
31

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal
Regular Issue, Vol. 7 N. 3 (2018), 31-45

eISSN: 2255-2863
DOI: http://dx.doi.org/10.14201/ADCAIJ2018733145

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

An empirical approach for software
reengineering process with relation to
quality assurance mechanism
Muhammad Muzammula and Dr. M. Awaisb

aDepartment of Software Engineering, GCUF
bDepartment of Software Engineering,GCUF
m.muzammul275@gcuf.edu.pk, muhammadawais@gcuf.edu.pk

KEYWORD ABSTRACT

Software;
reengineering;
refactoring;
restructuring;
forward
engineering;
reverse
engineering;
quality assurance;
internal quality;
external quality;
flexibility;
reusability;
reliability;
robustness

Software development advances focus on productivity of existing software systems and
quality is basic demand of every engineering product. In this paper we will discuss
complete reengineering process with aspects of forward, reverse and quality assur-
ance mechanism. As we know the software development life cycle (SDLC) follows a
complete mechanism of engineering process. In forward engineering we tried to fol-
low selective main phases of software engineering(data,requirements,design,develop-
ment,implementation). Inreverse engineering we move backward from the last phase of
developing product as it gather requirements from implemented product(implementa-
tion, coding, design,requirements,data).During reengineering we add up more quality
features on customer demands, but the actual demand is to fulfill quality needs that
can be assured by external as well as internal quality attributes such as reliability,
efficiency, flexibility, reusability and robustness in any software system. We discussed
a methodological approach to move from reengineering to the journey of quality as-
surance. More than 50 studies come into discussion and throughput results proposed
by graph and tabular form. We can say if the reengineering process produce quality
attributes, then it can be said by old software system refactoring as code refactoring,
data refactoring and architectural refactoring we obtained a quality products at lower
cost instead of new software system development, which causes decrease in quality
attributes as cost, time etc. In future work testing methodology can be proposed for
quality assurance.

1.	Introduction
The re-engineering [1] [13] of used things in already developed software lead to avoid from wastage of material,
time and maintainace cost bring most of effects on economic values [4]. For any software development organi-
zations [2] increase in software development cost is much important, so the development companies which are
at small, medium or large scale try to follow up reengineering process.

Basically, the re-engineering process is to get existing software and add more features according to cus-
tomer requirements [3]. The factors effects in these fields are software maintenance cost, repairing cost or the

31 2018 7 3

ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal. Vol. 7 N. 3 (2018), 31-45

32

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

performance of system architecture failed to work out. We try to move with technology advancements and
available hardware [5]. However, the main problem comes into existence when we try to understand current
system. Usually, the documentation with architectural design and source code is not present or expired due to
large time passage so we cannot get its view clearly [12]. What we have to do here? Usually present features not
needed, we exclude old features with many more advance features according to customer demand [6].

Re-engineering also involved sub process as forward engineering, reverse engineering, refactoring or re-
structuring [7]. Reverse engineering process is the major workout of software reengineering. We check imple-
mented software system and analyze its activity by moving the implemented organization. We study the system
and extract its coding by its working or its documentation [8].. We conclude the architecture from designing
phase analysis, after this phase we get extract the modules and get requirements as the system was developed.

Before Further explanation of intro

1.1. Methodology

Figure 1: Model for software reengineering to quality assurance [46][48][49][22]

33

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

In gathered data we add more features according to customer demand. We structure a document as collected
form of data [16]. After this we start to develop new system or we can say restructured system.

In forward engineering the reengineering process phase refactoring [14] involved equally. We get elicitated
requirements from data or we can say requirements are refactored [19]. After requirements elicitation we add up
more designing architectural features in existing architecture that is called design restructuring [9]. From newly
developed design we develop and refectories the code [17] [18]. We check coding logics, errors, coding smells,
and all drawbacks that were lagging the quality [10].

Software system refactoring complete here and we can say reengineering [11] is a method to enhance the
quality attributes in system with code refactoring, design refactoring and software refactoring and prepare new
product with extra features and more reliability. Forward engineering last phase is testing to implement the
software system [15]. We test and evaluate system according to customer demands and here refectory product
ready to implement [20] [21].

In this paper I proposed next procedure to assure the quality of newly reengineered software.3-level archi-
tecture is proposed for the testing quality of developed software [22]. Level-1 which tells us about the external
quality which is visible to customer .In external quality there are three attributes reliability, efficiency and
maintenance cost [23]. These attributes are visible part to our customer these should be present at least 90% for
the customer satisfaction. In level-2, 3 I formulated the invisible part of reengineered system as internal quality.
Internal quality at level-2 tells that there should be improvements in code quality [25], decrease in complexity
and increase in user friendly as readability and programming structure should be well organized and in level-3
here in our reengineered software there should be presence of reusability [24]. Test ability process should be
easy to evaluate the quality. In any future dis-orderness if we have to study the code it should be structured in
well professional practices [26] [27] [28]. At last, I evaluate that if we will follow my proposed methodology we
can consider it easy mechanism from the journey of software reengineering to quality assurance.

