
Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Simulation of Road Traffic Applying
Model-Driven Engineering

Alberto Fernández-Isabela and Rubén Fuentes-Fernándeza
aResearch Group on Agent-based, Social & Interdisciplinary Applications, Complutense University of
Madrid, c. Profesor José García Santesmases 9, Madrid, 28040

KEYWORD ABSTRACT

Road traffic;
Simulation;
Modelling language;
Intelligent agent;
Model-Driven
Development; Code
generation

Road traffic is an important phenomenon in modern societies. The study of
its different aspects in the multiple scenarios where it occurs is relevant for a
huge number of problems. At the same time, its scale and complexity make it
hard to study. Traffic simulations can alleviate these difficulties, simplifying
the scenarios to consider and controlling the amount of variables. However,
their development also presents difficulties. The main ones come from the need
to integrate the way of working of researchers and developers from multiple
fields. Model-Driven Engineering (MDE) addresses these problems using
Modelling Languages (MLs) and semi-automatic transformations to organise
and describe the development, from requirements to code. This paper presents
a domain-specific MDE framework for simulations of road traffic. It comprises
an extensible ML, support tools, and development guidelines. The ML adopts
an agent-based approach, which is focused on the roles of individuals in road
traffic and their decision-making. A case study shows the process to model a
traffic theory with theML, and how to specialise that specification in an existing
target platform and its simulations. The results are the basis for comparison
with related work.

1. Introduction
Road traffic is a phenomenon that involves multiple perspectives and scenarios. For this reason, its study in real
settings demands considering large sets of variables that represent a variety of aspects, such as the subjective
security perception of individuals, multiple interactions among them, leisure organisation, and health issues.
Also, the individuals involved play multiple roles (i.e. driver, pedestrian, or passenger), being able to establish
complex relationships among individuals of the same or different role. This complexity makes compulsory
looking for means to limit the considered variables in order to focus only on the relevant aspects. Traffic
simulations appear as a key tool in a possible solution for these problems. Nevertheless, simulations present
their own limitations (Crooks et al., 2008). Some of the most relevant emerge from the misunderstandings in
multidisciplinary teams, and the difficulties to adapt simulations to changing requirements and to guarantee that
abstract models are faithfully translated to code by manual development processes where unintended mistakes
and assumptions are frequent.

Model-Driven Engineering (MDE) (France and Rumpe, 2007) has been proposed to address these problems.
It uses development artefacts with a higher level of abstraction than source code, that include all the relevant
information for the transition from requirements to the final simulation, and that can be oriented to specific
user profiles. Approaches based on it are organised around models and semi-automatic transformations among
artefacts (e.g. to generate source code or documentation from models). Its processes usually adopt an iterative
and incremental approach that allows introducing modifications in artefacts at any moment. The main weakness
of these proposals is the effort required to develop their specific infrastructure, as these are not mainstream.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

1

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

However, the benefits of MDE (for instance in artefact reutilisation among projects) usually surpass this initial
investment.

The framework introduced in this paper provides a complete and integrative MDE infrastructure intended
to develop road traffic simulations from theories of the domain. It comprehends a Traffic Modelling Language
(TML), two main supporting tools (a graphical editor for model specifications and a code generator), and a
development process.

The TML is intended to be a Domain-Specific ML (DSML) for road traffic and has been designed to be able
to integrate different theories according to the simulation needs. It is organised to consider the different roles
played by individuals in traffic (i.e. drivers, pedestrians, and passengers).

Following MDE practices, a metamodel specifies the TML. It is structured in conceptual clusters using
inheritance and composition hierarchies. Inheritance allows the specialisation of concepts, while composition
relates elements that share the same purposes or are part of the same functional group. There are three clusters:
aMental cluster to represent the knowledge and features of individuals, an Environment cluster to consider the
information related to the traffic scenario, and an Interactive cluster to describe the decision-making and the
interactions among individuals and the surrounding environment.

The support tools are compliant with the TML. The graphical editor allows specifying and validating model
specifications. These specifications are the inputs of the code generator tool, which supports the source code
transformation. It provides a set of functionalities tomodify and specialise this code according to the requirements
of the target simulation platform. To achieve these operations it uses source code templates based on the
primitives of the TML.

The proposed process covers the complete development cycle, from the analysis of the problem to the
execution of the simulation. It considers the roles of traffic expert and programmer. It is organised as an iterative
and incremental workflow with five main phases and several internal ones.

