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In this study, information from wearable sensors is used to recognize human activities. 
Commonly the approaches are based on accelerometer data while in this study the 
potential of electromyogram (EMG) signals in activity recognition is studied. The 
electromyogram data is used in two different scenarios: 1) recognition of completely 
new activities in real life and 2) to recognize the individual activities. In this study, 
it was shown that in gym settings electromyogram signals clearly outperforms the 
accelerometer data in recognition of completely new sets of gym movements from 
streaming data even though the sensors would not be positioned directly to the muscles 
trained. Nevertheless, in recognition of individual activities the EMG itself does not 
provide enough information to recognize activities accurately.

1. Introduction
The wearable sensor market is currently one of the most rapidly growing area in consumer electronics. The
global market for wearables is estimated to reach $34 billion by 2020 (CCS Insight, 2016) and to almost $70
billion by 2025 (Weinswig, 2016). In research perspective, this has enabled that mobile sensors based recognition
(activities, gestures, symptoms, diagnosis) to become one of the fastest developing areas of machine learning.
The remarkable progress in the actual sensor development including improved memory and battery properties
has making possible to measure human physiology 24/7, and more importantly with such accurate readings that
has previously been possible only in laboratory settings.

The overall wearable sensors based human activity recognition process includes a data set collected from the
activities wanted to be recognized, preprocessing, segmentation, feature extraction and selection, and classifi-
cation (Bulling et al., 2014). By now the activity recognition approached include for example, daily activity
recognition (Banos et al., 2012; Zhang and Sawchuk, 2013) and it has been used in various sport sector app-
lications (Chang et al., 2007; Siirtola et al., 2011). It has also been utilized for manufacturing industry purposes
like in monitoring of assembly tasks (Stiefmeier et al., 2008; Koskimäki et al., 2009).

One of the problems of activity recognition is that to recognize n activities, training data must be collected
from at least n-1 activities (Siirtola, 2015). The remaining activity could be recognized based on the assumption
that if the performed activity was not recognized as one of the n-1 from which training data was collected, it
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must be the one from which training data was not available. Nevertheless, in practice the streaming data consists
also plenty of data not interesting from application specific point of view, and that cannot be collected inclusively.
This so called as null-data or "other activities" makes the decision if there actually is a novel activity or should it
be considered to belong null-class a challenging task.

Thus in this article the problem studied for unseen activities is that how to recognize them as activities instead
of belonging to the null-class. Moreover, in this study, a new sensor is introduced to be used to solve the problem
in gym setting. The gym activity recognition makes a quite unique problem into the activity recognition area
while the gym exercises mostly consists of repetitive movements. How to recognize different gym activities based
on acceleration sensors have been studied, for example, in (Chang et al., 2007; Muehlbauer et al., 2011; Morris
et al., 2014). In (Chang et al., 2007) there were no null-data collected thus making the research simpler but in
(Muehlbauer et al., 2011; Morris et al., 2014) both a segmentation approach was used as a solution to decide
beforehand if gym activity is performed against the null-data. Nevertheless, in both cases the segmentation is
optimized based on the existing activities (the leave-one out approach is used as person independent approach)
and there are no information of the generalization of the segmentation to novel gym sets. Moreover, the few
studies considering the unseen activities are also completely different to ours. In (Cheng et al., 2013), for example,
they are concentrating to recognize the actual gym exercises based on semantic attributes (e.g. dumbbell curl
consist of arm down and arm curl actions) and there are no null-data in the study.

On the other hand, electromyogram (EMG) is used to measures muscles to see the power needed to perform
certain gym exercises (Holviala et al., 2012). Nevertheless, to be able to do that EMG device has to be positioned
directly on the muscle to be measured. Thus although it could sound trivial to use EMG to recognize the actual
gym exercises from the other activities the approach where sensors are not positioned to the actual trained muscle
or changed between the exercises makes the study novel. While the EMG-sensors are attached in the forearm of
the user in this study the movement of individual fingers also effect to the tension of the forearm muscles making
the approach more challenging.

