAgent to adapt the migration of staff to update organizations and the environment. The before-
Move() method contains the mechanism responsible for performing an action before the agent gets around. In

75

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

its code, the status of agent roles is modified to CHANGE. The afterMove() method is executed after the agent
migration and, in its content, the developer can provide information about what can be done after the agent
gets around. If the mobility is between organizations, the agent roles (of the organization) which are with the
status CHANGE switch to ACTIVATE status and actions assigned to this role are again exercised. If mobility
is between environments, it will exercise the actions of the agent role that is obtained in the organization of the
target environment. Finally, the doMove(Location) method is operable to verify the proper performance of the
migration. The location parameter is a superclass of ContainerID and PlatformID, and is responsible for inform-
ing the organization or the environment ID, respectively.

5. Code Generation
In the context of the MDA approach, automated support to the code generation for MAS is proposed. In the
proposed process, the following components for generating code are applied: MAS-ML Tool (PIM); Java/JAM-
DER framework (PSM); and Acceleo templates (PDM). MAS-ML Tool (Silva et al., 2007) (Gonçalves et al.,
2015) is an Eclipse9 plugin which follows an approach directed by models to support the modeling of MAS-ML
2.0 language (Gonçalves et al., 2011) by the concepts and abstractions defined in MAS.

The MAS-ML Tool supports the modeling of the following diagrams: organization diagram, role diagram
and class diagram, bases on the MAS-ML metamodel. This tool generates the masml file (XMI - XML Metadata
Interchange) that stores the structure of data entities and structural and behavioral aspects defined in MAS-ML
2.0. These files are the input to the transformation to code generation process using the plugin Acceleo in order
to support the concept of MDA since allows the code generation in different code languages and incremental
development.

To formalize the code generation in Acceleo, it is needed to establish a template for each entity through a
language defined by the OMG, the MTL (Model Transformation Language). When the template is executed on
Eclipse, it will need the MAS-ML model representation (.masml files) and the output folder to store the JAM-
DER classes).

5.1. Environment
The environment is an instance of a class that inherits from Environment class in JAMDER and its represen-
tation occurs through EnvironmentClass in MAS-ML Tool. As this instance inherits the methods defined in
Environment, it is necessary only, on code generation, the constructor of this class calls the superclass and
create organizations, agents and agent roles in that order. The need to create agent role instances is only to link
the organization and agent instances, where the agent role construct does this link. The mapping of creating and
organizing bodies agents occurs through inhabits the relationship between the environment and these entities.
The objects and object roles are also created in the environment where the roles are obtained by the organization
through the ownership relationship. In turn, the objects are achieved by the object through the play relationship.

If needed additional methods or attributes, the MASML Tool offers the Operation and Property components
to this need, respectively. Figure 4 shows the template to generate the environment.

9 www.eclipse.com

http://www.eclipse.com

76

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 16

5.1 Environment
The environment is an instance of a class that inherits from Environment class in JAMDER and its

representation occurs through EnvironmentClass in MAS-ML Tool. As this instance inherits the methods
defined in Environment, it is necessary only, on code generation, the constructor of this class calls the
superclass and create organizations, agents and agent roles in that order. The need to create agent role
instances is only to link the organization and agent instances, where the agent role construct does this
link. The mapping of creating and organizing bodies agents occurs through inhabits the relationship
between the environment and these entities. The objects and object roles are also created in the
environment where the roles are obtained by the organization through the ownership relationship. In turn,
the objects are achieved by the object through the play relationship.

If needed additional methods or attributes, the MASML Tool offers the Operation and Property
components to this need, respectively. Figure 4 shows the template to generate the environment.
public class (c.name /) extends Environment {
 public (c.name /) (String name, String host, String port) {
 super(name, host, port);
 (for(i : Inhabit | c.inhabit))
 (let organ : OrganizationClass = i.org.name)
 (if (i.org -> size() > 0))
 Organization (organ.name/) = new Organization("(organ.name/)", this, null);
 addOrganization("(organ.name/)", (organ.name/));
 (if (i.org.play -> size() > 0))
 (let ar : AgentRoleClass = i.org.play.agentRole)
 AgentRole (ar.name/) = new AgentRole("(ar.name/)",
(ar.ownership.owner.name/), (organ.name/));
 (/let) (/if)

 (for(ow : Ownership | i.org.ownership))
 (for(ob : ObjectRoleClass | ow.objectRole))
 Object (ob.play.name/) = new Object();
 addObject("(ob.name/)", (ob.name/));
 ObjectRole (ob.name/) = new ObjectRole("(ob.name/)",
(organ.name/), (ob.play.name/));
 (/for)
 (/for)
 (/if)
 (/let)
 (/for)

 (for(i : Inhabit | c.inhabit))
 (if (i.agentClass -> size() > 0))
 (let a : AgentClass = i.agentClass)
 GenericAgent (a.name /) = new (a.name /)("(a.name /)", this, null);
 AgentRole (a.play.agentRole.name/) = new
AgentRole("(a.play.agentRole.name/)", (a.play.agentRole.ownership.owner.name/),
(a.name/));
 addAgent("(a.name /)", (a.name /));
 (/let)
 (/if)
 (/for)
 }
 // Additional attributes

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 17

 (for(p : Property | c.ownedProperty))
 (p.visibility/) (p.type.toString()/) (p.name/);
 (/for)

 // Additional methods
 (for(o : Operation | c.ownedOperation))
 (o.visibility /) (o.returnValue /) (o.name /)
 ((for(p:Parameter | o.parameter) separator(',')) (p.type/) (p.name/) (/for)) {}
 (/for)
}
(/file)
(/template)

Figure 4: Environment template

An important feature to note is that the agent role needs to know that the agent or sub-organization is
exercising this role, while the agent or sub-organization needs to know what their role of the initial agent.
To solve this problem the agent role parameter starts to null. In creating the agent role, its constructor
takes as a parameter the instance of the agent or sub-organization where this builder sets the agent or sub-
organization, the role will exert initially through addAgentRole method (AgentRole).

5.2 Object and Object Role
The object role in JAMDER is represented by MAS-ML Tool for ObjectRoleClass entity. The structure of

this class does not have many attributes, in turn, generate new object of this class inherits only roles. While the
object entity is any Java object and that the Acceleo already creates through its pre-defined entity Class. Figure
5 shows the details of this template.
(template public generateJava(c : ObjectRoleClass))
(comment @main /)
(file (c.name + '.java', false, 'UTF-8'))
import jamder.roles.ObjectRole;
import jamder.Organization;
public class (c.name /) extends ObjectRole {
 //Constructor
 public (c.name /) (String name, Organization owner, Object object) {
 super(name, owner, object);
 }
}
(/file)
(/template)

Figure 5: ObjectRole template

5.3 AgentRole
The AgentRoleClass entity MAS-ML Tool supports three types of agent role defined by MAS-ML 2.0.

If the role has not beliefs and objectives, the role of the agent will be AgentRole. If the role is not just

Figure 4: Environment template

An important feature to note is that the agent role needs to know that the agent or sub-organization is exer-
cising this role, while the agent or sub-organization needs to know what their role of the initial agent. To solve
this problem the agent role parameter starts to null. In creating the agent role, its constructor takes as a param-
eter the instance of the agent or sub-organization where this builder sets the agent or sub-organization, the role
will exert initially through addAgentRole method (AgentRole).

77

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

5.2. Object and Object Role
The object role in JAMDER is represented by MAS-ML Tool for ObjectRoleClass entity. The structure of this
class does not have many attributes, in turn, generate new object of this class inherits only roles. While the ob-
ject entity is any Java object and that the Acceleo already creates through its pre-defined entity Class. Figure 5
shows the details of this template.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 17

 (for(p : Property | c.ownedProperty))
 (p.visibility/) (p.type.toString()/) (p.name/);
 (/for)

 // Additional methods
 (for(o : Operation | c.ownedOperation))
 (o.visibility /) (o.returnValue /) (o.name /)
 ((for(p:Parameter | o.parameter) separator(',')) (p.type/) (p.name/) (/for)) {}
 (/for)
}
(/file)
(/template)

Figure 4: Environment template

An important feature to note is that the agent role needs to know that the agent or sub-organization is
exercising this role, while the agent or sub-organization needs to know what their role of the initial agent.
To solve this problem the agent role parameter starts to null. In creating the agent role, its constructor
takes as a parameter the instance of the agent or sub-organization where this builder sets the agent or sub-
organization, the role will exert initially through addAgentRole method (AgentRole).

