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This paper addresses the robust formation control of non-holonomic mobile robots 
with homogeneous system architecture and decentralized control structure. Therefore, 
it was necessary the mathematical modeling of mobile robots, from which, the Sepa-
ration- Bearing variant of Leader-Following control strategy was implemented. The 
stability sliding mode control. proof were based on the Lyapunov theory. The sliding 
mode control (SMC) strategy was used in the controller design to make the control ro-
bust to the incidence of uncertainties and disturbances. The Fuzzy Adaptive Formation 
Control is designed to eliminate the previous bounding knowledge of these uncertain-
ties and disturbances. The proposed control effectiveness is demonstrated by results 
obtained with simulations in Matlab/Simulink. The pure kinematic and kinematic with 
disturbances is also analyzed. The results shows the controllers effectiveness to forma-
tion of multi-robots systems to the eight-shaped trajectory.

1. Introduction
In the past few years many researches has aimed multi robot systems. There are several robotic formation ap-
proaches, in which the most common are virtual structure, behavior-based and leader-following n [a]. Each one 
of them has advantages and weaknesses. There are some other approaches, but they are less common.

In virtual structure approach, the entire formation is treated as a rigid body, and the controller is responsible 
to translate a control signal to each robot given a formation move. It is easy to prescribe movement to the robots 
in the formation and the formation holds very well during maneuvers. A weakness of this approach is that the 
formation is not easily modified,making it inapplicable in real scenarios.

In behavior-based approach, several desired behaviors are designed for each robot, and the final action of 
each robot is derived by weighting every behavior by its importance. It is a very flexible, but it is very difficult 
to analyze mathematically, and therefore it is difficult to guarantee the formation control stability.

In the leader-following approach, one robot is considered as a leader and the others are considered followers.
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This approach has two main variants: separation bearing ( l ≠ Y ) and separation separation (l ≠ l). In (l ≠ Y),
one robot is defined as a leader and other is the follower. To the leader is prescribed a reference trajectory and it
has to solve one of three problems: point stabilization, path following and trajectory tracking. The follower needs
to maintain a desired distance and relative angle. In (l ≠ l), the configuration has three robots, two leaders and
one follower. The leaders are similar to (l ≠ Y) approach, and the follower needs to maintain desired distances to
each of the leaders. This two variants may also include obstacle avoidance.

There are other approaches less popular like artificial potential field w [o], model predictive control n [a],
flocking in fixed and switching networks e [h], feedback linearization and neural networks i [a].

In e [i], the authors employed the (l ≠ Y) approach including the mobile robot dynamics into the control
scheme. Obstacle avoidance based on potential artificial fields was also added in the scheme. s [a] has developed
a control of multi-agent non-holonomic system. The control considered collision avoidance for a single robot
based on potential artificial fields. The methodology was later applied in a [h] to in a combined formation
controller. The authors have done a kinematic controller using sliding mode control. The obstacle avoidance was
projected using artificial potential field with coefficient of attractive and repulsive functions determined by a
fuzzy system.

In n [a], an adaptive neural-network control strategy integrated both kinematic controller and input voltage
controller. The authors designed the control law by backstepping technique based on separation-bearing
formation control structure of leader-following. Radial basis function neural network (RBFNN) was used for
on-line estimation for the dynamics nonlinear uncertain part.The robust control was used to compensate the NN
errors.

m [a] investigated the formation control and obstacle avoidance of WMR based on leader-following control
approach. The obstacle avoidance is implemented based on generating a virtual force, used to apply corrections
in the WMR velocities.

In this paper a robust formation control scheme based on the leader following approach and fuzzy logic is
investigated. This control takes advantages of the robustness of sliding mode control (SMC) technique, and
guarantee the effectiveness even when uncertainties/disturbances with unknown bounding are present in the
system. In the results, simulations are presented to prove the control effectiveness.

This paper is organized as follows, section 2 describes the Wheeled Mobile Robot (WMR) kinematics. In
section 3, the leader-following formation control is presented. in section 4 Variable Structure Control is presented.
Section 5 presents a linear approximation based on Fuzzy logic. In section 6, simulation and numerical results
are shown. Finally, section 7 brings discussion and conclusions about this paper.

2. Mobile robot model

Given the WMR generalized coordinates, defined as q = [x y ◊]T , in which xc, yc are the positions and ◊c the
orientation regarding the 2-D Cartesian coordinate system. The WMR kinematic model is as follows
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in which d, vl, Êa and ” are the distance from the rear axle to the front of the WMR, the linear and angular
velocities and disturbances vector, respectively. The disturbances are assumed to be upper bounded as follows

|”x| Æ –x, |”y| Æ –y , |”◊| Æ –◊, (2)

in which – = [–x –y –◊]
T is the positive bounding vector.