A case study illustrates the suitability of the framework to adapt road traffic theories to simulations require-
ments. In this case, the chosen target traffic simulation platform is MATSim (Transport Systems Planning and
Transport Telematics Group, Transport PlanningGroup and SenozonCompany, 2015). The development process
guides users during the different phases, indicating how to carry out tasks and the appropriate tools for them.

The rest of the paper is organised as follows. Section 2 introduces the foundations of MDE and its related
tools. Next sections describe our framework. Section 3 addresses the TML, Section 4 the tools, and Section
5 presents the main phases of the development process. The case study in Section 6 illustrates the use of the
framework. Finally, Section 7 compares our and related work. Finally, Section 8 discusses some conclusions
and future work.

2. Model-Driven Engineering
MDE (France and Rumpe, 2007; Kent, 2002) is a general software development approach organised around
models. A model is a representation of an element (in this case, an object, system or idea), which is described
in a different form than the entity itself. It captures essential aspects of the element shown for a certain purpose
(e.g. develop code or understand an existing system). In projects, developers iteratively and incrementally
add and refine elements to models. This cycle moves the development from abstract models (which are close to
requirements and in our case to traffic theories) to concrete ones (which are close to the target platform and source
code). Transformations are automated processes to perform repetitive changes in models (e.g. the modification
of models to introduce specific patterns or specialisations to a target platform). Other elements of development
(e.g. source code or documentation) are generated in the same way, as they can be obtained from transformations
using models and manual adjustments.

In order to allow their automated processing, models must be defined in formal ways. MDE achieves this

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

2

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 1: Main Ecore primitives extracted from (Steinberg et al., 2008).

purpose with the specification of MLs to which models must conform. There are different types of ML, but the
most used in MDE are graphical graph-oriented languages (Bézivin, 2006), and the usual way to define them is
with metamodels. Metamodels in turn are specified using meta-modelling languages. There are also several of
these languages, like theMeta-Object Facility (MOF) (Object Management Group, 2015a) and Ecore (Gronback
and Merks, 2008). MOF is used in the definition of the Object Management Group (OMG) standards, such as
the Unified Modeling Language (UML) (Object Management Group, 2015b) and SPEM (Software & Systems
Process Engineering Metamodel) (Object Management Group, 2008). Its lack of extensive tool support makes
that most of development approaches choose Ecore, the alternative of Eclipse projects for MDE. Nevertheless,
these languages have many features in common, as Ecore is almost aligned with the subset of MOF known as
Essential MOF (EMOF). Both support the definition of constraints using the Object Constraint Language (OCL)
(Object Management Group, 2014).

Some of Ecore main primitives are illustrated in Figure 1. EClass instances group elements that share
characteristics. They are similar to entities at the model level (i.e. classes). EClass instances can contain
EAttribute and EReference instances. EAttribute instances are features which domain are the primitive EDataTy-
pes ()e.g integer, boolean or characters). EReference instances represent binary and oriented references that
relate two EClass instances. There are two types of them: containment and non-containment. The ESuperType
reference supports the inheritance mechanism among EClass instances. An EOperation instance defines a
certain behaviour in anEClass instance. EPackage instances allow generating groups of elements in ametamodel.
They can be includedwithin other identifying them in the namespace through aURI (UniformResource Identifier).
Eenum instances represent the enumerated types definedwithin anEEnumLiteral list. AnEEnumLiteral instance
includes the values of an enumerated type calling them by specific names. Finally, EAnnotation instances allow
introducing notes or comments referencing one of the above instances.

Eclipse provides a wide range of supporting tools for the design of MLs and the specification of their
associated models. It also eases the automatic generation of source code using generic templates based on
the meta-classes of the metamodel that defines a ML. These functions are performed by several frameworks
(Gronback and Merks, 2008), being the core the Eclipse Modelling Framework (EMF) (Steinberg et al., 2008)

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

3

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

and the Graphical Editing Framework (GEF) (Rubel et al., 2011). The first one mainly deals with the design of
the ML and the transformations to source code. The second one allows implementing graphical editors using
Eclipse plug-ins based on Ecore metamodels. These editors can be configured adding properties to be considered
through OCL restrictions.

Transformations are used to generate artefacts from others. They can be classified according to their input
and the output they produce as (Czarnecki and Helsen, 2006): Model to Model (M2M) (Wimmer and Burgueño,
2013) (e.g. refining a model with design information), Model to Text (M2T) (e.g. generation of documentation
or code from models), and Text to Model (T2M) (e.g. reverse engineering to generate models that describe a
given code).