5.2 Object and Object Role
The object role in JAMDER is represented by MAS-ML Tool for ObjectRoleClass entity. The structure of

this class does not have many attributes, in turn, generate new object of this class inherits only roles. While the
object entity is any Java object and that the Acceleo already creates through its pre-defined entity Class. Figure
5 shows the details of this template.
(template public generateJava(c : ObjectRoleClass))
(comment @main /)
(file (c.name + '.java', false, 'UTF-8'))
import jamder.roles.ObjectRole;
import jamder.Organization;
public class (c.name /) extends ObjectRole {
 //Constructor
 public (c.name /) (String name, Organization owner, Object object) {
 super(name, owner, object);
 }
}
(/file)
(/template)

Figure 5: ObjectRole template

5.3 AgentRole
The AgentRoleClass entity MAS-ML Tool supports three types of agent role defined by MAS-ML 2.0.

If the role has not beliefs and objectives, the role of the agent will be AgentRole. If the role is not just

Figure 5: ObjectRole template

5.3. AgentRole
The AgentRoleClass entity MAS-ML Tool supports three types of agent role defined by MAS-ML 2.0. If the
role has not beliefs and objectives, the role of the agent will be AgentRole. If the role is not just beliefs, the role
of the agent will be ModelAgentRole. And if the role contains all the available structure, it will be the kind of
ProactiveAgentRole. The template in .mtl dealing the agent role creates the corresponding inheritance to those
found features (Figure 6).

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 18

beliefs, the role of the agent will be ModelAgentRole. And if the role contains all the available structure, it
will be the kind of ProactiveAgentRole. The template in .mtl dealing the agent role creates the
corresponding inheritance to those found features (Figure 6).
(template public generateJava(c : AgentRoleClass))
...
import jamder.behavioral.*;

(if (c.superClass->size() > 0))
public class (c.name /) extends (c.superClass.name /) {
(else)
 (if ((c.ownedBelief->size() <= 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends AgentRole {
 (elseif ((c.ownedBelief->size() > 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends ModelAgentRole {
 (elseif ((c.ownedBelief->size() > 0) and (c.ownedGoal->size() > 0)))
public class (c.name /) extends ProactiveAgentRole {
 (/if)
(/if)
 //Constructor
 public (c.name /) (String name, Organization owner, GenericAgent player) {
 super(name, owner, player);

 for(b : Belief | c.ownedBelief))
 addBelief("(b.name/)", new Belief("(b.name/)", "(b.type/)", "(b.default/)"));
 (/for)
 (for(g : Goal | c.ownedGoal))
 addGoal("(g.name/)", new LeafGoal("(g.name/)", "(g.type/)", "(g.default/)"));
 (/for)
 (for(r : Right | c.ownedRight))
 addRight("(r.name/)", new Right());
 (/for)
 (for(d : Duty | c.ownedDuty))
 addDuty("(d.name/)", new Duty());
 (/for)
 (for(p : ProtocolClass | c.protocol))
 addProtocol("(p.name/)", null);
 (/for)

 initialize();
 }
}

Figure 6: AgentRole template

 At the end of this template is held to call the initialize() method in AgentRole class, JAMDER
framework, to check the rights and duties shall be exercised by role. Regarding the protocol, as in JADE
there are different types and they somehow inherit from Behavior, and the developer needs to inform
what type of existing protocol on JADE will be used.

78

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 18

beliefs, the role of the agent will be ModelAgentRole. And if the role contains all the available structure, it
will be the kind of ProactiveAgentRole. The template in .mtl dealing the agent role creates the
corresponding inheritance to those found features (Figure 6).
(template public generateJava(c : AgentRoleClass))
...
import jamder.behavioral.*;

(if (c.superClass->size() > 0))
public class (c.name /) extends (c.superClass.name /) {
(else)
 (if ((c.ownedBelief->size() <= 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends AgentRole {
 (elseif ((c.ownedBelief->size() > 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends ModelAgentRole {
 (elseif ((c.ownedBelief->size() > 0) and (c.ownedGoal->size() > 0)))
public class (c.name /) extends ProactiveAgentRole {
 (/if)
(/if)
 //Constructor
 public (c.name /) (String name, Organization owner, GenericAgent player) {
 super(name, owner, player);

 for(b : Belief | c.ownedBelief))
 addBelief("(b.name/)", new Belief("(b.name/)", "(b.type/)", "(b.default/)"));
 (/for)
 (for(g : Goal | c.ownedGoal))
 addGoal("(g.name/)", new LeafGoal("(g.name/)", "(g.type/)", "(g.default/)"));
 (/for)
 (for(r : Right | c.ownedRight))
 addRight("(r.name/)", new Right());
 (/for)
 (for(d : Duty | c.ownedDuty))
 addDuty("(d.name/)", new Duty());
 (/for)
 (for(p : ProtocolClass | c.protocol))
 addProtocol("(p.name/)", null);
 (/for)

 initialize();
 }
}

Figure 6: AgentRole template

 At the end of this template is held to call the initialize() method in AgentRole class, JAMDER
framework, to check the rights and duties shall be exercised by role. Regarding the protocol, as in JADE
there are different types and they somehow inherit from Behavior, and the developer needs to inform
what type of existing protocol on JADE will be used.

Figure 6: AgentRole template

At the end of this template is held to call the initialize() method in AgentRole class, JAMDER framework,
to check the rights and duties shall be exercised by role. Regarding the protocol, as in JADE there are different
types and they somehow inherit from Behavior, and the developer needs to inform what type of existing proto-
col on JADE will be used.

5.4. Agent
The template to the agent generation is analogous to the agent role template since each agent inherits from the
class corresponding to the JAMDER agent, and the agent type depends on the components that the agent con-
tains. Figure 7 shows the template for the creation of all agent types defined in MAS-ML2.0.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 19

5.4 Agent
The template to the agent generation is analogous to the agent role template since each agent inherits

from the class corresponding to the JAMDER agent, and the agent type depends on the components that
the agent contains. Figure 7 shows the template for the creation of all agent types defined in MAS-ML2.0.
(query public possuiUtility(actions : OrderedSet(ActionClass)) : Boolean =
actions.actionSemantics.toString().equalsIgnoreCase('<<Utility-Function>>') /)
(template public generateJava(c : AgentClass))

(comment @main /)
(file (c.name + '.java', false, 'UTF-8'))
import jamder.behavioral.*;
...
import jamder.agents.*;

 (if (c.superClass->size() > 0))
public class (c.name /) extends (c.superClass.name /) {
 (elseif ((c.ownedBelief->size() <= 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends ReflexAgent {
 (elseif ((c.ownedBelief->size() > 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends ModelAgent {
 (elseif (c.ownedPlan->size() > 0))
public class (c.name /) extends MASMLAgent {
 (elseif (c.ownedPlanning->size() > 0))

 (if (c.possuiUtility(c.owendAction).toString().contains('true')))
public class (c.name/) extends UtilityAgent {
 (else)
public class (c.name /) extends GoalAgent {
 (/if)
(/if)

 //Constructor
 public (c.name.toUpperFirst() /) (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);

 (for(b : Belief | c.ownedBelief))
 addBelief("(b.name.concat('B')/)", new Belief("(b.name.concat('B')/)", "(b.type/)",

"(b.default/)"));
 (/for)

 (for(g : Goal | c.ownedGoal))
 Goal (g.name.concat('G')/) = new LeafGoal("(g.name.concat('G')/)", "(g.type/)",

"(g.default/)");
 addGoal("(g.name.concat('G')/)", (g.name.concat('G')/));
 (/for)
...

Figure 7: Agents template.

79

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 19

5.4 Agent
The template to the agent generation is analogous to the agent role template since each agent inherits

from the class corresponding to the JAMDER agent, and the agent type depends on the components that
the agent contains. Figure 7 shows the template for the creation of all agent types defined in MAS-ML2.0.
(query public possuiUtility(actions : OrderedSet(ActionClass)) : Boolean =
actions.actionSemantics.toString().equalsIgnoreCase('<<Utility-Function>>') /)
(template public generateJava(c : AgentClass))

(comment @main /)
(file (c.name + '.java', false, 'UTF-8'))
import jamder.behavioral.*;
...
import jamder.agents.*;

 (if (c.superClass->size() > 0))
public class (c.name /) extends (c.superClass.name /) {
 (elseif ((c.ownedBelief->size() <= 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends ReflexAgent {
 (elseif ((c.ownedBelief->size() > 0) and (c.ownedGoal->size() <= 0)))
public class (c.name /) extends ModelAgent {
 (elseif (c.ownedPlan->size() > 0))
public class (c.name /) extends MASMLAgent {
 (elseif (c.ownedPlanning->size() > 0))

 (if (c.possuiUtility(c.owendAction).toString().contains('true')))
public class (c.name/) extends UtilityAgent {
 (else)
public class (c.name /) extends GoalAgent {
 (/if)
(/if)

 //Constructor
 public (c.name.toUpperFirst() /) (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);

 (for(b : Belief | c.ownedBelief))
 addBelief("(b.name.concat('B')/)", new Belief("(b.name.concat('B')/)", "(b.type/)",

"(b.default/)"));
 (/for)

 (for(g : Goal | c.ownedGoal))
 Goal (g.name.concat('G')/) = new LeafGoal("(g.name.concat('G')/)", "(g.type/)",

"(g.default/)");
 addGoal("(g.name.concat('G')/)", (g.name.concat('G')/));
 (/for)
...