Remark 1. The kinematic model of the WMR subject to the matched disturbances is given by

q̇ = S(q)÷ + fl(t)[cos ◊ sin ◊ 0]T , (3)

in which fl stands for the bounded disturbance.

3. Leader-Following Formation Control
The most popular variants of leader-following formation control are named Separation-bearing and Separation-
separation n [a]; e [h]. In this paper, only Separation-bearing formation control variants are formulated, but the
formulation can be easily extended to Separation-separation formation control variant. The formation formulation
in this paper considers only two WMR’s, one leader and one follower, identified by the subscript "i" and "j",
respectively. The goal of separation bearing formation control is to achieve a control velocity such that

lim
tæŒ

(Ld
ij ≠ Lij) = 0, and lim

tæŒ
(Yd

ij ≠ Yij) = 0, (4)

in which L
d
ij , Lij , Yd

ij , Yij stands for the desired and predefined distance (or separation) to maintain to the leader,
the current distance to the leader, the desired and predefined virtual angle (or bearing) to the leader and the
current virtual angle, respectively.

The leader-following formation control problem can be written as one of the tree tracking control problems:
trajectory tracking, path following and point stabilization e [i,i]. Considering the trajectory tracking problem, the
reference WMR is replaced by the leader WMR. The leader kinematics is given by
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To design the follower control law, it is necessary to define the tracking controller error, in a similar manner
as first proposed in n [a,a]
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ẋr = vr cos ◊r, ẏr = vr sin ◊r, ◊̇r = Êr.

Then, the reference WMR can be defined as
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with “ij = Yij + ◊i.
The trajectory tracking problem consists in to reach a smooth control velocity such that the tracking controller

error converges to zero. From (7) and (8) the tracking controller error can be rewritten as
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with ◊ij = ◊i ≠ ◊j . Then, is necessary to define the system variables, introduced in (4), as

Lx =xi ≠ di cos ◊i ≠ xj , (10)
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and shown in Figure 1.
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Applying the derivative of (10) in the derivative of (9), the error dynamics is found to be
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Figure 1: Separation-Bearing formation control. Adapted from e [i]
.

Note that in (11), ◊̇i is replaced by ◊̇jr. This happens because of nonholonomic constraints, which does not
guarantee that ◊jr = ◊i during maneuvers. Therefore, the follower orientation relative to the leader must observe
e [i]

◊̇jr =
1
dj

(ÊiL
d
ij cos “

d
ij + vi sin ◊ijr + K2ej2), (12)

with ◊ijr = ◊i ≠ ◊jr œ [≠fi, fi] and K2 a constant positive definite. After formation errors converge to zero,
vi > 0 and Êi = 0, both leader and follower orientations will be exactly equal.

4. Sliding Surfaces
The sliding mode control (SMC) is a robust feedback control with high-speed switching. This control has two
phases: reaching and sliding phase. In the reaching phase, the state variables are led to a point chosen by the
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designer, in the state space. In the sliding phase, the state variables are forced to remain on the sliding surfaces k
[t,t]; C [e].

From the error dynamics of (15), the sliding surfaces are selected as

‡j(z̃, t) =LT
j ej = LT

j z̃ = 0 (13)
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5
L1 0 0
0 L2 L3

6 S
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5
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6
,

in which Lj = [L1 L2 L3]T is a positive gain matrix, which is designed in a way to force the errors to
exponentially converge to zero.

According to the SMC basis theory, the error dynamics must be written in the below form

˙̃z = A0p + B0pu + dp, (14)

which allows (11) to be rewritten as
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ėj2
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4.1 Controller design
Given the error dynamics in (15), is possible to formulate the Separation Bearing Sliding Mode Control (SBSMC)
control law. To act in the reaching phase, vjc is chosen in a way to impose the desired dynamics to ‡j(z̃, t) of
the following first differential equation

‡j(z̃, t) = ≠Gsign(‡j) ≠ K‡j , (16)

in which G = diag[g1, . . . , gn], K = diag[k1, . . . , kn] are positive diagonal gain matrices, sign(‡j) =
‡j

|‡j | is

the standard signal function. Actually, in the K‡j = Kh(‡j), instead of ‡ would be used any function since it
satisfies ‡

T
j h(‡j).
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(A0p + B0pu + dp) +