2.	Related Work
This section provides a discussion on reengineering process to quality assurance characteristics. It also illus-
trates the forward engineering, reverse engineering and quality assurance process with the help of refactoring
process applied to deal with code bad smells and design patterns refactoring. A brief discussion on existing
reengineering approaches is also covered in this section.

34

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

2.1. Software re-engineering
The process of extracting any artifact with added features, for enhanced performance and reliability high degree
of consistency and betterment in maintainability is called re-engineering [29].

In gathered data we add more features
according to customer demand. We structure a
document as collected form of data [16]. After
this we start to develop new system or we can say
restructured system.

In forward engineering the reengineering
process phase refactoring [14] involved equally.
We get elicitated requirements from data or we
can say requirements are refactored [19]. After
requirements elicitation we add up more designing
architectural features in existing architecture that
is called design restructuring [9]. From newly
developed design we develop and refectories the
code [17] [18]. We check coding logics, errors,
coding smells, and all drawbacks that were
lagging the quality [10].

Software system refactoring complete
here and we can say reengineering [11] is a
method to enhance the quality attributes in system
with code refactoring, design refactoring and
software refactoring and prepare new product with
extra features and more reliability. Forward
engineering last phase is testing to implement the
software system [15]. We test and evaluate system
according to customer demands and here refectory
product ready to implement [20] [21].

 In this paper I proposed next procedure
to assure the quality of newly reengineered
software.3-level architecture is proposed for the
testing quality of developed software [22].
Level-1 which tells us about the external quality
which is visible to customer .In external quality
there are three attributes reliability, efficiency
and maintenance cost [23]. These attributes are
visible part to our customer these should be
present at least 90% for the customer
satisfaction. In level-2, 3 I formulated the
invisible part of reengineered system as internal
quality. Internal quality at level-2 tells that there
should be improvements in code quality [25],
decrease in complexity and increase in user
friendly as readability and programming structure
should be well organized and in level-3 here in
our reengineered software there should be

presence of reusability [24]. Test ability process
should be easy to evaluate the quality. In any
future dis-orderness if we have to study the code it
should be structured in well professional practices
[26] [27] [28]. At last, I evaluate that if we will
follow my proposed methodology we can consider
it easy mechanism from the journey of software
reengineering to quality assurance.

2. Related Work

 This section provides a discussion on
reengineering process to quality assurance
characteristics. It also illustrates the forward
engineering, reverse engineering and quality
assurance process with the help of refactoring
process applied to deal with code bad smells
and design patterns refactoring. A brief
discussion on existing reengineering
approaches is also covered in this section.

2.1 Software re-engineering

The process of extracting any artifact with
added features, for enhanced performance and
reliability high degree of consistency and
betterment in maintainability is called re-
engineering [29].

 Figure 2 the general pattern of re-
engineering software [45]

Figure 2: the general pattern of re-engineering software [45]

Now a days software products advancements increasing rapidly. Mostly software developed with new ar-
chitectures attributes and technologies did not work well as the old legacy systems provide user attachments
capabillities.Re-engineering provide facility of user boost advance software capabilities with the reuse of ex-
isting resources [11]. Reengineering process in large-scale legacy software with the changing in interfaced can
be risky. When we increase requirements integrity, it leaves effects on security. By software elicitation tried to
overcome these risks of software integrity [12].

2.2. Restructuring (code, data, design, document)
Re-structuring process can be said refactoring in real meaning, it can be defined as” Refactoring is a well-or-
ganized method for restructuring an existing body of code, make changing in its internal structure- without
changing its external behavior [30].

Figure 4: Code refactoring [47]

35

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

On-chip BRAM becomes highly important for high-bandwidth data communication. Automated chip re-
structuring is best practice to elaborate the buffering and bandwidth control. It checks impact on the perfor-
mance and the consumption of resources [17].

Restructuring in IT areas as customization, internal process, deployment of software, also organization
changing is discussed. IT served quality, Customer satisfaction and user impact on IT projects. [18].

To improve quality there is need to detect and remove the errors in working system environment as in form
of code or architecture. Several tools and techniques can be used for the betterment of code quality, design qual-
ity and overall system quality. As the quality of code/design will be good then the quality of software product
will automatically be good [9-10].