Figure 7: Agents template. Figure 7: Agents template

Note that the agent modeling needs to be consistent with your brand, that is, its structure must comply with
the MAS-ML 2.0 specification, so in his generation, agent properties also match your type of agent presently.
To facilitate the definition of the agent type or inheritance from its structure, checking the diagram of the com-
ponents in the following order is made:

• If the agent inherits from another agent, the inheritance relationship is held;
• If the agent does not define beliefs and goals, this agent inherits from ReflexAgent;
• If the agent defines beliefs, but do not have goals, this agent inherits from ModelAgent;
• If the agent defines a pre-defined plan, this agent inherits from MASMLAgent;
• If the agent defines a plan to set (planning) and does not have utilityFunction(), this agent inherits from

GoalAgent;
• If the agent defines a plan to set (planning) and has an utilityFunction(), this agent inherits from

UtilityAgent;

The Action of AgentClass component defined in MAS-ML Tool works in two ways in the representation of
agents. Each attribute of this component has a field named ActionSemantics that may or may not be completed.

If the ActionSemantics field is not filled in MAS-ML Tool, that means this attribute is one of the actions that
the agent can run, i.e., is an Action of JAMDER instance. An important point about the actions is that in MAS-
ML, they can have preconditions and post-conditions, but in the current version of MAS-ML Tool, this feature
is not contemplated yet. On another hand, if the ActionSemantics field is filled, it works as one of the methods
which perform the agent, depending on the agent structure. The allocation or definition of methods will depend
on the type of agent that the designer wants to set. Completion of ActionSemantics field can contain and run one
of the following situations (Figure 8):

• <<Next-Function>>: indicates that the agent has the function of nextFunction() type and is useful for
reactive agents with knowledge, ModelAgent;

• <<Formulate-Problem-Function>>: indicates that the agent has the function of formulateProblemFunc-
tion() type and is used for planning with agents, GoalAgent;

• <<Formulate-Goal-Function>>: indicates that the agent has the function of formulateGoalFunction()
type and is used for planning with agents, GoalAgent;

• <<Utility-Function>>: indicates that the agent has the function of utilityFunction() type and is used for
planning with agents, UtilityAgent.

80

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Although these methods contain some stereotype that identifies its function, the method also contains a
name, but in JAMDER, the method names are abstract and already defined. Regarding resolve this issue, the
generated code comprises two methods for each property ActionSemantics filled in case the JAMDER method
and the method with the name used in modeling, where the first refers to the second method. For example, if
the agent contains the property <<Next-Function>> as nextGroups, the generator generates the nextFunction()
method which calls the nextGroups() method.

If the agent contains any attribute in the Planning compartment, it indicates this agent (GoalAgent) contain the
function planning(), used to assemble the plan at runtime. The plan creation happens in two ways, Plan or plan-
ning. The first form consists in a plan defined in modeling time, which comprises in its structure the ownedAction
attribute that holds its actions and is part of the agent. The second form is a plan without action, but which may be
built at run time by the agent. Both types of MAS-ML Tool plan are instances of Plan class in JAMDER.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 21

 ...
 (for(ac : ActionClass | c.owendAction))
 (if (ac.actionSemantics.toString().trim().size() <= 0))
 Action (ac.name.concat('Ac')/) = new Action("(ac.name.concat('Ac')/)", null, null);
 addAction("(ac.name.concat('Ac')/)", (ac.name.concat('Ac')/));
 (/if)
 (/for)
...

(for(a : ActionClass | c.owendAction))
 (if (a.actionSemantics.toString().equalsIgnoreCase('<<Next-Function>>')))
protected Belief nextFunction(Belief belief, String perception) {
 return (a.name/)(belief, perception);
}
private Belief (a.name/)(Belief belief, String perception) {
 return null;
}
 (elseif (a.actionSemantics.toString().equalsIgnoreCase('<<Formulate-Problem-Function>>')))
protected List<Action> formulateProblemFunction(Belief belief, Goal goal) {
 return (a.name/)(belief, goal);
}
private List<Action> (a.name/)(Belief belief, Goal goal) {
 return null;
}
 (elseif (a.actionSemantics.toString().equalsIgnoreCase('<<Formulate-Goal-Function>>')))
protected Goal formulateGoalFunction(Belief belief) {
 return (a.name/)(belief);
}
private Goal (a.name/)(Belief belief) {
 return null;
}
 (elseif (a.actionSemantics.toString().equalsIgnoreCase('<<Utility-Function>>')))
protected Integer utilityFunction(Action action) {
 return (a.name/)(action);
}
private Integer (a.name/)(Action action) {
 return 0;
}
 (/if)
(/for)
}
(/file)
(/template)

Figure 8: Agent template (Continuation)

The lists of messages send and received from the agent are not defined when the agent's creation.
Methods of access to these lists are inherited from GenericAgent class of JAMDER.

Figure 8: Agent template (Continuation)

81

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

The lists of messages send and received from the agent are not defined when the agent’s creation. Methods
of access to these lists are inherited from GenericAgent class of JAMDER.

5.5. Organization
The OrganizationClass node in MAS-ML Tool and the Organization class in JAMDER represent the organi-
zation concept. Its structure is similar to the agents in terms of beliefs, goals, actions and plans. Beyond these
components, the organization structure comprises the axioms.

The process of creating the sub-organizations is the same as an organization, however, when the construc-
tor’s parameter, org, is not null, this means that the current organization has a super-organization. This rule is
detailed in JAMDER. Figure 9 shows the template for Organization.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 22

5.5 Organization
The OrganizationClass node in MAS-ML Tool and the Organization class in JAMDER represent the

organization concept. Its structure is similar to the agents in terms of beliefs, goals, actions and plans.
Beyond these components, the organization structure comprises the axioms.

The process of creating the sub-organizations is the same as an organization, however, when the
constructor´s parameter, org, is not null, this means that the current organization has a super-organization.
This rule is detailed in JAMDER. Figure 9 shows the template for Organization.

(template public generateJava(c : OrganizationClass))
(comment @main /)
(file (c.name + '.java', false, 'UTF-8'))
import jamder.Organization;
...
import jamder.behavioral.*;

(if (c.superClass -> size() > 0))
public class (c.name /) extends (c.superClass.name /) {
(else)
public class (c.name /) extends Organization {
(/if)
 //Constructor
 public (c.name /) (String name, Environment env, AgentRole agRole, Organization org) {
 super(name, env, agRole);

 (for(b : Belief | c.ownedBelief))
 Belief (b.name.concat('B')/) = new Belief("(b.name.concat('B')/)", "(b.type/)",

"(b.default/)");
 addBelief("(b.name.concat('B')/)", (b.name.concat('B')/));
 (/for)

 (for(g : Goal | c.ownedGoal))
 Goal (g.name.concat('G')/) = new LeafGoal("(g.name.concat('G')/)", "(g.type/)",

"(g.default/)");
 addGoal("(g.name.concat('G')/)", (g.name.concat('G')/));
 (/for)

 (for(a : ActionClass | c.ownedAction))
 (if (a.actionSemantics.toString().trim().size() <= 0))
 Action (a.name/)Ac = new Action("(a.name/)", null, null);
 addAction("(a.name/)", (a.name/)Ac);
 (/if)
 (/for)

 (for(p : PlanClass | c.ownedPlan))
 Plan (p.name.concat('Plan')/) = new (p.name/)("(p.name.concat('Plan')/)",

(p.owendGoal.name/)G);
 addPlan("(p.name.concat('Plan')/)", (p.name.concat('Plan')/));
 (for(ac : ActionClass | p.ownedAction))

82

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 23

 (p.name.concat('Plan')/).addAction("(ac.name.concat('Ac')/)",
(ac.name.concat('Ac')/));

 (/for)
 (/for)
 }
}
(/file)
(/template)

Figure 9: Organization template

Each .mtl file created contains the generation template of each entity in Acceleo, which enables the
code generation to JAMDER from models designed in MAS-ML Tool. A similar process can be used to
generate code to other frameworks or programming language. The process the process guarantees the
code correctness for construction.

6. CASE STUDY
This chapter illustrates the generation of code to develop a MAS for the collaborative learning

environment Moodle11. Moodle is an Open System Course Management Source - Course Management
System (CMS), also known as Learning Management System (LMS) or a Virtual Learning Environment
(VLE), which is a representation of the interaction between students and teachers in a virtual
environment. The case study's purpose is to illustrate the application of the proposed approach by creating
a multi-agent system for Moodle in MAS-ML Tool. After that, the model is used to input to the code
generation process. Initially, it must create an Acceleo project in the Eclipse tool containing the classes
and Acceleo templates (.mtl file) to generate code in JAMDER.