ˆ‡j

ˆt
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ėj1
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Given the error dynamics in (15), is possible to formulate the Separation Bearing Sliding Mode Control (SBSMC)
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in which dp denotes the disturbances vector. From (17) the following control law is designed

u = ≠(B0p‡)
≠1

A0p‡ ≠ (Gsign(‡j) + K‡j), (18)

with

B0p‡ =
ˆ‡j

ˆz̃
B0p =

5
≠L1 L1ej2

0 ≠L2(ej1 + dj) ≠ L3

6
(19)

A0p‡ =
ˆ‡j

ˆz̃
A0p =

C
L1vi cos ej3 ≠ L1ÊiL

d
ij sin(Yd

ij + ej3)
L2vi sin ej3 + L2ÊiL

d
ij cos(Yd

ij + ej3) + ÊiL3

D

B
≠1
0p‡ =

C
≠ 1

L1
≠ L2

L2(ej1+dj )+L3
0 ≠ 1

L1(ej1+dj )+L3

D
.

Substituting (18) in (17), leads to

‡̇j(z̃, t) =A0p‡j ≠ B
≠1
0p‡j

(A0p‡j + Gsign(‡j) + K‡j) + d‡ (20)

= ≠ Gsign(‡j) ≠ K‡j + d‡,

in which d‡ =
ˆ‡j

ˆz̃ dp.

4.2 Stability analysis
Considering the following Lyapunov candidate function

V =
1
2‡

T
j ‡j , (21)

which is clearly positive definite. Then, the sliding surface is attractive since the control law, described in (18),
assures that

V̇ =‡
T
j ‡̇j (22)

= ≠ ‡
T
j Gsign(‡j) ≠ ‡

T
j K‡j + d‡.

Since ‡
T
j K‡j Ø 0 and ‡

T
j Gsign(‡j) Ø d‡ then V̇ Æ 0, which is satisfied since gi Æ |d‡|, where gi is the

minimum singular value (MSV) of G while d‡ represents the maximum value of the uncertainties/disturbances.
The reachability of the sliding mode is guaranteed if V̇ Æ 0, that depends on B0p‡ to be nonsingular, definite

positive and G is large enough. In the other hand, B0p‡ is only guaranteed to be nonsingular. To guaranteed the
reachability, a diagonalization method is applied to design a new sliding surface r [a]

‡
ú
j (z̃, t) = ›(z̃, t)‡j(z̃, t) = ›(z̃, t)LT

z̃, (23)
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in which dp denotes the disturbances vector. From (17) the following control law is designed

u = ≠(B0p‡)
≠1

A0p‡ ≠ (Gsign(‡j) + K‡j), (18)
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D
.

Substituting (18) in (17), leads to

‡̇j(z̃, t) =A0p‡j ≠ B
≠1
0p‡j

(A0p‡j + Gsign(‡j) + K‡j) + d‡ (20)

= ≠ Gsign(‡j) ≠ K‡j + d‡,

in which d‡ =
ˆ‡j

ˆz̃ dp.

4.2 Stability analysis
Considering the following Lyapunov candidate function

V =
1
2‡

T
j ‡j , (21)

which is clearly positive definite. Then, the sliding surface is attractive since the control law, described in (18),
assures that

V̇ =‡
T
j ‡̇j (22)

= ≠ ‡
T
j Gsign(‡j) ≠ ‡

T
j K‡j + d‡.

Since ‡
T
j K‡j Ø 0 and ‡

T
j Gsign(‡j) Ø d‡ then V̇ Æ 0, which is satisfied since gi Æ |d‡|, where gi is the

minimum singular value (MSV) of G while d‡ represents the maximum value of the uncertainties/disturbances.
The reachability of the sliding mode is guaranteed if V̇ Æ 0, that depends on B0p‡ to be nonsingular, definite

positive and G is large enough. In the other hand, B0p‡ is only guaranteed to be nonsingular. To guaranteed the
reachability, a diagonalization method is applied to design a new sliding surface r [a]

‡
ú
j (z̃, t) = ›(z̃, t)‡j(z̃, t) = ›(z̃, t)LT

z̃, (23)
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in which dp denotes the disturbances vector. From (17) the following control law is designed
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A0p‡ ≠ (Gsign(‡j) + K‡j), (18)

with
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.

Substituting (18) in (17), leads to

‡̇j(z̃, t) =A0p‡j ≠ B
≠1
0p‡j

(A0p‡j + Gsign(‡j) + K‡j) + d‡ (20)

= ≠ Gsign(‡j) ≠ K‡j + d‡,

in which d‡ =
ˆ‡j

ˆz̃ dp.