Transformations are implemented in different ways, including the use of general purpose programming
languages and specific transformation languages. In the first case, the transformation becomes a module that
uses programming interfaces to handle its inputs and outputs. In the second case, the transformation is written in
a specific language for transformations and an engine executes it. The first approach has the advantage of being
able to reuse proven artefacts and tools coming from mainstream development approaches (e.g. object-oriented
programming or XML processing (Object Management Group, 2003)), and to facilitate adjusting the execution
of transformations. The second approach eases the understanding and analysis of the correspondences between
inputs and outputs.

Our MDE development framework is based on the meta-modelling language Ecore and the Eclipse tools.
The TML (see Section 3) is specified using the EMF facilities, while the supporting tools (see Section 4) use
functionalities and code from EMF and GEF.

3. Traffic Modelling Language
The TML is focused on modelling the behaviour of individuals involved in road traffic. Given the variety
of needs and theories that can be considered in traffic studies, it is important to provide mechanisms that
facilitate the adaptation of the language to specific settings through the modelling of additional theories within its
conceptual framework. It must be noted that the language is mainly intended for the early stages of development,
so it is biased to traffic concepts and less to design details.

Following prevalent practices in MDE, a metamodel (Steinberg et al., 2008) describes the TML, in this case
with Ecore. It introduces a set of meta-elements that represent the concepts, relationships, and properties that
specify the TML conceptual framework.

Metamodel concepts are closely related to those of the agent paradigm (Shoham, 1993), and in particular
with models that consider the mental state (Bresciani et al., 2004; Pavón et al., 2005). They are classified into
three clusters. The Mental cluster considers the features and internal state of participants in traffic following
mainly (Shinar, 1978). The Environment cluster incorporates the elements from the DVE model (Amditis et al.,
2010), focusing on the different types of interactions among individuals involved in traffic and the surrounding
environment. The Interactive cluster represents the goals and actions of those involved in traffic. It describes a
perception, reasoning, and acting cycle inspired by the agent literature.

The core element of the metamodel is the Person meta-class. It represents a type of individual involved in
traffic. According to their means of transport, these people can take the role of drivers, passengers, or pedestrians.
Person instances can interact with an Environment instance. This interaction is direct (in the case of pedestrians
through instances of the Perceives reference) or indirect (for drivers and passengers through instances of the
Interacts reference) as a vehicle is used in it. The information individuals own (e.g. norms or experience) is
described with instances of the Knowledge meta-class using the Possesses reference to relate them to Person
instances. Their features are represented by the Profile meta-class. This is related to Person instances through
the Displays reference. Regarding to the purposes of individuals, they are described by Goal instances, and

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

4

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 2: Excerpt of the basic structure of the metamodel.

the possible ways to achieve them by Task instances. Evaluator instances examine the available information
(perhaps generating new one) and determine how people must act according to the circumstances observed (i.e.
potential tasks that can run in given circumstances). Finally, Actuator instances run the scheduled tasks.

The meta-classes include predefined attributes and methods. The first ones may be specific for a meta-class,
(e.g. Facts or Route in the Knowledge meta-class), or shared by a set of meta-classes having a similar meaning
and name (e.g. XName attributes such as EName or PName). The second ones are containers for specifications
that describe behaviours or how to derive certain attributes from others. For instance, in a model, fragments that
specify code or formulas can be inserted in the body of these methods. This information can be used later to
guide transformations.

The metamodel uses inheritance hierarchies in order to provide the necessary specialisation of concepts
and structure to its elements. Concepts extend from the GeneralElement meta-class (see Figure 2), that uses
the EInherits reference to represent inheritance among elements of the same type in model specifications. The
GeneralRelationship meta-class (see Figure 2) supports introducing relationships (e.g. impact or affect) among
these elements. Its RInherits reference allows creating extended instances.

Other type of hierarchies appear in the both Mental and Environment clusters. Composition hierarchies are
considered among main elements (e.g. Knowledge or Environment) and their respective
XComponent element (e.g. KComponent or EComponent). The latter can be decomposed into others of the same
type, building complex structures.

Both types of hierarchies are constrained applying OCL restrictions. In the case of inheritance, a constraint
only allows references among instances of meta-classes of the same type (e.g. an Evaluator instance can be only
extended to another of the same type). In composition hierarchies, a constraint controls that both elements might
be properly related (e.g. a Vehicle instance can be decomposed only into VComponent instances, and these only
into other VComponent instances).