To perform code generation in this MAS prototype design, it was used MAS-ML Tool organization
diagram (Figure 10) including: agents, organization, agent roles and environment and the relationships
play, ownership and inhabit, between these entities. Each template will be executed individually using the
diagram that contains the entity needed to the template to generate them. However, all properties of the
entities as beliefs, goals, among others, have been omitted from this diagram; due to the limit of display
space in the text of the job, however, the structure of the entities have the properties which will be
detailed in the following sections.

The representation of the environment for this project has only one instance of Environment in
JAMDER where this instance contains other entities, here represented as MoodleEnv. Having the
knowledge that the goal of the Moodle system is to bring students and teachers virtually, the
representation of the organization is only one instance of Organization in JAMDER, in this case,
represented by MoodleOrg. Because of these characteristics, all actors and roles this MAS are in the same
organization and therefore in the same environment.

11 http://moodle.org.

Figure 9: Organization template

Each .mtl file created contains the generation template of each entity in Acceleo, which enables the code
generation to JAMDER from models designed in MAS-ML Tool. A similar process can be used to generate
code to other frameworks or programming language. The process the process guarantees the code correctness
for construction.

6. CASE STUDY
This chapter illustrates the generation of code to develop a MAS for the collaborative learning environment
Moodle10. Moodle is an Open System Course Management Source - Course Management System (CMS), also
known as Learning Management System (LMS) or a Virtual Learning Environment (VLE), which is a repre-
sentation of the interaction between students and teachers in a virtual environment. The case study’s purpose is
to illustrate the application of the proposed approach by creating a multi-agent system for Moodle in MAS-ML
Tool. After that, the model is used to input to the code generation process. Initially, it must create an Acceleo
project in the Eclipse tool containing the classes and Acceleo templates (.mtl file) to generate code in JAMDER.

To perform code generation in this MAS prototype design, it was used MAS-ML Tool organization diagram
(Figure 12) including: agents, organization, agent roles and environment and the relationships play, ownership
and inhabit, between these entities. Each template will be executed individually using the diagram that contains
the entity needed to the template to generate them. However, all properties of the entities as beliefs, goals,
among others, have been omitted from this diagram; due to the limit of display space in the text of the job, how-
ever, the structure of the entities have the properties which will be detailed in the following sections.

The representation of the environment for this project has only one instance of Environment in JAMDER
where this instance contains other entities, here represented as MoodleEnv. Having the knowledge that the goal
of the Moodle system is to bring students and teachers virtually, the representation of the organization is only
one instance of Organization in JAMDER, in this case, represented by MoodleOrg. Because of these character-
istics, all actors and roles this MAS are in the same organization and therefore in the same environment.

10 http://moodle.org.

http://moodle.org

83

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 24

Figure 10: Moodle prototype in MAS-ML Tool Figure 10: Moodle prototype in MAS-ML Tool

An important point to note in this MAS prototype is that the beliefs of agents and agent roles were repre-
sented in modeling as .pl files where these files contain information of beliefs to be read by the generated class.
The function of this file just holds the beliefs and their information will be obtained from their lecture, adapting
the code after being generated by the tool. Next, details of agent and agent roles entities involved in this MAS
prototype are presented.

84

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

6.1. Agents
Based on the idea of Moodle system the following agents have been identified for this environment in MAS-
ML 2.0.

6.1.1. Companion Learning Agent
This type of agent should be able to choose independently among a predetermined range of affective interaction
strategies such as messages of support. It presents encouraging messages (positive reinforcement) when the
user, through the manifested interactions, gives evidence that is straightforward to follow discussions and/or
the proposed tasks and/or content, and even when the student poses a lot of rhythms higher than the average in
your class or workgroup. Because of the need to keep class notes for comparison and send messages quickly,
this agent is characterized as a reactive agent based on knowledge. Its structure is given below and illustrated
in Figure 11.

Figure 11: CompanionAgent structure

This agent must know the affective interaction strategies and messages of support (emotional imprint mes-
sages) that will be given to the user by their beliefs. When the user through the perceptions of interactions,
shows signs of difficulty to follow the discussion and/or the proposed tasks and/or content, the perceptual
attribute is identified by discussionDifficulties and can be obtained through the emoticon faces. The perception
studentContentAccess is designed to determine if the student is accessing the content.

The compareClass action compares with the class and verifies that the student is much higher or much
lower, however, before this comparison, it is necessary that the precondition studentAverage is different from
zero. The showSupportMessage action displays a message of support, but the noDifficulty precondition must be
satisfied and the student must be getting content. The action showReinforcementMessage has an opposite effect,
where studentWithDifficulty precondition must be true. The requestCoordinatorAction action requests an action
of another agent to contact the coordinator to meet the preconditions of classTipMsgs and difficultyFeatures,
among others. Figure 14 shows the code generated for CompanionAgent in JAMDER.

According to Figure 12, the generated code for this agent has in its constructor a call to its super class, in
this case, ModelAgent. Soon after, there is the creation of instances of actions related to this agent, the addAc-
tion(String, Action) method, which advises that these instances are being included in the agent’s actions list and
finally, perceptions are defined. The methods designed for this agent were nextFunction(Belief, Perception) and
learningNextFuction(Belief, Perception).

85

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 26

The compareClass action compares with the class and verifies that the student is much higher or much
lower, however, before this comparison, it is necessary that the precondition studentAverage is different
from zero. The showSupportMessage action displays a message of support, but the noDifficulty precondition
must be satisfied and the student must be getting content. The action showReinforcementMessage has an
opposite effect, where studentWithDifficulty precondition must be true. The requestCoordinatorAction
action requests an action of another agent to contact the coordinator to meet the preconditions of
classTipMsgs and difficultyFeatures, among others. Figure 12 shows the code generated for
CompanionAgent in JAMDER.

According to Figure 12, the generated code for this agent has in its constructor a call to its super class, in
this case, ModelAgent. Soon after, there is the creation of instances of actions related to this agent, the
addAction(String, Action) method, which advises that these instances are being included in the agent's
actions list and finally, perceptions are defined. The methods designed for this agent were
nextFunction(Belief, Perception) and learningNextFuction(Belief, Perception).
import jamder.behavioral.*;
...
import jamder.agents.*;

public class CompanionAgent extends ModelAgent {
 //Constructor
 public CompanionAgent (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);
 addBelief("learningsBeliefsB", new Belief("learningBeliefsB", "String",""));

 Action compareClasspAc = new Action("compareClassAc", null, null);
 addAction("compareClassAc", compareClasspAc);
 Action showSupportMessageAc = new Action("showSupportMessageAc", null,null);
 addAction("showSupportMessageAc", showSupportMessageAc);
 Action showReinforcementMessageAc = new Action("showReinforcementMessageAc", null, null);
 addAction("showReinforcementMessageAc", showReinforcementMessageAc);
 Action requestCoordinatorActionAc = new Action("requestCoordinatorActionAc", null, null);
 addAction("requestCoordinatorActionAc", requestCoordinatorActionAc);

 addPerceive("discussionDifficulties", null);
 addPerceive("studentContentAccess", null);
 }

 protected Belief nextFunction(Belief belief, String perception) {
 return learningNextFunction(belief, perception);
 }
 private Belief learningNextFunction(Belief belief, String perception) {
 return null;
 }
}

Figure 12: CompanionAgent class in JAMDER. Figure 12: CompanionAgent class in JAMDER

6.1.2. Learning Assistant (Pedagogical)
This agent should be able to accompany the student in the different disciplines that participate to contribute
to the user through tips, suggestions and messages about the topic ongoing and not only affective nature of
messages (support). It is a goal-based agent with planning because he needs to create a study plan, suggesting
disciplines for the student based on the disciplines that the student is doing (Figure 13).

The pedagogic agent perceives the existing disciplines(s) that the student is enrolled. From perceptions, the
actions belonging to the agent include or relate the disciplines in which the student is enrolled and suggest other
disciplines that the student attends.

86

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Figure 13: PedagogicalAgent structure

As a goal-based agent with planning, methods belonging to this type of agent need to be implemented by
the developer, for example, to set up his run-time plan to reach his goal, where the plan is to acompanyStudent.
Figure 14 shows the code generated for PedagogicalAgent in JAMDER.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 27

1.1.1 Learning Assistant (Pedagogical)
This agent should be able to accompany the student in the different disciplines that participate to

contribute to the user through tips, suggestions and messages about the topic ongoing and not only affective
nature of messages (support). It is a goal-based agent with planning because he needs to create a study plan,
suggesting disciplines for the student based on the disciplines that the student is doing (Figure 13).

The pedagogic agent perceives the existing disciplines(s) that the student is enrolled. From
perceptions, the actions belonging to the agent include or relate the disciplines in which the student is
enrolled and suggest other disciplines that the student attends.