4.2 Stability analysis
Considering the following Lyapunov candidate function

V =
1
2‡

T
j ‡j , (21)

which is clearly positive definite. Then, the sliding surface is attractive since the control law, described in (18),
assures that

V̇ =‡
T
j ‡̇j (22)

= ≠ ‡
T
j Gsign(‡j) ≠ ‡

T
j K‡j + d‡.

Since ‡
T
j K‡j Ø 0 and ‡

T
j Gsign(‡j) Ø d‡ then V̇ Æ 0, which is satisfied since gi Æ |d‡|, where gi is the

minimum singular value (MSV) of G while d‡ represents the maximum value of the uncertainties/disturbances.
The reachability of the sliding mode is guaranteed if V̇ Æ 0, that depends on B0p‡ to be nonsingular, definite

positive and G is large enough. In the other hand, B0p‡ is only guaranteed to be nonsingular. To guaranteed the
reachability, a diagonalization method is applied to design a new sliding surface r [a]

‡
ú
j (z̃, t) = ›(z̃, t)‡j(z̃, t) = ›(z̃, t)LT

z̃, (23)
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in which ›(z̃, t) œ Rn◊n is a nonsingular suitable transformation. Given that ‡j(z̃, t) æ 0, then the sliding
mode is invariant to the sliding surfaces transformation if ||›̇|| and ||›≠1|| are bounded for all t, z̃ œ L ™ R ◊ Rn

C [e]. The transformation is defined as

›(z̃, t)

3
ˆ‡

ˆz̃
B

4T

= B
T
0p‡. (24)

With the new surfaces, the proof of V̇ becomes

V̇ =+ ‡
T
j ‡̇j (25)

=‡
úT

j B
≠1
0p‡(A0p‡j ) + ‡

úT

j (u + d‡),

which leads to select the new control law

u = ≠(B0p‡)
≠1(A0p‡ + Gsign(‡ú

j ) + K‡
ú
j ), (26)

substituting (26) in (25), a final expression is obtained as

V̇ = ≠ ‡
úT

j (Gsign(‡ú
j ) + K‡

ú
j ) + ‡

úT

j d‡. (27)

The (27) is similar to (22), therefore the prior analysis is still valid. Also, the transformation guarantees B0p‡

as non-singular and positive definite. The manifolds ‡j(z̃, t) = 0 and ‡
ú
j (z̃, t) = 0 coincide, ‡

ú
j æ 0 and the

sliding mode occurs when ‡
ú
j = 0.

4.3 Chattering attenuation
The SBSMC presents high speed and low amplitude chattering in the sliding surfaces. This fact influences directly
in the velocities applied in the WMR and due to physical limitations it is not applicable in real implementations r
[a]. This phenomenon occurs because of the discontinuous parcel Gsign(‡ú

j ) of the controller. The chattering
can cause excessive wear on actuators k [t]. The phenomenon can be reduced replacing the discontinuous parcel
by a continuous approximation.

To solve the chattering problem, an Adaptive Fuzzy Separation Bearing Sliding Mode Controller (AFSBSMC)
is proposed.

5. Adaptive fuzzy separation-bearing sliding mode controller
The AFSBSMC is a controller intended to present a linear approximation based on fuzzy logic to reduce the
chattering effect. This controller aims to maintain the controller robustness even without the knowledge of the
uncertainties/ disturbances bounds.

In fuzzy logic, the system is composed by four components: fuzzification, fuzzy knowledge base, fuzzy
inference machine and deffuzification. The system is shown in the Figure 2. For a more detailed description of
fuzzy logic and fuzzy logic controllers can be seen in a [h].
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[a]. This phenomenon occurs because of the discontinuous parcel Gsign(‡ú
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can cause excessive wear on actuators k [t]. The phenomenon can be reduced replacing the discontinuous parcel
by a continuous approximation.

To solve the chattering problem, an Adaptive Fuzzy Separation Bearing Sliding Mode Controller (AFSBSMC)
is proposed.

5. Adaptive fuzzy separation-bearing sliding mode controller
The AFSBSMC is a controller intended to present a linear approximation based on fuzzy logic to reduce the
chattering effect. This controller aims to maintain the controller robustness even without the knowledge of the
uncertainties/ disturbances bounds.

In fuzzy logic, the system is composed by four components: fuzzification, fuzzy knowledge base, fuzzy
inference machine and deffuzification. The system is shown in the Figure 2. For a more detailed description of
fuzzy logic and fuzzy logic controllers can be seen in a [h].
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5. Adaptive fuzzy separation-bearing sliding mode controller
The AFSBSMC is a controller intended to present a linear approximation based on fuzzy logic to reduce the
chattering effect. This controller aims to maintain the controller robustness even without the knowledge of the
uncertainties/ disturbances bounds.