Refactoring and restructuring improve the reliability and maintainability of code. The main purpose is the
identification of potential refactoring opportunities. Terms used here 1) refactoring 2) replace type code with-
in subclasses 3) Replace code type with state. Mostly focused on Java and also on automatically refactoring
methods [31].

2.3. Forward and reverse engineering with aspects of refactoring

Figure 3: Reverse and forward engineering [46]

2.3.1. Reverse-Engineering
(Implementation, design, requirements, data)

It is the process of analyzing software system to extract the design, requirements, and data from the imple-
mentation of system with high level of abstraction is called reverse engineering [32].

Reverse Engineering (RE) in the semiconductor business. It has connected different systems, for example,
the electronic administration, enormous picture speeding up calculation, and programmed age for circuit ex-
traction. Because of leading the RE with the self-made ROIC chip, it was affirmed that the simple circuit was
precisely extricated as the entryway level [33].

2.3.2. Forward Engineering:
(Data, requirements, design, implementation)

It is the process of engineering software by following steps from data to extract design for architecture with
implementation of coding and system [32].

An appropriated programming item building group needs to manage the extra issue of dissemination sep-
arated from the typical desires around cost, quality, and time to market and advancement. Disregarding exclu-
sively following the recommended programming building forms, regularly the circulated groups neglect to go
about as a solitary item group. The key speculation in this approach is the suspicion that most dispersed pro-
gramming item designing groups in a similar association requires arrangement as opposed to base up retooling
as a detailed programming building activity and this arrangement can be accomplished in a quick and successful
way by adjusting the key interface pioneers [34].

36

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

2.4. Reengineering connection with Quality assurance
Our research question that can be extracted to fulfill the conclusion of all the research is based on the quality
assurance. Here we will try to explain the concepts of

1) 	Quality assurance
2) 	Software quality dependences
3) 	Software Reengineering and quality assurance
4) 	Software quality attributes w.r.t software forward and reverse engineering

What is Software Quality assurance?
Software quality assurance (SQA) is a method of testing software that our developed product fulfilling the qual-
ity specification standards and compile and developed according to rules.SQA is a running process of (SDLC)
that checks developed software system working according to desired quality measures [35].

Figure 4: Process of quality assurance [47]

How Software Reengineering leads to quality assurance?
As in Figure1.We proposed a model which is giving complete idea of re-engineering toward quality assurance.
It can be said as old software systems re-engineered we get new product with advance features. If we follow
development standards, we obtained a new product with more and advance features.

Programming configuration designs were elevated to make the plan of projects more “adaptable, measured,
reusable, and reasonable”. We at that point set out to examine the effect of configuration designs on various
quality properties and distributed a paper entitled “Do Design Patterns Impact Software Quality Positively?” In
this review paper for the honor, we report and consider our and others’ investigations on the effect of configu-
ration designs, talking about some key discoveries detailed about plan designs [36].

I actualized and ran my first clone recognition on modern programming approximately 10 years prior. From
that point forward, our examination models have developed into a business apparatus utilized by proficient pro-
gramming designers around the globe consistently. Every one of us only work on, or utilize as a major aspect
of our review administrations, programming quality examinations based upon this present group’s exploration
[37].

37

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

2.4.1. Methodology for SQ improvement
The software procedure display is utilized to guarantee software quality, speak to an assortment of assignment
settings, oversee venture length, enhance the procedure and range to execute the procedure understanding, and
to suitable verifiable guess for all undertaking settings. Given this perspective, this paper shows another soft-
ware improvement life cycle display, “AZ-Model”, for software advancement by presenting new exercises amid
software advancement life cycle [38].

2.4.2. Design patterns and Quality Assurances
The nature of software frameworks relies upon a few elements and one of them is the means by which the soft-
ware planners utilize the outline designs in the outline of software [39].

Code quality issues can cause serious problem. Before going to in depth programming there is need to get
perfect skills for code quality. Students should follow the techniques, there should be a flow in code, and issues
can be accruing for code quality. Modularization and decomposition can be caused. If students investigate these
faults, timely then can use tools to solve the problem [40].

How Software Reengineering leads to quality
assurance?

 As in Figure1.We proposed a model
which is giving complete idea of re-
engineering toward quality assurance. It can
be said as old software systems re-engineered
we get new product with advance features. If
we follow development standards, we
obtained a new product with more and
advance features.

 Programming configuration designs
were elevated to make the plan of projects
more "adaptable, measured, reusable, and
reasonable". We at that point set out to
examine the effect of configuration designs
on various quality properties and distributed a
paper entitled "Do Design Patterns Impact
Software Quality Positively?" In this review
paper for the honor, we report and consider
our and others' investigations on the effect of
configuration designs, talking about some key
discoveries detailed about plan designs [36].