Figure 13 PedagogicalAgent structure

As a goal-based agent with planning, methods belonging to this type of agent need to be implemented
by the developer, for example, to set up his run-time plan to reach his goal, where the plan is to
acompanyStudent. Figure 14 shows the code generated for PedagogicalAgent in JAMDER.
import jamder.behavioral.*;
...
import jamder.agents.*;

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 28

public class PedagogicalAgent extends GoalAgent {
 //Constructor
 public PedagogicalAgent (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);

 addBelief("pedagogicalBeliefsB", new Belief("pedagogicalBeliefsB", "String", ""));
 Goal followStudentdisciplinarityG = new LeafGoal("followStudentdisciplinarityG",

"Boolean", "");
 addGoal("followStudentdisciplinarityG", followStudentdisciplinarityG);

 Action relateClasssesAc = new Action("relateClasssesAc", null, null);
 ...
 Action("requestCoordinatorActionAc", null, null);
 addAction("relateClasssesAc", relateClasssesAc);
 ...
 addAction("requestCoordinatorActionAc", requestCoordinatorActionAc);

 addPerceive("existentClasses", null);
 ...
 addPerceive("createGroup", null);

 Plan acompanyStudentPlan = new Plan("acompanyStudentPlan", null);
 addPlan("acompanyStudentPlan", acompanyStudentPlan);
 }
 protected Plan planning(List<Action> actions){
 return null;
 }

 protected Goal formulateGoalFunction(Belief belief) {
 return goalFuncPedagogical(belief);
 }
 private Goal goalFuncPedagogical(Belief belief) {
 return null;
 }
 protected List<Action> formulateProblemFunction(Belief belief, Goal goal) {
 return probFuncPedagogical(belief, goal);
 }
 private List<Action> probFuncPedagogical(Belief belief, Goal goal) {
 return null;
 }
 protected Belief nextFunction(Belief belief, String perception) {
 return nextPedagogic(belief, perception);
 }
 private Belief nextPedagogic(Belief belief, String perception) {
 return null;
 }
 public void percept(String perception) { }
}

Figure 14: PedagogicalAgent class in JAMDER

import jamder.behavioral.*;
...

87

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 28

public class PedagogicalAgent extends GoalAgent {
 //Constructor
 public PedagogicalAgent (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);

 addBelief("pedagogicalBeliefsB", new Belief("pedagogicalBeliefsB", "String", ""));
 Goal followStudentdisciplinarityG = new LeafGoal("followStudentdisciplinarityG",

"Boolean", "");
 addGoal("followStudentdisciplinarityG", followStudentdisciplinarityG);

 Action relateClasssesAc = new Action("relateClasssesAc", null, null);
 ...
 Action("requestCoordinatorActionAc", null, null);
 addAction("relateClasssesAc", relateClasssesAc);
 ...
 addAction("requestCoordinatorActionAc", requestCoordinatorActionAc);

 addPerceive("existentClasses", null);
 ...
 addPerceive("createGroup", null);

 Plan acompanyStudentPlan = new Plan("acompanyStudentPlan", null);
 addPlan("acompanyStudentPlan", acompanyStudentPlan);
 }
 protected Plan planning(List<Action> actions){
 return null;
 }

 protected Goal formulateGoalFunction(Belief belief) {
 return goalFuncPedagogical(belief);
 }
 private Goal goalFuncPedagogical(Belief belief) {
 return null;
 }
 protected List<Action> formulateProblemFunction(Belief belief, Goal goal) {
 return probFuncPedagogical(belief, goal);
 }
 private List<Action> probFuncPedagogical(Belief belief, Goal goal) {
 return null;
 }
 protected Belief nextFunction(Belief belief, String perception) {
 return nextPedagogic(belief, perception);
 }
 private Belief nextPedagogic(Belief belief, String perception) {
 return null;
 }
 public void percept(String perception) { }
}

Figure 14: PedagogicalAgent class in JAMDER Figure 14: PedagogicalAgent class in JAMDER

6.1.3. Information Search Engine Agent
This type of agent finds people within Moodle environment which are involved in disciplines related to a par-
ticular topic of interest. The purpose of this agent is to do ongoing research and autonomously, show personal
documents and contacts wherever locate potential common interests. Figure 15 shows the structure of the agent.

Figure 15: SearcherAgent structure

88

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

The agent beliefs store the people, groups and disciplines. The goal relatePeople checks people in Moodle
environment that are involved with projects or subjects in common. The goal relateDocuments search pages as
documents, projects or other digital files you have in common, for example, the keyword.

The actions belonging to this agent can be in four ways. The searchPeople action, as the name implies,
located the people who are related to the same user topic. The showRelatedPeople action is used to display the
result, where the precondition of this action is the result of the location of other people is different from zero. In
the same way, the searchDocuments and showRelatedDocuments actions are used for documents.

Due to this agent already knows what to do and how to do, it is classified as a plan with goal-based agent.
In this case, it has two predefined plans. The searchPeopleInformationPlan plan has two actions, searchPeople
and showRelatedPeople, in that order, to achieve the goal relatePeople. Also, in the same way, the searchDoc-
umentInformationPlan plan uses the searchDocuments and showRelatedDocuments actions, in this order, to
achieve the goal relateDocuments. The Figure 16 shows the code for SearcherAgent generated in JAMDER.

The searchPeople and showRelatedPeople actions for the searchPeopleInformation plan and the search-
Documents and showRelatedDocuments actions for the searchDocumentInformation plan have been included
manually in their respective plans after generation of this class for the MAS-ML Tool; the current version has
not yet the association between plan and semantically actions.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 30

import jamder.behavioral.*;
...
import jamder.agents.*;

public class SearcherAgent extends MASMLAgent {
 //Constructor
 public SearcherAgent (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);
 addBelief("finderBeliefsB", new Belief("finderBeliefsB", "String", ""));

 Goal relatePeopleG = new LeafGoal("relatePeopleG", "Boolean", "false");
 addGoal("relatePeopleG", relatePeopleG);
 Goal relateDocumentsG = new LeafGoal("relateDocumentsG", "Boolean","false");
 addGoal("relateDocumentsG", relateDocumentsG);

 Action searchPeopleAc = new Action("searchPeopleAc", null, null);
 addAction("searchPeopleAc", searchPeopleAc);
 Action showRelatedPeopleAc = new Action("showRelatedPeopleAc", null, null);
 addAction("showRelatedPeopleAc", showRelatedPeopleAc);
 Action searchDocumentsAc = new Action("searchDocumentsAc", null, null);
 addAction("searchDocumentsAc", searchDocumentsAc);
 Action showRelatedDocumenstAc = new Action("showRelatedDocumentsAc", null, null);
 addAction("showRelatedDocumentsAc", showRelatedDocumenstAc);

 Plan searchPeopleInformationPlan = new Plan("searchPeopleInformationPlan",

relateDocumentsG);
 addPlan("searchPeopleInformationPlan", searchPeopleInformationPlan);
 Plan searchDocumentInformationPlan = new Plan("searchDocumentInformationPlan",

relatePeopleG);
 addPlan("searchDocumentInformationPlan", searchDocumentInformationPlan);
 }
 public void percept(String perception) { }
}

Figure 16: SearcherAgent class in JAMDER

1.1.3 Agent provides help on Moodle
This agent is the simple reactive type and has a list of several insights into the difficulties the user has,

and before this, it chooses the appropriate action. This agent realizes at what point the user is at the same
time independently offers tips on how to make the best use of a particular functionality. Figure 17 shows
that this agent is made only of perceptions and actions, consequently it is a simple reactive agent. To
match the perception, the agent performs one of the actions to address the perception. They have no pre or
posconditions. Figure 18 shows the code generated for HelperAgent in JAMDER.

Figure 16: SearcherAgent class in JAMDER

89

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

6.1.4. Agent provides help on Moodle
This agent is the simple reactive type and has a list of several insights into the difficulties the user has, and
before this, it chooses the appropriate action. This agent realizes at what point the user is at the same time inde-
pendently offers tips on how to make the best use of a particular functionality. Figure 17 shows that this agent
is made only of perceptions and actions, consequently it is a simple reactive agent. To match the perception, the
agent performs one of the actions to address the perception. They have no pre or posconditions. Figure 18 shows
the code generated for HelperAgent in JAMDER.