In fuzzy logic, the system is composed by four components: fuzzification, fuzzy knowledge base, fuzzy
inference machine and deffuzification. The system is shown in the Figure 2. For a more detailed description of
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by a continuous approximation.

To solve the chattering problem, an Adaptive Fuzzy Separation Bearing Sliding Mode Controller (AFSBSMC)
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The AFSBSMC is a controller intended to present a linear approximation based on fuzzy logic to reduce the
chattering effect. This controller aims to maintain the controller robustness even without the knowledge of the
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In fuzzy logic, the system is composed by four components: fuzzification, fuzzy knowledge base, fuzzy
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inference 
machine

fuzzi cation de uzi cation

knowledge
base

input output

Figure 2: Block diagram of a generic fuzzy system.

In this paper, the controller is based on singleton fuzzification method, the Takagi-Sugeno-Kang (TSK)
inference machine, defuzzification by center of mass n [a]. Given a input "x", the output "y" can be defined as

y =

qM
m=1 ◊m

rn
i=1 µAm

i
(xú

i )qM
m=1

rn
i=1 µAm

i
(xú

i )
= ◊

T Y(x), (28)

in which ◊ = [◊1
. . . ; ◊

M ]T represents the vector of centers of membership functions, Y(x) = [Y(x)1
. . . ; Y(x)M ]T

represents the vector of membership function weights, µA represents the membership function to rule A and M

the rule number.

5.1 Controller design
The chattering in the control law given in (18) is caused by the Gsign(‡ú

j ) discontinuous parcel. Therefore, this
parcel is replaced by a linear parcel F̂ (‡ú

j ) based on fuzzy logic. The control law becomes

u = ≠(B0p‡)
≠1

A0p‡ ≠ (F̂ (‡ú
j ) + K‡j), (29)

in which F̂ (‡ú
j ) = [f̂1(‡ú

j ) . . . f̂n(‡ú
j )]

T , which each f̂(‡ú
j ) is estimated by a fuzzy system, according to (28).

To update the parameters of membership functions of fj(‡ú
j (z̃, t)), ◊fj

is selected. Defining ◊̂fj
in a way that

fj = ◊̂fj
Yfj

(‡j(z̃, t)) becomes the optimal compensation for Uj . According to u [i], exists a ‘j > 0 such that

|d̃oj ≠ ◊
T
fj

Yfj
(‡j(z̃, t))| Æ ‘j , U = Df , (30)

which ‘j is the lowest possible value. The error estimation is defined as

◊̃fj
= ◊̂fj

≠ ◊fj
. (31)

Therefore, (28) can be rewritten as
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ú
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T
fj

Yfj
(‡ú
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T
fj

Yfj
(‡ú
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inference machine, defuzzification by center of mass n [a]. Given a input "x", the output "y" can be defined as

y =

qM
m=1 ◊m

rn
i=1 µAm

i
(xú

i )qM
m=1

rn
i=1 µAm

i
(xú

i )
= ◊

T Y(x), (28)

in which ◊ = [◊1
. . . ; ◊

M ]T represents the vector of centers of membership functions, Y(x) = [Y(x)1
. . . ; Y(x)M ]T

represents the vector of membership function weights, µA represents the membership function to rule A and M

the rule number.

5.1 Controller design
The chattering in the control law given in (18) is caused by the Gsign(‡ú

j ) discontinuous parcel. Therefore, this
parcel is replaced by a linear parcel F̂ (‡ú

j ) based on fuzzy logic. The control law becomes

u = ≠(B0p‡)
≠1

A0p‡ ≠ (F̂ (‡ú
j ) + K‡j), (29)

in which F̂ (‡ú
j ) = [f̂1(‡ú

j ) . . . f̂n(‡ú
j )]

T , which each f̂(‡ú
j ) is estimated by a fuzzy system, according to (28).