 I actualized and ran my first clone
recognition on modern programming
approximately 10 years prior. From that point
forward, our examination models have
developed into a business apparatus utilized
by proficient programming designers around
the globe consistently. Every one of us only
work on, or utilize as a major aspect of our
review administrations, programming quality
examinations based upon this present group's
exploration [37].

 2.4.1 Methodology for SQ improvement

The software procedure display is
utilized to guarantee software quality, speak
to an assortment of assignment settings,
oversee venture length, enhance the procedure
and range to execute the procedure
understanding, and to suitable verifiable guess

for all undertaking settings. Given this
perspective, this paper shows another
software improvement life cycle display,
"AZ-Model", for software advancement by
presenting new exercises amid software
advancement life cycle [38].

2.4.2 Design patterns and Quality
Assurances

 The nature of software frameworks
relies upon a few elements and one of them is
the means by which the software planners
utilize the outline designs in the outline of
software [39].

 Code quality issues can cause
serious problem. Before going to in depth
programming there is need to get perfect
skills for code quality. Students should follow
the techniques, there should be a flow in code,
and issues can be accruing for code quality.
Modularization and decomposition can be
caused. If students investigate these faults,
timely then can use tools to solve the problem
[40].

Figure 5 .Process of quality assurance [50]
Figure 5: Process of quality assurance [50]

38

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

2.5 Tabular representation of Old related word with field of reengineering to quality assurance

Authors Issues Found Methodology
Applied

Major Output/Finding Ref#

CharilaosPetrou
(2016)

Signal processing with
big data

principal component
analysis (PCA)

Big data can be processes by
different signal processing
techniques.

[41]

Jason Cong, PengWei,
CodyHao Yu (2107)

High level synthesis
fail to put arrays
design on-chip

Automated on-chip
buffer restructuring can
resolve the issue

Our automated source-to-source
code transformation tool improves
the performance of a broad class of
high level synthesis

[17]

Fernando Szimanski,
Anivaldo S. Vale
(2018)

IT have to fulfill
customer requirements

Business models and
analyzing tools

IT provides services quality,
customer satisfaction and
engagement, as well as transparency
on IT projects.

[18]

KashyapTodi, Jussi
Jokinen (2017)

Computational
problems exists in
software due to layout
and designs

Human System
Visualization

Well organized software systems
with user friendly interfaces are
developed

[19]

Amit Rathee.
(2017)

Due to increase in
features and advance
capabilities , we
restructure software

Cohesion techniques
are used to rebuilt the
classes of OOP based
system

Well designed, organized,
restructured, new systems are
obtained after restructuring

[20]

Nathan
ManeraMagalhães.
(2017)

Unnecessary structural
complexity may occur,
in which a program
has a cycloramic
complexity

Identify complexity,
restructuring code and
finding flow graphs

The approach is able to support
unnecessary cycloramic complexity
remove

[21]

JyothiVedurada.
(2017)

Large volume of code
causes complexities

Replace code with sub
classes

Restructured well designed and user
friendly system is developed

[42]

HiekeKeuning
(2017)

Code quality is a big
issue in these days

Functions clearity,
expressions finding
demoularization

Clear and refactored with clear
quality programs are obtained

[40]

Ana Rodriguez
(2017)

Mobile rely on
batteries and APPS
use much battery

Code refactoring reduce
power consumption

Via code restructuring new coded
apps reduced the power usage

[43]

Didier Rémy (2017) Inductive data types
and parametric
polymorphism are two
common problems

Inductive data-types
and parametric
polymorphism

By adding or dropping some parts
of codes then it is possible to make
automated pointing system that can
be helpful in

[44]

39

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

3.	Background
This section provides a discussion on software re-engineering process with quality characteristics.

3.1. Software re-engineering
A variety of software reengineering process to quality characteristics has been reported in literature such as:
Forward engineering, reverse engineering, refactoring (code, data, and design) according to Bhatnagar [48]
Re-engineering is the only way to utilize the software fully and solve the problem of software backlogs . Soft-
ware re-engineering may be the only viable way to ensure that legacy systems can continue in service [36] by
Foutse Khomh. It may be too expensive and too risky to adopt any other approach to system evolution.