Figure 17: HelperAgent structure

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 31

Figure 17 HelperAgent structure

import jamder.behavioral.*;
...
import jamder.agents.*;

public class HelperAgent extends ReflexAgent {
 //Constructor
 public HelperAgent (String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);

 Action showForumTipsAc = new Action("showForumTipsAc", null, null);
 addAction("showForumTipsAc", showForumTipsAc);
 ...
 Action showGradeReportTipsAc = new Action("showGradeReportTipsAc", null, null);
 addAction("showGradeReportTipsAc", showGradeReportTipsAc);

 addPerceive("showForumTips", null);
 ...
 addPerceive("showGradeReportTips", null);
 }
}

Figure 18: HelperAgent class in JAMDER Figure 18: HelperAgent class in JAMDER

90

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

6.1.5. Coordinator Agent
This type of agent should be able to centralize the requests of the agents and the information they send to each
other, making this agent an intermediary between other agents. The objective of coordinator agent is to order
the actions of agents (requestAgentsActions).The requestActionPlan plan uses two actions to achieve this goal:
checkAgentAction and requestAction where the first one checks if the agent can perform the task and the second
one asks the agent to perform the action after verifying that the agent can perform (checkAgentAction) (Figure
19).

Figure 19: CoordinatorAgent structure

Similarly, to the SearcherAgent, the CoordinatorAgent is classified as a plan with a goal-based agent. Thus,
the code generation is omitted in this case.

6.1.6. GroupAgent
This agent should be able to assist autonomously users, students and educators, the composition of working
groups taking into account affinity themes or learning profiles. For this, it must consider certain criteria estab-
lished by a trainer of one or more classes, or by the user interested in integrating the working groups. Figure 20
shows the structure of GroupAgent.

The beliefs of this agent store courses by subject and the teacher or learning user profiles. The create-
GroupHelp planning is mounted on agent runtime and has two goals, createGroupByLearningProfile and cre-
ateGroupByAffinity. They form groups, but the difference is the assumption used to plan the best way and hence
suggest ways to create or join groups, following a theme or profile of users who fall into the group to set. This
choice shows two goals chosen to be reached during the execution time.

91

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Figure 20: GroupAgent structure

Figure 21 shows the code generated for GroupAgent in JAMDER. As a utility-based agent, this has the
methods defined in MAS-ML 2.0 and are determined by methods:

• <<next-function>> nextFunctionGroup: gives creation suggestions or integration groups;
• <<formulate-problem-function>> probFuncPerceiveGroups: recognizes the potential group formation

according to a theme or suggested profile;
• <<formulate-goal-function>> probFuncIntegrateGroups: assists the user in forming the subject of the-

matic groups, thus giving greater value to the relationship of collaboration between the members of the
group to provide better learning;

• <<utility-function>> utilFuncIntegrateGroups: creates a balance between training issues and profiles;

In this example of generated code, the actions were entered manually because the current version of MAS-
ML tool still does not provide the inclusion of actions information on their structure. Namely: checkAgentAc-
tion and requestAction.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 34

import jamder.behavioral.*;
...
import jamder.agents.*;

public class GroupAgent extends UtilityAgent {
 //Constructor
 public GroupAgent(String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);
 addBelief("groupCoachBeliefsB", new Belief("groupCoachBeliefsB", "String", ""));

 Goal formGroupByAffinityG = new LeafGoal("formGroupByAffinityG ", "Boolean", "false");
 addGoal("formGroupByAffinityG", formGroupByAffinityG);
 Goal formGroupByLearningProfileG = new LeafGoal("formGroupByLearningProfileG ", Boolean,

"");
 addGoal("formGroupByLearningProfileG ", formGroupByLearningProfileG);

 Action showFormationTipsAc = new Action("showFormationTipsAc", null, null);
 addAction("showFormationTipsAc", showFormationTipsAc);
 ...
 Action("integrateGroupByProfileAc", null, null);
 addAction("integrateGroupByProfileAc", integrateGroupByProfileAc);

 addPerceive("perceiveGroupFormation", null);
 addPerceive("perceiveThemes", null);
 ...
 addPerceive("funciontalityuDifficulties", null);

 Plan createGroupHelpPlan = new Plan("createGroupHelpPlan", null);
 addPlan("createGroupHelpPlan", createGroupHelpPlan);
 }

 protected Plan planning(List<Action> actions){
 return null;
 }

 protected Belief nextFunction(Belief belief, String perception) {
 return nextFunctionGroup (belief, perception);
 }
 private Belief nextFunctionGroup (Belief belief, String perception) {
 return null;
 }
 protected List<Action> formulateProblemFunction(Belief belief, Goal goal) {
 return probFuncPerceiveGroups(belief, goal);
 }
 private List<Action> probFuncPerceiveGroups(Belief belief, Goal goal) {
 return null;
 }
 protected Goal formulateGoalFunction(Belief belief) {
 return probFuncIntegrateGroups(belief);
 }

92

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 34

import jamder.behavioral.*;
...
import jamder.agents.*;

public class GroupAgent extends UtilityAgent {
 //Constructor
 public GroupAgent(String name, Environment env, AgentRole agRole) {
 super(name, env, agRole);
 addBelief("groupCoachBeliefsB", new Belief("groupCoachBeliefsB", "String", ""));

 Goal formGroupByAffinityG = new LeafGoal("formGroupByAffinityG ", "Boolean", "false");
 addGoal("formGroupByAffinityG", formGroupByAffinityG);
 Goal formGroupByLearningProfileG = new LeafGoal("formGroupByLearningProfileG ", Boolean,

"");
 addGoal("formGroupByLearningProfileG ", formGroupByLearningProfileG);

 Action showFormationTipsAc = new Action("showFormationTipsAc", null, null);
 addAction("showFormationTipsAc", showFormationTipsAc);
 ...
 Action("integrateGroupByProfileAc", null, null);
 addAction("integrateGroupByProfileAc", integrateGroupByProfileAc);

 addPerceive("perceiveGroupFormation", null);
 addPerceive("perceiveThemes", null);
 ...
 addPerceive("funciontalityuDifficulties", null);

 Plan createGroupHelpPlan = new Plan("createGroupHelpPlan", null);
 addPlan("createGroupHelpPlan", createGroupHelpPlan);
 }

 protected Plan planning(List<Action> actions){
 return null;
 }

 protected Belief nextFunction(Belief belief, String perception) {
 return nextFunctionGroup (belief, perception);
 }
 private Belief nextFunctionGroup (Belief belief, String perception) {
 return null;
 }
 protected List<Action> formulateProblemFunction(Belief belief, Goal goal) {
 return probFuncPerceiveGroups(belief, goal);
 }
 private List<Action> probFuncPerceiveGroups(Belief belief, Goal goal) {
 return null;
 }
 protected Goal formulateGoalFunction(Belief belief) {
 return probFuncIntegrateGroups(belief);
 }

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 35

 private Goal probFuncIntegrateGroups(Belief belief) {
 return null;
 }
 protected Integer utilityFunction(Action action) {
 return utilFuncIntegrateGroups(action);
 }
 private Integer utilFuncIntegrateGroups(Action action) {
 return 0;
 }
 public void percept(String perception) { }
}

Figure 21: GroupAgent class in JAMDER

1.2 Agent Roles

In a MAS system, agents can exercise more than one agent role in the same organization, but this MAS
prototype, each agent has a specific role. Because of this granularity, the definitions of agent roles are the
same as agents regarding beliefs, goals and actions, but the roles have other components: rights and
duties. Figure 22 shows more details of the proposed roles for the agent. The structure of each agent role
proposed for each agent based on the rights and duties is defined as follows:

Learning agent role (CompanionAgentRole) is the type of knowledge-based role as it needs to store
students' grades through beliefs. It contains the right displaySupportMsg , it may or may not display it and
the duty to compareClasses as to perform some action needs to compare the class at first.

Pedagogical agent role (PedagogicAgentRole) is a kind of role for a proactive agent, because depending
on how the student evolution is, the actions that the agent will use this role will make the agent's plan.

Searcher Information Agent Role (SearcherAgentRole) is a kind of proactive agent role because his
actions will be used in a pre-defined agent plan. Their rights are displayRelatedPeople and
displayRelatedDocuments to display people or documents relating to the current user interests. His
searchPeople and searchDocuments duties identify the obligation to locate people or documents relating to
the current user.

Moodle Helper Agent Role (HelperAgentRole) is a kind of simple reactive agent role, therefore, does
not have beliefs or goals. It provides help in the operation of Moodle.

Forming Groups Agent Role (GroupAgentRole) is a kind of proactive agent role due to own beliefs
and goals needed to assist users in the composition of working groups. This role has no duty but has
several rights.

Figure 21: GroupAgent class in JAMDER

93

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

6.2. Agent Roles
In a MAS system, agents can exercise more than one agent role in the same organization, but this MAS proto-
type, each agent has a specific role. Because of this granularity, the definitions of agent roles are the same as
agents regarding beliefs, goals and actions, but the roles have other components: rights and duties. Figure 22
shows more details of the proposed roles for the agent. The structure of each agent role proposed for each agent
based on the rights and duties is defined as follows:

Learning agent role (CompanionAgentRole) is the type of knowledge-based role as it needs to store students’
grades through beliefs. It contains the right displaySupportMsg , it may or may not display it and the duty to
compareClasses as to perform some action needs to compare the class at first.