To update the parameters of membership functions of fj(‡ú
j (z̃, t)), ◊fj

is selected. Defining ◊̂fj
in a way that

fj = ◊̂fj
Yfj

(‡j(z̃, t)) becomes the optimal compensation for Uj . According to u [i], exists a ‘j > 0 such that

|d̃oj ≠ ◊
T
fj

Yfj
(‡j(z̃, t))| Æ ‘j , U = Df , (30)

which ‘j is the lowest possible value. The error estimation is defined as

◊̃fj
= ◊̂fj

≠ ◊fj
. (31)

Therefore, (28) can be rewritten as

f̂j(‡
ú
j (z̃, t)) = ◊̃

T
fj

Yfj
(‡ú

j (z̃, t)) + ◊
T
fj

Yfj
(‡ú

j ). (32)

Advances in Distributed Computing and
Artificial Intelligence Journal
cEdiciones Universidad de Salamanca / cc by-nc-nd

9

ADCAIJ, Regular Issue Vol 6 n.2 (2017)
http://adcaij.usal.es

de Melo et al Robust and adaptive chatter free formation control of wheeled mobile robots with uncertainties

Then, the adaptive control law is given by

˙̃
◊fj

= ˙̂
◊fj

= ‡
ú
j Yfj

(‡ú
j ). (33)

5.2 Controller knowledge base rules
To decide the knowledge base rules, similarly to u [i], the Lyapunov candidate function, in (37) was analyzed. V

is an energy indicator of ‡
ú
j (z̃, t). The system stability is reached selecting a control law that grantees V̇ Æ 0. To

this controller, F̂ (‡ú
j (z̃, t)) is applied to compensate uncertainties/disturbances, reduce chattering effects and

reduce the energy of ‡
ú
j (z̃, t).

V̇ =
nÿ

i=1
(‡ú

j (z̃, t)(d‡ ≠ f
i
j(‡

ú
j (z̃, t)))) ≠ ‡

ú
j (z̃, t)K‡

ú
j (z̃, t). (34)

Once sign(‡ú
j (z̃, t)) has the same signal of ‡

ú
j (z̃, t), fj(‡ú

j (z̃, t)) also must have the same signal. If ‡
ú
j (z̃, t)

is very large, fj(‡ú
j (z̃, t)) also must be large, so V̇ will have a big negative value and, thus, ‡

ú
j (z̃, t) value

will decrease quickly . If ‡
ú
j (z̃, t) has a small value, then (‡ú

j (z̃, t)(d‡ ≠ fj(‡ú
j (z̃, t)) is also small, with

little influence in V̇ , which means that fj(‡ú
j (z̃, t)) has also a small value, reducing chattering occurrence. If

‡
ú
j (z̃, t) = 0, then (‡ú

j (z̃, t)(d‡ ≠ fj(‡ú
j (z̃, t)) = 0, thus, fj(‡ú

j (z̃, t)) shall be zero, as formulated in u [i].
In this paper, the membership functions are the same both to input ‡

ú
v , ‡

ú
Ê and output fj(‡ú

v), fj(‡ú
Ê). The

membership are chosen as triangular functions, and are described below

µA(xj) =

Y
___]

___[

0, x < i

xj≠i
j≠i , i Æ xj Æ j

k≠xj

k≠j , j Æ xj Æ k

0, k < xj

, (35)

in which A represents one of the fuzzy sets, xj represents ‡
ú
j (z̃, t) or fj(‡ú

j (z̃, t)), i, k, j represents the bases
and the peak of the functions, respectively. The parameters ‡

ú
jv

, ‡
ú
jÊ

are shown in Table 1.
The controller is defined as

fj(‡
ú
j (z̃, t)) =

qM
m=1 ◊mµAm

j
(‡ú

j (z̃, t))
qM

m=1 µAm
j
(‡ú

j (z̃, t))
= ◊

T
fj

Yfj
(‡ú

j (z̃, t)), (36)

which ◊fj
= [◊1

fj
, . . . , ◊

M
fj
]T is the vector of centers of mass of the membership functions, Yfj

(‡ú
j (z̃, t)) =

[Y1
fj
(‡ú

j (z̃, t)), . . . , YM
fj
(‡ú

j (z̃, t))]T represents the vector of weights of the membership functions and M is
the number of rules.
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Table 1: Membership functions parameters of ‡
ú
jv

, ‡
ú
jÊ

‡
ú
jv

‡
ú
jÊ

i j k i j k
NB ≠Œ -0.5 -0.33 ≠Œ -0.7 -0.47
NM -0.5 -0.33 -0.16 -0.7 -0.47 -0.23
NS -0.33 -0.16 0 -0.47 -0.23 0
ZE -0.16 0 0.16 -0.23 0 0.23
PS 0 0.16 0.33 0 0.23 0.47
PM 0.16 0.33 0.5 0.23 0.47 0.7
PB 0.33 0.55 Œ 0.47 0.7 Œ