To understand the reasons for this, we must make a rough assessment of the legacy system problem [35]. R.
Dewar in 1999 tells [51] reengineering of legacy systems is a method that has great importance and still signifi-
cantly resisting the process of modification and evaluation for the purpose of business goals which are constant-
ly changing. J.Clarke in 2003 [52] Metaheuristic techniques such as genetic algorithms simulated annealing and
tabu search have found wide application in most areas of engineering. H. Jaakkola 2010 [53] software design
and development coexist and co-evolve with quality provision, assessment and enforcement. However, most
and also modern research provides only bread-and-butter lists of useful properties without giving a systematic
structure for evaluating them. Rajesh H. Kulkarni [54] recently, the modeling of whole process of software
(SW) development is performed using extended waterfall and agile models. For the development of any soft-
ware we mostly use software development life cycle, literature guides us lot for this process: Rosa E. Quelal
[55].Agile methodologies have been increasingly used in software development projects worldwide. However,
there is little information about the adoption of these methodologies in Latin America. Michael Kirchhoff 2018
[56] Faster development of new algorithms is crucial in modern projects. Highly abstracted, data flow and mod-
ular oriented model-driven development methods and tools are used for this purpose. Asim Iftikhar 2018 [57]
Global software development is an example of the modern age.

Team members can split work in different modules, can communicate with each other due to boundaries in
physical appearance and time availability factor effects. Different software development companies are scatter-
ing their work at national as well as international level. In Forward engineering we start working from getting
data and from passing processes requirements elicitation to designing and till the end implementation we obtain
a quality product.

3.1.1. Code refactoring
Software refactoring meaning that we transform software code or design in such a way that it improves the
working quality of software while behavior remain preserved [58]. Opdyke proposed several techniques of
refactoring ath design and implementation stages of software development [59].We can elaborate refactoring
process with several steps related with source code and a model developed. These process steps was proposed
by Wake [60] at starting history, the advancement was done byMens and Tourwe [61].In general point of view
we follow these steps for code refactoring

1-	Find software refactoring parts
2-	Slect appropriate approach for refactoring
3- 	Check preservation of behavior
4-	Apply the approach selected for refactoring
5-	Analyzing the refactoring impact on quality of software
6-	Ensure the presence of consistency in code and UML Models

40

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

3.1.2. New Code refactoring Methodology

Table 2: surveyed detection techniques for code refactoring

41

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

Table 3: Code refactoring tools report

Table 4: Quality assurance and quality control [81]

4.	Conclusion
Software re-engineering purpose is to add more features in existing software system and increase its quality pa-
rameters. In our existing software environment as day by day technology going to improve then it become dif-
ficult to develop software again and again. So, re-engineering provide a mechanism by which we can improve

42

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

existing systems with disturbing the behaviors of system quality can be improved. Software re-engineering
follow some steps with the help of reverse and forward engineering and according to users requirements new
features are added to existing product. The parameters that can improve the quality of software can be coding
improvements designing improvements and all of these requirements can be done by restructuring of data.
Software re-engineering process undergo with some steps with relation to forward engineering and reverse en-
gineering. We refractor the parameters during reverse engineering process. New product obtained with advance
quality parameters. There are different levels of quality assurance which are need of system. After the imple-
mentation of re-engineering process we assure these parameters which included as two different terms quality
assurance (QA) and quality control (QC). The advancements can be tested if these parameters assuredly present
in our developed product. It may include reliability, efficiency, consistency, integrity, robustness, maintenance
cost, complexity, programming structure, reuseability and testability.

5.	Acknowledgment
This research paper was prepared with the support of Govt.College University Faisalabad, Pakistan in depart-
ment of software engineering with the support of Dr.Awais and Mr.Yahya Saeed. And Principal author:Mu-
hammad Muzammul(33103-3379246-3)

6.	References
[1]	 Olexandr Kharchenko; “Optimization of software architecture selection for the system under design and

reengineering”; 14th International Conference on Advanced Trends in Radio electronics, Telecommunica-
tions and Computer Engineering (TCSET); IEEE; 2018; Pages: 1245-1248

[2] 	 Bernhard Dorninger; “Reengineering an industrial HMI: Approach, objectives, and challenges”; IEEE
25th International Conference on Software Analysis, Evolution and Reengineering (SANER); 2018; Pages
547-551

[3]	 Jaswinder Singh; “Identification of requirements of software reengineering for JAVA projects”; Interna-
tional Conference on Computing, Communication and Automation (ICCCA); 2017; page 931-934; IEEE
Conferences

[4]	 Ana Maria da Mota Moura; “Awareness Driven Software Reengineering”; IEEE 25th International Re-
quirements Engineering Conference (RE); 2017; Pages 550-555; IEEE Conferences

[5] 	 Grace Park; “A modeling framework for business process reengineering using big data analytics and a
goal-orientation” 2017 11th International Conference on Research Challenges in Information Science
(RCIS); Pages: 21-32 ; IEEE Conferences

[6]	 James. J. Mulcahy; “Reengineering autonomic components in legacy software systems: A case study”;
2017 Annual IEEE International Systems Conference (SysCon); Pages: 1-7; IEEE Conferences

[7] VivekBhatnag,” Study of Software Development Using Software Re-Engineering”, International Journ al of
Engineering Trends and Applica t ions (I J ETA)-Volume 3 Issue 2, Mar-Apr 2016