As an extension to the authors’ previous article (Koskimäki and Siirtola, 2016), in this article also the
possibility to use the EMG signals to the user-independent (UI) activity recognition is studied. In this approach
the null data is discarded and the basic leave-one-person-out cross-validation is used using acceleration informa-
tion, using EMG information, and using combination of both.

This article is organized as follows: Section 2 introduces the sensors used as well as the data collection
procedure. The methods related to the activity recognition process including feature extraction, feature selection,
classification and leave-one-out cross-validation are described in Section 3. The results for both scenarios 1)
unseen activities and 2) UI activity recognition are covered out in Sections 4 and the discussion of the findings is
carried on in 5. The whole study is concluded in Section 6.

2. Sensors and Data Collection
The data were collected using a Myo Armband (Myo, 2016). Myo includes 8 EMG sensors and a nine-axis IMU
containing three-axis gyroscope, three-axis accelerometer, three-axis magnetometer (Figure 1). It is developed
for gesture recognition purposes and thus meant to be worn in a forearm of the user. In our study, the Myo was
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Figure 1: Myo Armband.

Muscle group Exercises

Triceps
Close-Grip Barbell Bench Press, Bar Skullcrusher,

Triceps Pushdown, Bench Dip / Dip,
Overhead Triceps Extension, Tricep Dumbbell Kickback

Biceps
Spider Curl, Dumbbell Alternate Bicep Curl,
Incline Hammer Curl, Concentration Curl,

Cable Curl, Hammer Curl

Shoulders
Upright Barbell Row, Side Lateral Raise,

Front Dumbbell Raise, Seated Dumbbell Shoulder Press,
Car Drivers, Lying Rear Delt Raise

Chest
Bench Press, Incline Dumbbell Flyes,

Incline Dumbbell Press, Dumbbell Flyes,
Pushups, Leverage Chest Press

Back / lats
Seated Cable Rows, One-Arm Dumbbell Row,

Wide-Grip Pulldown Behind The Neck, Bent Over Barbell Row,
Reverse Grip Bent-Over Row, Wide-Grip Front Pulldown

Table 1: Gym exercises, more details can be found from (Koskimäki and Siirtola, 2014).

located at the right forearm positioned so that the IMU was on the top of the forearm while the EMG sensors
located evenly distributed around the arm. In this study the frequency of 50 Hz were used in data collection. The
recognition was done based on EMG and accelerometer data, and therefore, gyroscope and magnetometer data
were not used.

The actual data were collected from 10 persons and from 30 different gym exercises, each of them consisting
a set of ten repetitions. The exercises were mostly done using free weights, and for every upper body muscle
group, data from six different exercises were collected (Table 1). While the data set was gathered as a continuous
signal, the data set constituted also data between every exercise set in which the subject moved around at the
gym, changed weights, stretched or just stayed still (null-data). Altogether, there were more than 11 hours of
data of which 77 percent was considered as null-data.

The difference between EMG and acceleration signals are shown in Figures 2 and 3. In both cases the same
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Figure 2: 8 channels of EMG signals corresponding to two different gym exercises (separated between vertical
lines) and null-data between the exercises.

time interval is shown including data from two different gym exercises and null-data between the exercises.
It can be noted that during exercises there is periodical movement in each of the three acceleration channels.
However, in the case EMG periods are not visible in all of the channels, and also in these channels they are
more difficult to see than in the case of accelerometer data. In addition, when signal from two different activities
are compared, it can be seen that with accelerometer data signals are different while with EMG there are much
less differences. When null-data interval is studied, it can be seen that accelerometer signals contain a lot more
non-periodical movement than EMG signals. Therefore, it would seem that periodical exercises are easier to
detect from accelerometer data than from EMG while EGM seems to be more suitable in recognizing null-data.

3. Methods
The EMG signals were pre-processed with two different ways: 1) all the eight EMG signals were summed up as
a single signal, or 2) different channels were summed with the values of adjacent EMG signals (the EMG signal
1 consisted of sum of signals 8, 1 and 2; and signal 2 of signals 1, 2 and 3, etc.). For acceleration signals, no
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Figure 3: 3 acceleration signals (x,y,z) corresponding to two different gym exercises (separated between vertical
lines) and null-data between the exercises.