Pedagogical agent role (PedagogicAgentRole) is a kind of role for a proactive agent, because depending on
how the student evolution is, the actions that the agent will use this role will make the agent’s plan.

Searcher Information Agent Role (SearcherAgentRole) is a kind of proactive agent role because his actions
will be used in a pre-defined agent plan. Their rights are displayRelatedPeople and displayRelatedDocuments
to display people or documents relating to the current user interests. His searchPeople and searchDocuments
duties identify the obligation to locate people or documents relating to the current user.

Moodle Helper Agent Role (HelperAgentRole) is a kind of simple reactive agent role, therefore, does not
have beliefs or goals. It provides help in the operation of Moodle.

Forming Groups Agent Role (GroupAgentRole) is a kind of proactive agent role due to own beliefs and
goals needed to assist users in the composition of working groups. This role has no duty but has several rights.

Figure 22: Part of Organization diagram with only proposed agent roles

94

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Coordinator Agent Role (CoordinatorAgentRole) is a kind of proactive agent role. It centralizes the requests
of the agents and the information they send to each other. Thus, their behavior is an intermediary between other
agents. This role does not have duties, however, contains checkAgentAction right, that can check which action
the agent is taking, and requestAction right, that may request another user to perform an action. Figure 23 shows
all agent roles code generated in JAMDER proposed in this case study.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 36

Figure 22: Part of Organization diagram with only proposed agent roles

Coordinator Agent Role (CoordinatorAgentRole) is a kind of proactive agent role. It centralizes the
requests of the agents and the information they send to each other. Thus, their behavior is an intermediary
between other agents. This role does not have duties, however, contains checkAgentAction right, that can
check which action the agent is taking, and requestAction right, that may request another user to perform
an action. Figure 23 shows all agent roles code generated in JAMDER proposed in this case study.
import jamder.structural.*;
...
import jamder.behavioral.*;

public class CompanionAgentRole extends ModelAgentRole {
 //Constructor
 public CompanionAgentRole (String name, Organization owner, GenericAgent player) {
 super(name, owner, player);
 addBelief("companionBeliefs.pl", new Belief("companionBeliefs.pl", "String", ""));
 addRight("displaySupportMsg", new Right());
 addDuty("compareClasses", new Duty());

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 37

 initialize();
 }
}

import jamder.behavioral.*;

public class PedagogicAgentRole extends ProactiveAgentRole {
 //Constructor
 public PedagogicAgentRole (String name, Organization owner, GenericAgent player) {
 super(name, owner, player);
 addBelief("pedagogicBeliefs.pl", new Belief("pedagogicBeliefs.pl", "String", ""));
 addGoal("assistStudentDiscipline", new LeafGoal("assistStudentDiscipline", "String", ""));
 addRight("suggestRelatedDiscipline", new Right());
 ...
 addRight("informDisciplineDescToStudent", new Right());
 addDuty("relateDisciplines", new Duty());
 addDuty("relateCourses", new Duty());
 initialize();
 }
}

public class HelperAgentRole extends AgentRole {
 //Constructor
 public HelperAgentRole (String name, Organization owner, GenericAgent player) {
 super(name, owner, player);

 addRight("displayForumTips", new Right());
 addRight("displayMateTips", new Right());
 addRight("displayCalendarTips", new Right());
 initialize();
 }
}

Figure 23 AgentRoles proposed classes generated in JAMDER

1.3 Environment and Organization

Finally, the Organization and Environment classes for this MAS are shown in Figure 24. The structure of
these classes is simpler because only contains entities that inhabit them and the instances that inhabit them.

The transformations of the code on models with charts in Acceleo proposed just generate the skeleton
of classes and methods of the entities and their characteristics. Some entities required including, as a
standard nomenclature, a suffix due to the possible existence of numerous properties in the entity and
thus, organizing better its structure, namely: Plan (Plan), Action (Ac), Goal (G), Belief (B). This
standardized names deletes only the Duty classes, Right, and protocol, as they are generated, their
instances are created and are not directly referenced in the same method without the need for a variable.
This nomenclature adopted provides a better understanding of the characteristics involved, giving the
possibility of being used in the constructor of the entity more easily. Another advantage is that it helps to

Figure 23 AgentRoles proposed classes generated in JAMDER

6.3. Environment and Organization
Finally, the Organization and Environment classes for this MAS are shown in Figure 24. The structure of these
classes is simpler because only contains entities that inhabit them and the instances that inhabit them.

95

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

The transformations of the code on models with charts in Acceleo proposed just generate the skeleton of
classes and methods of the entities and their characteristics. Some entities required including, as a standard
nomenclature, a suffix due to the possible existence of numerous properties in the entity and thus, organizing
better its structure, namely: Plan (Plan), Action (Ac), Goal (G), Belief (B). This standardized names deletes
only the Duty classes, Right, and protocol, as they are generated, their instances are created and are not directly
referenced in the same method without the need for a variable. This nomenclature adopted provides a better
understanding of the characteristics involved, giving the possibility of being used in the constructor of the entity
more easily. Another advantage is that it helps to identify quickly what kind of class or variable was generated
and prevents possible coding errors, improving the code quality.

Yrleyjander S. Lopes et al. ADCAIJ Submission Instructions Guidelines

ADCAIJ, Regular Issue, Vol.3 n.4 (2018)
http://adcaij.usal.es

Advances in Distributed Computing and
Artificial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd 38

identify quickly what kind of class or variable was generated and prevents possible coding errors,
improving the code quality.
import jamder.Organization;
...
import jamder.behavioral.*;

public class MoodleOrganization extends Organization {
 //Constructor
 public MoodleOrganization (String name, Environment env, AgentRole agRole, Organization
org) {
 super(name, env, agRole, org);
 }
}

import jamder.environment;
...
import jamder.agents.GenericAgent;

public class MoodleEnvironment extends Environment {
 public MoodleEnvironment (String name, String host, String port) {
 super(name, host, port);
 Organization MoodleOrganization = new Organization("MoodleOrganization", this, null);
 addOrganization("MoodleOrganization", MoodleOrganization);
 GenericAgent HelperAgent = new HelperAg("HelperAgent", this, null);
 AgentRole HelperAgentRole = new AgentRole("HelperAgRole", MoodleOrganization,
HelperAgent);
 addAgent("HelperAgent", HelperAgent);
 GenericAgent SearcherAgent = new SearcherAgent ("SearcherAgent", this, null);
 AgentRole SearcherAgentRole = new AgentRole("SearcherAgentRole", MoodleOrganization,
SearcherAgent);
 addAgent("SearcherAgent", SearcherAgent);

 GenericAgent CompanionAgent = new CompanionAgent ("CompanionAgent", this, null);
 AgentRole CompanionAgentRole = new AgentRole("CompanionAgentRole", MoodleOrganization,
CompanionAgent);
 addAgent("CompanionAgent", CompanionAgent);

 GenericAgent CoordinatorAgent = new CoordinatorAgent("CoordinatorAgent", this, null);
 AgentRole CoordinatorAgentRole = new AgentRole("CoordinatorAgentRole",
MoodleOrganization, CoordinatorAgent);
 addAgent("CoordinatorAgent", CoordinatorAgent);

 GenericAgent GroupAgent = new GroupAgent ("GroupAgent", this, null);
 AgentRole GroupAgentRole = new AgentRole("GroupAgentRole", MoodleOrganization,
GroupAgent);
 addAgent("GroupAgent", GroupAgent);

 GenericAgent PedagogicalAgent = new PedagogicAgent("PedagogicalAgent", this, null);
 AgentRole PedagogicAgentRole = new AgentRole("PedagogicAgentRole", MoodleOrganization,
PedagogicAgent);
 addAgent("PedagogicalAgent", PedagogicalAgent);
 }

 // Additional attributes and methods
}

Figure 24: MoodleOrg and MoodleEnv classes in JAMDER Figure 24: MoodleOrg and MoodleEnv classes in JAMDER

96

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

In this study case, JAMDER was applied to the prototype of a real problem, illustrating the suitability of
JADE extension for implementing entities in MAS-ML 2.0 context. The JAMDER source code and the full
study case, as well as the templates used, can be obtained via the website https://bitbucket.org/yrley/jamder/src/.

7. Conclusion
The reduction of the semantic gap between the representations in design and implementation phases contributes
to the increase of the developer’s productivity and improves the consistency between design and code represen-
tations of the entities concerned. Additionally, the existence of a mapping between entities ensures consistency
and traceability to code.