[8]	 Nilesh Jadav; “How To Reverse Engineer Using Advanced Apk Tool”; March08 2017
[9] Arcelli, F.; Tosi, C.; Zanoni, M.; Maggioni, S.: “The MARPLE project: A tool for design pattern detection

and software architecture reconstruction.” In: 1st International Workshop on Academic Software Devel-
opment Tools and Techniques (WASDeTT-1) (2008) Google Scholar

[10] 	GhulamRasool, Zeeshan Arshad,” A Lightweight Approach for Detection of Code Smells” Arabian Journal
for Science and Engineering, February 2017, Volume 42, Issue 2, pp. 483-506|

[11] 	A. CathreenGraciamary , Dr. M.Chidambaram , “EESRM: An Effective Approach to Improve the Perfor-
mance of Software Re-Engineering” ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3648-3654

[12] 	K.R. Wallace,” Safe and secure: re-engineering a software process set for the challenges of the 21st cen-
tury” 9th IET International Conference on System Safety and Cyber Security (2014), 2014 page 5.2.2

[13] P. Hunter.” Re-engineering data storage” Volume 8, Issue 12, December 2013, p. 58-62

43

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

[14]	 J. Clarke , J.J. Dolado , M. Harman , R. Hierons “Reformulating software engineering as a search prob-
lem”, Online ISSN 1463-9831, Volume 150, Issue 3, June 2003, p. 161-175

[15]	 A. Egyed, N. Medvidovic.” Component-based perspective on software mismatches detection and resolu-
tion” Volume 147, Issue 6, December 2000, p. 225-236

[16] 	K. Rafique, Chunhui Yuan,” Re-engineering spectrum management policy framework: Meeting challenges
of future”,4th IET International Conference on Wireless, Mobile & Multimedia Networks (ICWMMN
2011), 2011 p.35-39

[17] 	Jason Cong, Peng Wei, CodyHao Yu” Bandwidth Optimization through On-Chip Memory Restructuring
for HLS” Austin, TX, USA – June 18-22, 2017

[18]	 Fernando Szimanski,Anivaldo S. Vale,” Restructuring Information Technology Area: an experience re-
port in the public service”, A Computer Socio-Technical Perspective-Volume 1, Pages 63, Goiania, Goias,
Brazil – May 26-29, 2015, Tokyo, Japan – March 07-11, 2018

[19] 	KashyapTodi, Jussi Jokinen;”Familiarization: Restructuring Layouts with Visual Learning Models”, 23rd
International Conference on Intelligent User Interfaces, Pages 547-558,

[20] 	Amit Rathee,” Restructuring of Object-Oriented Software Through Cohesion Improvement Using Fre-
quent Usage Patterns” Software Engineering Notes, Volume 42 Issue 3, July 2017 Pages 1-8,

[21] 	Nathan ManeraMagalhães,” An Automated Refactoring Approach to Remove Unnecessary Complexity in
Source Code”, Systematic and Automated Software Testing, Article No. 3,Fortaleza, Brazil – September
18-19, 2017

[22] Software quality assurance; Visited website 25 June, 2018; https://www.testinstitute.org/What_is_Soft-
ware_Quality_Assurance.php; International software testing institute;

[23] External vs internal quality; Visited website 25 June, 2018; https://meekrosoft.wordpress.com/2010/10/31/
internal-and-external-software-quality/

[24] 	Emile Swarts; “Internal vs External Quality of Software”; written on 29th September, 2015 tagged in Ruby
on Rails, Software Architecture

[25]	Jehad Al Dallal; Anas Abdin. “Empirical Evaluation of the Impact of Object-Oriented Code Refactor-
ing on Quality Attributes: A Systematic Literature Review”.IEEE Transactions on Software Engineering
(2018), Volume: 44, Issue: 1pages: 44-69

[26]	John Jagtiani; Christian Bach; Chris Huntley. “Leveraging Big Data From Open Source to Improve Soft-
ware Project Management”. IEEE Engineering Management Review (2018), Volume: 46, Issue: 1Pages:
65-79

[27]	Robert Chatley; Lawrence Jones. “Diggit: Automated code review via software repository mining”.IEEE
25th International Conference on Software Analysis, Evolution and Reengineering (2018): pp. 567-571

[28]	Luigi Franzio; Bin Lin; Michele Lanza; Gabriele Bavota; “RETICULA: Real-time code quality assess-
ment”. IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (2018):
542-546

[29]	VivekBhatnag,” Study of Software Development Using Software Re-Engineering”, International Journ al
of Engineering Trends and Applica t ions (I J ETA)-Volume 3 Issue 2, Mar-Apr 2016

[30] 	Martin Kropp, University of Applied Sciences Northwestern Switzerland,” MSE-SEA-Restructuring.
pptx”. Available at: https://wiki.hsr.ch/MasterModulSEA/files/MSE-SEA-Restructuring.pdf (Accessed:
10 April 2018).