Data set Feature type Features

Acc

Statistical features std, mean, min, max, median, percentiles (5, 10, 25, 75, 90,
95), zero and mean crossing

Frequency domain FFT sums (1:2, 1:5, 6:10, 10:15), squared sum using all
channels

Haar wavelets sums of wavelet decompositions using different
bookkeeping vectors

correlation autocorrelation and cross-correlation

EMG
Statistical features std, mean, min, max, median, percentiles (5, 10, 25, 75, 90,

95)
Sums sums of data value over 25, 50, 100, 150 and 200

EMG sum
Statistical features std, mean, min, max, median, percentiles (5, 10, 25, 75, 90,

95), zero and mean crossings
correlation autocorrelation

Table 2: Features calculated from acceleration data, EMG signals (channels summed with adjacent channels 
(EMG), or channels summed altogether (EMG sum)).

pre-processing was done.
After the pre-processing the continuously measures signals were divided into segments using the sliding

window method, where window length of two seconds with a slide of 0.5 seconds between two sequential
windows was used. For every of the windows, features were calculated including statistical values for all the
signals and for acceleration also frequency domain and correlation features were calculated (Table 2). The
amount of features for acceleration signals were 219, for 8 channels of EMG 128 and for summed EMG channel
19.

In this article, the best features to recognize unseen activities were chosen using sequential forward selection
(SFS) and minimum Redundancy Maximum Relevance Feature Selection (mRMR). With SFS the best features

Advances in Distributed Computing and
Artificial Intelligence Journal
c©Ediciones Universidad de Salamanca / cc by-nc-nd

35

ADCAIJ, Regular Issue Vol. 5 N. 3 (2016)
http://adcaij.usal.es



Heli Koskimäki et al Accelerometer vs. Electromyogram in Activity Recognition

Figure 4: Leave-one-out cross-validation.

were selected one at a time using the classification accuracy of the model in question as a  selection criteria 
(Devijver and Kittler, 1982). However, the selection was not stopped at local minimum but it was allowed to 
choose until “the best features” included all the features. On the other hand, with mRMR the feature selection 
was done model independently by selecting features having the highest correlation to the classification variable 
but locating far from each other (Peng et al., 2005). With mRMR the amount of features was decided before 
hand as signal-wise based on a preliminary test with all the data. The recognition of individual activities was 
done using all the features, and therefore, feature selection was not used.

The classifiers used in this study were the parametric linear discriminant analysis (LDA), quadratic discri-
minant analysis (QDA). The LDA and QDA model the class-conditional densities parametrically as multivariate 
normals (Duda et al., 2012). In practice, QDA separates classes using nonlinear decision boundaries while 
LDA uses linear decision boundaries. Both of the methods are fast to train, easy to implement and the memory 
requirements are small thus making them well-liked in practical applications and devices. Moreover, it has been 
shown in practical activity recognition applications the simplest methods can outperform the more sophisticated 
methods (Koskimäki, 2015).

To compare the results leave-one-person-out cross-validation was used (Figure 4). The idea is to divide the 
data set into as many data sets that there are persons in the data. With every iteration one person’s data is used as 
validation data while the data from the N-1 person are used in the model training. The person-wise accuracies 
achieved during these N iteration are then used to to calculate the average user-independent classification rate.
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Figure 5: Two scenario examples for case of data from three persons. The training data includes data from 
the persons as well as gym activities not used for testing. In the study all the combinations are went through.

4. Results

4.1 Recognition of unseen activities
The model generalization to new exercises were studied by selecting suitable subsets of activities into training
and testing under leave-one-person-out cross-validation schema. In addition to that, to study the recognition
of unseen activities also data from certain exercises were deleted simultaneously. Nevertheless, instead of the
traditional version where a single activity is deleted at a time the deletion in this article is done muscle-group
specifically in four scenarios.