5.3 Stability analysis
Consider the following Lyapunov candidate function

V =
1
2 (‡

T
j ‡j +

nÿ

i=1
◊̃

T
fi

◊̃fi
), (37)

in which V is positive definite, once ◊̃
T
fi

◊̃fi
> 0. Differentiating V leads to

V̇ =‡
T
j ‡̇j +

nÿ

i=1
◊̃

T
fi

˙̃
◊fi

= ≠ ‡
T
j A0p‡ + ‡

T
j B0p‡u + ‡

T
j B0p‡(d‡) +

nÿ

i=1
◊̃

T
fi

˙̃
◊fi

=(BT
0p‡‡j)

T
B

≠1
0p‡(A0p‡) + (BT

0p‡‡)T (u + d‡) +
nÿ

i=1
◊̃

T
fi

˙̃
◊fi

=‡
úT

j B
≠1
0p‡(A0p‡) + ‡

úT

j (u + d̃) +
nÿ

i=1
◊̃

T
fi

˙̃
◊fi

. (38)

Substituting the control law in (38)

V̇ = ≠‡
úT

j ◊̃
T
fj

Yfj
(‡ú

j ) ≠ ‡
úT

j ◊
T
fj

Yfj
(‡ú

j ) ≠ K‡
ú
j (39)

+‡
úT

j Dfj +
nÿ

i=1
◊̃

T
fi

˙̃
◊fi

.
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Applying (30) results in

V̇ = ≠K‡
ú
j +

nÿ

i=1
‡

ú
j (Dfi ≠ ◊

T
fi

Yfi
(‡ú

j )), (40)

with

|Dfi ≠ ◊
T
fi

Yfi
(‡j)| Æ ‘j Æ “i|‡ú

j |, (41)

which |“i| < 1. This way, the right side of (41) satisfies

‡
ú
j |Dfi ≠ ◊

T
fi

Yfi
(‡j)| Æ “i|‡ú

j |2 = “i‡
ú2
j , (42)

and therefore

V̇ = ≠K‡
ú
j + Xj , (43)

in which Xj is defined as

Xj =
nÿ

i=0
(≠ki‡

ú2
j + “i‡

ú2
j ) = ≠‡

T (A ≠ “)‡ú
j Æ 0, (44)

which “ = diag[“1, . . . , “n]. Selecting ki ≠ “i, with the matrix (K ≠ “) positive definite, ≠‡
T (K ≠ “)‡ú Æ 0.

Consequently V̇ Æ 0 e V̇ = 0 if and only if ‡
ú
j = 0. Thus, the system is asymptotically stable.

6. Simulation results
A wedge of four identical WMRs were considered. The eight-shaped tracking trajectory was chosen to formation
control. The WMRs were named as i,j,k,l. The WMR i acted as a leader to j and k WMRs, while k acted as a
leader to the WMR l. The entire controllers formulation are generic for each follower. the WMR i formulation
was used based on g [e]. The wedge formation is shown in Figure 3.

The simulations were made with 160 seconds each, using a fixed-step of 0.005s seconds. There were analyzed
two scenarios: pure kinematics only and kinematic with disturbances. The results are shown below.

6.1 Pure kinematic results
The controllers presented in (18) and (29) was simulated based on the kinematic models given in (1). The
kinematic parameters were Lj1 = 5, Lj2 = 5, Lj3 = 0.2, K11j = 0.01, K22j = 0.01, G11j = 0.01,
G22j = 0.01, Li1 = 1, Li2 = 6, Li3 = 1, K11i = 0.1, K22i = 0.1, G11i = 1, G22i = 1, d = 0.25m.
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ú
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‡

ú
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T
fi

Yfi
(‡ú

j )), (40)
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T
fi

Yfi
(‡j)| Æ ‘j Æ “i|‡ú

j |, (41)

which |“i| < 1. This way, the right side of (41) satisfies

‡
ú
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T
fi

Yfi
(‡j)| Æ “i|‡ú
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ú2
j , (42)

and therefore

V̇ = ≠K‡
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T (K ≠ “)‡ú Æ 0.
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ú
j = 0. Thus, the system is asymptotically stable.
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leader to the WMR l. The entire controllers formulation are generic for each follower. the WMR i formulation
was used based on g [e]. The wedge formation is shown in Figure 3.
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G22j = 0.01, Li1 = 1, Li2 = 6, Li3 = 1, K11i = 0.1, K22i = 0.1, G11i = 1, G22i = 1, d = 0.25m.
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 i

 kj

 l

Figure 3: Formation wedge.

Figure 4, shows the formation control executed considering only the kinematics. The reference trajectory was
drawn in blue, the main leader was drawn in green. To the followers, the ones who used SBSMC were drawn in
black and the ones who used AFSBSBC were drawn in red. Observing this figure, SBSMC had small issues to
WMRs j and l in the simulation beginning, but after stabilization, both controllers had similar responses.