In this paper, we present a mapping between entities and the support mechanisms provided for JADE. The
focus of the work is the different internal architectures of agents, namely: simple reflex agent, model-based
reflex agent, a goal-based agent with planning, utility-based agent and goal-based agent with a plan. As a result,
a JADE extension is presented through a set of adaptations to support the implementation of the scheduled
architectures. In this way, some JADE classes have been extended because they share a common structure and
behavior, such as: Agent and Behavior. In another case, new classes were created because there was no cor-
responding concept in JADE, namely: Belief, Goal (CompositeGoal and LeafGoal), Plan, Action, AgentRole,
ObjectRole, Axiom, Duty, Right, Environment, Organization and Condition.

The applicability of the proposed extension is illustrated in a case study where the mapping on entity-level
between modeling and its implementation through JAMDER code could be observed. This case study offered
an explanation of a known system in the MASs field, the Moodle which facilitates the understanding of dif-
ferent types of agents and their implementation. The structural properties for the proposed agents were shown;
however, their behavioral properties must be developed by the developer through the methods for each agent.
Each template developed in this work is performed individually, one for each type of entity. As future work, we
consider establishing a chain of calls for these templates sequentially that enables a reduction of time to generate
the classes as well.

This work constitutes the step towards for promoting the development of MASs using at the same time,
many agent types and JADE. Based on the presented mapping, the strategy to be followed in the process of
coding can be traced. Furthermore, in this codification process, other frameworks for implementation could also
be adapted to the variety of agents.

8. References
Bellifemine, F. L., Caire, G., and D. Greenwood, Developing Multi-Agent Systems with JADE, Wiley, 2007b.

(Wiley Series in Agent Technology).
Beydeda, S., Book M., Gruhn, V. Model-driven Software Development. Birkhäuser, 2005.
Blois, M., Lucena, C. Multi-agents Systems and the Semantic Web - The Semantic Core Agent-Based Abstrac-

tion Layer. In: ICEIS, Porto. 2004.
Braubach L., Lamersdorf W., Pokahr A. Jadex: Implementing a BDI-Infrastructure for Jade agents. Exp, vol.

3, num 3. 2003.
Castro, J.; Alencar, F.; Silva, C. 2006. Agent-Oriented Software Engineering. In: Karin Breitman; Ricardo Ani-

do. (Org.). Updates in Computers. Rio de Janeiro: PUC-Rio, p. 245-282.
Challenger M., Mernik M., Kardas G., Kosar T. Declarative specifications for the development of multi- agent

systems, Computer Standards & Interfaces 43: 91-115. 2016.
Challenger M., Demirkol S., Getir S., Mernik M., Kardas G., Kosar T. On the use of a domain-specific modeling

language in the development of multiagent systems, Engineering Applications of Artificial Intelligence 28:
111-141 (2014).

97

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Demirkol S., Challenger M., Getir S., Kosar T., Kardas G., Mernik M. A DSL for the development of software
agents working within a semantic web environment. Computer Science and Information Systems, 10(4):
1525-1556 (2013).

Fischer Klaus, Warwas Stefan. A Methodological Approach to Model Driven Design of Multiagent Systems.
13th International Workshop on Agent-Oriented Software Engineering XIII - Volume 7852.

Freire, Emmanuel Sávio; Gonçalves, Enyo José Tavares; Cortés, M. I.; Brandão, M. TAO+: Extending the
Conceptual Framework TAO to Support Internal Agent Architectures in Normative Multi-Agent Systems.
Electronic Notes in Theoretical Computer Science, v. 292, p. 57-69, 2013.

Fuentes-Fernandez R., Garcia-Magarino I, Gomez-Rodriguez A.M., Gonzalez-Moreno J. C. A technique for
defining agent-oriented engineering processes with tool support Eng. Appl. Artif. Intell. 23 (3) (2010).

Gascuena J.M., Navarro E., Fernandez-Caballero A. Model-driven engineering techniques for the develop-
ment of multi-agent systems Eng. Appl. Artif. Intell., 25 (1) (2012).

Gascuena J. M., Navarro E., Fernandez-Caballero A., Martínez-Tomas R.. Model-to-model and model-to-text:
looking for the automation of VigilAgent. Expert Systems, 31(3): 199-212 (2014)

Getir S., Challenger M., Kardas G. The formal semantics of a domain-specific modeling language for semantic
web enabled multi-agent systems. International Journal of Cooperative Information Systems 23(3): 1-53
(2014).

Gómez-Sanz J. J., Fernández C. R., Arroyo J. Model driven development and simulations with the INGENIAS
agent framework. Simulation Modeling Practice and Theory, 18(10): 1468-1482 (2010)

Gonçalves, E. J. T.; Cortés, M. I.; Campos G. A.; Gomes G. F.; Da Silva V. T. Towards the modeling reactive
and proactive agents by using MAS-ML. In: the 2010 ACM Symposium, 2010, Sierre. Proceedings of the
2010 ACM Symposium on Applied Computing - SAC ‘10. v. 2. p. 936-937

Gonçalves, E. J. T., Farias, K., Cortés, M.I. and Silva, V.T., MAS-ML Tool: A Modeling Environment for
Multi-Agent Systems. In: 13th International Conference on Enterprise Information Systems (ICEIS), 2011,
Beijing, China. Proceedings of the 13th International Conference on Enterprise Information Systems, 2011.

Gonçalves E. J. T., Cortés M. I., Campos G. A. L., Lopes Y. S., Freire E. S. S., Silva, V. T., Oliveira K. S. F.,
Oliveira M. A. MAS-ML2.0: Supporting the modeling of multi-agent systems with different agent architec-
tures. JSS (The Journal of Systems and Softwares) 108 (77-109), 2015.

Jennings, N. R. and Wooldridge, M., On Agent-based Software Engineering. Artificial Intelligence, v. 117, p.
277-296, 2000.

Nunes I., Lucena C., Luck M. BDI4JADE: a BDI layer on top of JADE. In: Ninth International Workshop on
Programming Multi-Agent Systems (ProMAS 2011), 2011, Taipei. Ninth International Workshop on Pro-
gramming Multi-Agent Systems (ProMAS 2011), 2011. p. 88-103.

Mellor S. J., Scott K., Uhl A., Weise D. MDA Distilled: Principles of Model-Driven Architecture. Addison-Wes-
ley. 2004.

Morandini M., Nguyen C. D., Penserini L., Perini A., and Susi A.. Tropos modeling, code generation and testing
with the Taom4E tool. CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

Padgham, Lin and Winikoff, Michael. Developing Intelligent Agent Systems: A Practical Guide. ISBN 0-470-
86120-7, John Wiley and Sons. (2004).

Pokahr A., Braubach L., Lamersdorf W. Jadex: A BDI Reasoning Engine Multi-agent Programming Languages,
Platforms and Applications, Springer (2005), pp. 149-174.

Purvis M., Nowostawski M., Cranefield S. Opal: a Multi-level infrastructure for agent-oriented software devel-
opment. In: Department of Information Science, Dunedin, New Zealand, University of Otago, p. 1-25, 2002.

Russell S. and Norvig P., Artificial Intelligence: A Modern Approach (International Edition). 2. ed. New Jersey:
Pearson US Imports & PHIPEs, 2002.

Silva, V.T. da, Choren, R. and Lucena, C.J.P., MAS-ML: A Multi-Agent System Modeling Language. Confer-
ence on Object Oriented Programming Systems Languages and Applications (OOPSLA); In: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and
applications; Anaheim, CA, USA, ISBN:1-58113-751-6, ACM Press, pp. 304-305. 2007.

https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Kendall+Scott&search-alias=books&field-author=Kendall+Scott&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_3?ie=UTF8&text=Axel+Uhl&search-alias=books&field-author=Axel+Uhl&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_4?ie=UTF8&text=Dirk+Weise&search-alias=books&field-author=Dirk+Weise&sort=relevancerank

98

Yrleyjander S. Lopes, Mariela I. Cortés,
JAMDER: JADE to MULTI-Agent Systems
Development Resource

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 63-98
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Santos, D. R.; Ribeiro, M. B.; Bastos, R. M. A Comparative Study of Multi-Agent Systems Development Meth-
odologies. In: XX Simpósio Brasileiro de Engenharia de Software (SBES 2006). Florianópolis. p. 18-35
(2006)

Silva V., Garcia A., Brandão A., Chavez C., Lucena C. and Alencar P. Taming Agents and Objects in Software
Engineering. In: Garcia, A.; Lucena, C.; Zamboneli, F.; Omicini, A; Castro, J. (Eds.), Software Engineer-
ing for Large-Scale Multi-Agent Systems, Springer-Verlag, LNCS 2603, pp. 1-26, 2003, ISBN 978-3-540-
08772-4. 2003.

Weiss, G. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press,
Massachusetts.1999.

Zambonelli F., Jennings N., Wooldridge M. Organizational abstractions for the analysis and design of multi-
agent systems. In: Ciancarini, P.; Wooldridge, M. (Eds.) AgentOriented Software Engineering, LNCS 1957,
Berlin: Springer, p. 127 (2001)