In practice this means that for every person at a time, in scenario 1, every set of exercises (6 exercises) at a
time and the null-data were used as testing data while the other 4 sets of exercises (24 exercises) and the null-data
from the remaining 9 persons were used for training (see Figure 5). In scenario 2, the same procedure was done
by using two sets (12 exercises) for testing and three sets (18 exercises) for training, in scenario 3 using three
sets (18 exercises) for testing and two (12 exercises) for training and in scenario 4 using four sets (24 exercises)
for testing and one (6 exercises) for training. Thus the classification becomes more and more difficult between
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Feature Classifier Scenario Signal
selection ACC EMG EMG sum ACC+EMG ACC+EMG sum

mRMR

LDA

1 77.7 85.2 82.7 83.2 84.2
2 74.8 81.1 82.3 81.8 82.6
3 69.9 76.2 81.9 76.3 77.8
4 62.2 70.4 81.3 70.3 71.6

QDA

1 68.6 77.0 84.0 81.4 83.4
2 66.5 77.2 84.0 80.8 81.3
3 64.0 78.5 83.8 75.2 76.6
4 59.7 77.5 83.2 70.1 65.2

SFS

LDA

1 85.2 88.2 83.0 89.9 88.1
2 83.1 88.2 83.1 89.5 87.7
3 82.3 88.0 83.1 88.6 87.0
4 79.3 87.7 83.0 88.2 85.7

QDA

1 84.7 87.8 85.3 90.1 89.8
2 83.9 87.8 85.2 89.6 89.1
3 83.9 87.8 85.1 88.5 87.5
4 77.5 87.5 84.7 87.8 86.5

Table 3: Average recognition rates using mRMR and SFS feature selection methods with both LDA and 
QDA classifiers using acceleration data, EMG signals (channels summed with adjacent channels (EMG), or 

channels summed altogether (EMG sum)), or a combination of the signals.

scenarios. In every scenario, all the combinations are gone through and the results are shown as an average of
every person and of those combinations (6, 10, 10 and 6 combinations, respectively). Moreover, the average is
shown as an average of class-wise averages preventing the massive amount of null-data to skew the results.

The results in Table 3 clearly show that the accuracies achieved with mRMR feature selection method are
remarkably different from the SFS results. The only accuracy staying over 80 percent through the four scenarios
is the accuracy achieved when using features calculated from the summed EMG-signal. Naturally, the reason for
that is that there were not so many features to be selected (19 original features). Nevertheless, when using the
summed EMG-signal and QDA, over 83 percent accuracies were achieved even when only movements targeted
to single muscle groups were used as training data (scenario 4) which is over 20 percentage units higher than the
accuracy achieved using acceleration signal (62.2%).

On the other hand, when considering the results achieved with SFS feature selection a more higher accuracies
overall can be seen. The first obvious remark also with this case is that EMG signals contained more generalizable
information than the acceleration signals. From the scenario 1 to scenario 4 only 0.6 percentage units drop
was shown while within the acceleration signals a drop of 6 percentage units is seen between the scenarios, in
addition to the 3 percentage units lower accuracy already in the first scenario (LDA). Moreover, by combining
the acceleration information with EMG-information, it can be seen that no remarkable improvement in overall
accuracies is achieved at least in the scenarios 3 and 4.
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Data set Acceleration EMG Acceleration and EMG
All the data 55.8 12.4 58.7

Every second exercise 72.0 21.5 75.9
Every sixth exercise 86.1 41.0 85.9
Table 4: Recognition rates when using all the exercise data (30 classes), using 
every second exercise data (15 classes) and when using only one exercise per 

muscle group (5 classes).

4.2 Recognition of the individual activities
To test the information comprised by acceleration and electromyogram signals the null data was removed
manually from the data set. Due to the high variety of gym exercises used in data collection (the recognition is in
most studies based only on nine or ten exercises) three different sets of the whole data set was used. In the first
case, all the data was used including data from 30 exercises of which some were highly overlapping (e.g. Spider
Curl vs. Concentration Curl). In the second case the amount of activities were dropped to half deleting every
second activity (15 classes, 3 activities per muscle group). The third case is the simplest one, including only one
activity per muscle group and altogether 5 classes.