Observing the errors in Figure 5(a) and 5(b), both controllers has similar responses after stabilization. Before
stabilization, AFSBSMC had more accurate responses.

In Figure 6(a) and 6(b) the chattering phenomenon is visible in SBSMC to all WMRs, especially to WMR j,
with high peaks both in linear and angular velocities. In AFSBSMC, the phenomenon is not present, as expected.

Analyzing the Root Mean Square (RMS) described in Table 2 of formation control error variables it is evident
that the error was small and acceptable for both SBSMC and AFSBSMC, with precision in the order of 10≠2 but
AFSBSMC had smaller errors.

Table 2: RMS of formation control error.

SBSMC AFSBSMC
j - L: 0,037 j - Y: 0,086 j - L: 0.027 j - Y 0,044
k - L: 0,057 k - Y: 0,021 k - L: 0,037 k - Y: 0,017
l - L: 0,083 l - Y: 0,026 l - L: 0,035 l - Y: 0,006
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6.2 Simulation with kinematic disturbances
The disturbance vector is defined similarly in r [o]; x [i], and is formulated as

”x =fl1 = – cos ◊, (45)
”y =fl2 = – sin ◊,
”◊ =fl3 = 0,
– =[0.03H(t ≠ 12) ≠ 0.03H(t ≠ 37) ≠ 0.05H(t ≠ 70)

≠ 0.05H(t ≠ 81) ≠ 0.5H(t ≠ 90) ≠ 0.05H(t ≠ 105)],

in which H is the standard Heaviside function.
Figure 7, shows the formation control executed. the WMRs were plotted with the same logic as in the

previously scenario. Observing this figure, SBSMC had small issues in the internal curve, with one WMR,
evidencing the effect of string errors.

Observing the errors of Figure 8(a) and 8(b), one can see that the WMR l presented low magnitude errors
in Y. It is perceptible that the errors can be removed by increasing the K4 (K) gain. It is also perceptible the
advantages of AFSBSMC, since it compensated the disturbances effects without any previous knowledge about
their bounds.

In both velocities, in Figure 9(a) and 9(b), the chattering phenomenon still appears in SBSMC. In AFSBSMC,
the velocities are smooth and applicable in a real environment.

Finally, observing the RMS’s exposed in Table 3 of formation control error variables, one can see that the
error was small and acceptable for both SBSMC and AFSBSMC, but AFSBSMC presented smaller average
errors.

Table 3: RMS of formation control error.

SBSMC AFSBSMC
j - L: 0,038 j - Y: 0,082 j - L: 0.030 j - Y 0,045
k - L: 0,053 k - Y: 0,016 k - L: 0,035 k - Y: 0,012
l - L: 0,091 l - Y: 0,036 l - L: 0,044 l - Y: 0,012

7. Conclusion
In this paper, the kinematic controller AFSBSMC was proposed as a solution to formation control problem. To
evince the controller efficiency, SBSMC and AFSBSMC were compared in a trajectory tracking problem of a
eight-shaped trajectory.

The SMC was considered because of its robustness. The SMC main disadvantage are the chattering
phenomenon, which is not desirable in a real system and the previous need of knowledge of the disturbances
bounds. To eliminate chattering as well as automatically tune controller gains for optimal responses in
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7. Conclusion
In this paper, the kinematic controller AFSBSMC was proposed as a solution to formation control problem. To 
evince the controller efficiency, SBSMC and AFSBSMC were compared in a trajectory tracking problem of a 
eight-shaped trajectory.

The SMC was considered because of its robustness. The SMC main disadvantage are the chattering phenom-
enon, which is not desirable in a real system and the previous need of knowledge of the disturbances bounds. 
To eliminate chattering as well as automatically tune controller gains for optimal responses in environments 
which disturbances/uncertainties with any bounding may occur, the AFSBSMC were considered. The results 
showed that in comparison with SBSMC, the AFSBSMC compensated the disturbances/uncertainties added 
individually in the kinematics and the chattering effect were completely removed for all simulations performed. 
The results also showed that errors in AFSBSMC converges to zero faster than SBSMC.

The stability analysis with both SMC and adaptive fuzzy system were proved with Lyapunov Theory.
For future works, the experimentation in real environments is aimed. There are two another works in prog-

ress: consider static/dynamic obstacle avoidance and add the WMR dynamics and actuator dynamics to the 
control design. Lastly, the control design of formation control with quad-rotors in the squad is aimed.
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