[31] 	JyothiVedurada,” Refactoring opportunities for replacing type code with state and subclass”, ICSE-C ‘17,
Pages 305-307, Buenos Aires, Argentina – May 20-28, 2017

[32] Parminder Singh, “Software reverse engineering”,Student at Punjabi University, https://www.slideshare.
net/parrychahal50/software-reverse-engineering-69635162, Published on Nov 29, 2016,

[33]	Gyungtae Kim; Ming Ma; Inhag Park, “A fast and flexible software for IC reverse engineering”, Inter-
national Conference on Electronics, Information, and Communication (ICEIC), 2018, Pages: 1-4,IEEE
Conferences

[34] 	Bhaskarjyoti Das; “An empirical approach for optimizing globally distributed software product engineer-
ing”;2017 International Conference on Advances in Computing, Communications and Informatics (ICAC-
CI);Pages: 1340-1348

44

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

[35] 	Software Quality assurance visited 15 April 2018, https://www.techopedia.com/definition/4363/
software-quality-assurance-sqa

[36] 	FoutseKhomh; Yann-GaëlGuéhéneuc. “Design patterns impact on software quality: Where are the theo-
ries?”. IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (2018):
15-25

[37]	ElmarJuergens. “A decade of software quality analysis in practice: Surprises, anecdotes, and lessons
learned (keynote)”.IEEE 25th International Conference on Software Analysis, Evolution and Reengineer-
ing (2018): 1-1

[38]	Muhammad Azeem Akbar; Jun Sang. “Improving the Quality of Software Development Process by Intro-
ducing a New Methodology–AZ-Model”. IEEE Journals & Magazines (2018): 6, 4811-4823

[39]	Muhammad Noman Riaz. “Impact of software design patterns on the quality of software: A comparative
study”. International Conference on Computing, Mathematics and Engineering Technologies (2018):1-6

[40] HiekeKeuning,” Code Quality Issues in Student Programs”, ITiCSE ‘17, Pages 110-115, Bologna, Italy –
July 03-05, 2017

[41] 	Charilaos Petrou,” Signal Processing Techniques Restructure the Big Data Era” Article No. 52, Patras,
Greece – November 10-12, 2016

[42]	JyothiVedurada,” Refactoring opportunities for replacing type code with state and subclass”, ICSE-C ‘17,
Pages 305-307, Buenos Aires, Argentina – May 20-28, 2017

[43] Ana Rodriguez,” Reducing energy consumption of resource-intensive scientific mobile applications via
code refactoring”, ICSE-C ‘17, Pages 475-476, Buenos Aires, Argentina – May 20-28, 2017

[44] Didier Remy,Inria, France,” More automated code refactorization and code reuse (invited talk)”, Haskell
2017, Pages 1-1, Oxford, UK – September 07-08, 2017

[45]	Byrne, E.J., A Conceptual Foundation for Software Re-engineering, in Conference on Software Mainte-
nance 1992

[46]	Sivaram; “The Myth of Software Reengineering”; Posted On December 24, 2013 by GB Shah filed under
Programming

[47]	Jae Jin Park; “Investigation for Software Power Consumption of Code Refactoring Techniques”; Published
2014 in SEKE; Page 717-718

[48]	Manzoor Ahmad Rather; “Study of Software Development Using Software Re-Engineering”; March 2016;
page 53-54

[49] 	http://www.bmtechsolutions.com/software-quality-assurance/; visited 3 july 2018
[50]	Serena Josh; “Top 10 Challenges as a QA Analyst Tester in Software or Web Development”; http://www.

zarantech.com/blog/top-10-challenges-qa-analyst-tester-software-web-development/
[51] R. Dewar ; A. D. Lloyd ; “Identifying and communicating expertise in systems reengineering: a patterns

approach”; June 1999, p. 145-152
[52]	J.Clarke; “Reformulating software engineering as a search problem”; June 2003, p. 161-175
[53]	H. Jaakkola; “Framework for high-quality software design and development: a systematic approach” ;

April 2010, p. 105-118
[54]	Rajesh H. Kulkarni; “Integration of artificial intelligence activities in software development processes and

measuring effectiveness of integration”; February 2017, p. 18-26
[55]	Rosa E. Quelal; “A survey of agile software development methodologies in Ecuador”; 13-16 June 2018;

IEEE
[56]	Michael Kirch
hoff; “Increasing Efficiency in Data Flow Oriented Model Driven Software Development for Softcore Proces-

sors”; p. 23-27 July 2018; IEEE
[57]	Asim Iftikhar; “A survey of soft computing applications in global software development”; 11-12 May

2018; IEEE
[58]	M. Fowler, K. Beck, J. Brant, W. Opdyke, Refactoring: Improving the Design of Existing Code, Addi-

son-Wesley, 1999.
[59] W.F. Opdyke, Refactoring Object-Oriented Frameworks, University of Illinois at Urbana-Champaign,

1992.