From the results presented in Table 4 can be seen that the recognition rate, 55.8% using only accelerometer
and 58.7% using combination of accelerometer and EMG, is really low when all 30 are recognized. The detection
accuracy is especially low when the recognition is based only on EMG data (12.4%). Therefore, the collected
data set does not include enough information to detect all 30 exercises reliable. Reducing the number of classes
to 15 improves the recognition accuracy, 72.0% using only accelerometer and 75.9% using combination of
accelerometer and EMG, but still the rates are quite low. Again, it can be seen that individual activities cannot be
detected using only EMG (21.5%). After reducing the number of classes to 5, the recognition rates are already
pretty good (86.1% using only accelerometer and 85.9% using combination of accelerometer and EMG), except
if only EMG data is used (41.0%). What is noticeable is that based on the results of Table 4, it can be noted that
when individual activities are recognized, EMG data does not provide any added value to the accelerometer data
as the combination of EMG and accelerometer data does not improve the detection rates significantly compared
to using accelerometer only.

5. Discussion
When the aim was to recognize unseen activities, the results showed that the EMG signals contained more
generalizable information than the acceleration signals. While the acceleration signals still coped the problem
when there can be assumed to be at some level similar information in the training set, the more novel the
new activity is the more difficult it is classified using the acceleration. This is quite surprising while the gym
exercises contained sequential movements (repetitions) which are in acceleration signal based studies considered
to separate the activity from the null-data. Nevertheless, as stated before, in previous studies the optimization of
segmentation is based on the known activities which can affect to the results.

From the feature selection point of view an interesting remark was that the mRMR feature selection itself had
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a notable negative effect on the generalization results. This can be explained that with the SFS the features were
selected based on results achieved for the testing data, in practice, telling the feature selection method that we do
not want to optimize the training data classification but the testing data classification. For mRMR no information
of the actual problem was introduced. Nevertheless, it has been already show that the recognition rates are biased
in SFS while the same data is used for selecting the features and validating the features (Koskimäki, 2015).
Thus by using SFS the unseen activities are not unseen but already used in model optimization. Although the
difference between the accuracy of EMG and acceleration signals with SFS is so apparent that it cannot be caused
by this bias, the more reliable overall results are those achieved with mRMR which clearly favored EMG-data.

EMG-data was useful when unseen activities were recognized. However, when the task was to recognize
individual activities, the situation was different. In this case, the combination of EMG and accelerometer did not
provide any added value compared to using only accelerometer. In addition, when only EMG data was used in
the recognition process, the recognition accuracy was really low. The reason for this this can be seen from Figure
2, EMG signals are not different in different exercises. In addition, movement caused by exercise is visible only
in some signal channels, not in all. Therefore, when the aim is to recognize individual activities, the recognition
should not be based on EMG data, instead accelerometers are advised to be used.

In this study, all the activities were targeted to upper body muscles which still leaves the question "how
the results generalize in the cases of lower body muscles workouts" open. For example, there are lower body
muscles targeted gym equipments where hands are positioned into stationary handles causing the acceleration
to fall behind. Nevertheless, interesting would be seen, if the adherence of the handles would be enough to
EMG-signals to contain the information of exercise time. Also interesting would be to know if lactic acids effect
to the EMG signals.

6. Conclusions
In this article, the generalization of acceleration signals information was compared with EMG signals in novel
events at gym activity recognition. It was shown that when the aim is to recognize unseen activities even
non-optimally positioned EMG-sensor will outperform the accelerometer information; the most dissimilar new
activities can be extracted from null-data with 10 to 20 percentage unit higher accuracy by using EMG signal.
Naturally, more accurate results could be achieved by using optimally located EMG sensor but this was considered
non-practical in real world usage while the end-user cannot be obligated to change the sensor location between
every gym set. However, the situation is totally different when the aim is to recognize individual activities. In this
case, accelerometer-sensor outperforms EMG-signal. In fact, even the combination of EMG and accelerometer
does not provide any added value compared to using only accelerometer.
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