45

Muhammad Muzammul and Dr. M. Awais
An empirical approach for software reengineering process
with relation to quality assurance mechanism

ADCAIJ: Advances in Distributed Computing
and Artificial Intelligence Journal

Regular Issue, Vol. 7 N. 3 (2018), 31-45
eISSN: 2255-2863 - http://adcaij.usal.es

Ediciones Universidad de Salamanca - cc by nc dc

[60] 	W.C. Wake, Refactoring Workbook, Addison-Wesley Professional, 2004.
[61] 	T. Mens, T. Tourwé, A survey of software refactoring, IEEE Trans. Softw. Eng. 30 (2004) 126-139.*
[62] 	P.P. Stepan Cais, Identifying software metrics thresholds for safety critical system, The Third International

Conference on Informatics Engineering and Information Science (ICIEIS2014), The Society of Digital
Information and Wireless Communications, 2014, pp. 67-78.

[63] 	D. Bhalla, Automatic Detection of Bad Smells in Java Code, California State University, Long Beach,
2009.

[64] 	T. Arendt, F. Mantz, G. Taentzer, EMF refactor: specification and application of model refactorings within
the Eclipse Modeling Framework, Proceedings of the BENEVOL Workshop, 2010.

[65] 	R. Fourati, N. Bouassida, H.B. Abdallah, A metric-based approach for anti-pattern detection in uml de-
signs, Computer and Information Science 2011, Springer, 2011, pp. 17-33.

[66] 	N. Moha, Y.-G. Gueheneuc, L. Duchien, A.-F. Le Meur, DECOR: a method for the specification and detec-
tion of code and design smells, IEEE Trans. Softw. Eng. 36 (2010) 20-36.

[67] 	A. Ghannem, M. Kessentini, G. El Boussaidi, Detecting model refactoring opportunities using heuristic
search, Proceedings of the 2011 Conference of the Center for Advanced Studies on Collaborative Re-
search, IBM Corp., 2011, pp. 175-187.

[68] 	P. Van Gorp, H. Stenten, T. Mens, S. Demeyer, Formal UML Support for the SemiAutomatic Application
of Object-Oriented Refactorings, University of Antwerp, Citeseer, 2003.

[69] 	T. Ruhroth, H. Voigt, H. Wehrheim, Measure, diagnose, refactor: a formal quality cycle forsoftware mod-
els, 35th Euromicro Conference on SoftwareEngineering and Advanced Applications, 2009. SEAA’09,
IEEE, 2009, pp. 360-367.

[70] 	M. Saeki, H. Kaiya, Model metrics and metrics of model transformations, The First Workshop on Quality
in Modeling, 2006, pp. 31-45.

[71] 	M. Mohamed, M. Romdhani, K. Ghedira, M-REFACTOR: a new approach and tool for model refactoring,
ARPN J. Syst. Softw. 1 (4) (2011) 117-122.

[72] 	M. Van Kempen, M. Chaudron, D. Kourie, A. Boake, Towards proving preservation
[73]	 Eclipse, EclipseHomepage. Available: https://www.eclipse.org/, 2016 (accessed 23 February 2016).
[74]	Checkstyle.https://checkstyle.sourceforge.net/, 2016(accessed 23February2016).
[75]	 Décor. https://www.ptidej.net/download, 2016 (accessed 23 February 2016).
[76]	 iPlasma. https://loose.upt.ro/reengineering/research/iplasma, 2016 (accessed 23 February 2016).
[77] 	JDeodorant. https://github.com/tsantalis/JDeodorant, 2016 (accessed 23 February 2016).
[78]	 PMD. https://pmd.sourceforge.net/, 2016 (accessed 23 February 2016).
[79] 	Stench Blossom. https://github.com/DeveloperLiberationFront/refactoring-tools/ wiki/Stench-Blossom,

2016 (accessed 23 February 2016).
[80] 	G. Soares, R. Gheyi, T. Massoni, Automated behavioral testing of refactoring engines, IEEE Trans. Softw.

Eng. 39 (2013) 147-162.
[81] 	Visited on 3 july2018	http://jobsandnewstoday.blogspot.com/2013/04/what-is-quality-assurance-quali-

ty-control-testing.html.