Mental andEnvironment clusters contain calculateXValuemethods (e.g. calculateKValue or calculatePValue)
and their associated attributes XValues (e.g. KValue or PValue) for establishing and calculating a specific impact
factor among the instances of their meta-classes.

Next sub-sections give more details about clusters. Section 3.1 introduces the Mental cluster, Section 3.2
focuses on the Environment cluster and its concepts related to the DVE model, and Section 3.3 describes the
Interactive cluster.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

5

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

3.1 Mental cluster
The Mental cluster (see Figure 3) describes the current mental state (e.g. experience or any other type of learnt
knowledge) and the particular features of individuals involved in road traffic. These elements affect the exhibited
behaviour and the actions these individuals perform (Shinar, 1978).

This cluster comprises three main meta-classes: Person, Profile, and Knowledge. Profile represents the
particular features of the participants in traffic (e.g. gender or impatience). Knowledge describes the people’
mental state and current information, except their goals. The attribute Facts store this information, being able
to be classified. Knowledge can be factual (e.g. traffic signs on the road), procedural (e.g. how to carry out a
specific manoeuvre with the vehicle), and normative (e.g. the driver must drive below the maximum speed on
roads). Regarding the plans of individuals in traffic, they are often given by their route. This route is considered
by the Route attribute, and the progress in it by the RoutePlace attribute.

Both knowledge of people and their particular characteristics can describe information that does not change
during the simulation (e.g. meaning of signs or stature of individuals), or that it does (e.g. respect to signs or
levels of aggression).

The instances of the Knowledge meta-class and their meta-classes related through composition hierarchy
(i.e. KComponent) can embody information pertaining to individuals or restricted groups of them (e.g. its own
experience or a specific route), or global information accessible to every participant (e.g. the length of a stretch
of road under construction). The KIsGeneral attribute discriminates between both uses.

3.2 Environment cluster
Traffic occurs in a scenario that provides certain physical conditions. These can change over time (e.g. width of
the road or tyre grip) or not (e.g. situation of a specific building or size of a vehicle). The Environment cluster
(see Figure 4) considers these issues adapting the concepts of the DVE model (Amditis et al., 2010), focusing
on the role played by drivers, pedestrians, and passengers in traffic. This cluster considers that individuals can
obtain information from the environment (the case of any person participating in traffic) and from the vehicle
where they are (only drivers and passengers). The DVE concepts and their related elements in the TML can
be extended to accommodate similar theories about the interactions among people and the environment in road
traffic. For instance, models based on reactive automatons (Ehlert and Rothkrantz, 2001) or considerations about
external factors that increase the risk of accidents (Doherty et al., 1998).

This cluster is responsible for describing how people relate to their means of transport and the environment
that surrounds them. To carry out these descriptions, it uses three main meta-classes: Person, Environment, and
Vehicle.

Person allows considering the different roles that people can play in road traffic. In the case of drivers, the
Drives reference is used to relate instances of this meta-class to instances of the Vehicle meta-class, while for
passengers the Uses reference must be applied. Pedestrians do not use any of these relationships as they are not
related to means of transport.

The Environment meta-class represents the scenario where people (i.e. instances of the Person meta-class)
interact, including physical conditions that may occur (e.g. weather and traffic conditions). These features and
conditions of the environment are described by instances of the EComponent meta-class. A model specification
compliant with the TML must present at most one Environment instance.

The Vehiclemeta-class represents the mean of transport used by each individual. Drivers and passengers are
related to Environment instances through their vehicles, but only drivers can execute actions on them in order to
influence the vehicle or the environment. The VComponent meta-class allows introducing features or parts of
vehicles (e.g. engine horsepower or vehicle size).

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

6

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

The mutual influences among instances of the Person, Environment, and Vehicle meta-classes are largely
represented in the cluster through some predefined attributes andmethods. TheEnvironmentmeta-class includes
an attribute called AvailableArea in order to indicate the scenario where traffic occurs at a given moment. The
Person and Vehicle meta-classes present an attribute named VisibleInfo to specify what information provided
by the AvailableArea attribute of an Environment instance can be observed. The Person meta-class also has
an observeEnvironment method to update the perception of the environment modifying its VisibleInfo attribute.
It also presents an Interact method to execute its interactions with the environment and with other individuals.
The Vehicle meta-class provides a method called obtainVisibleInfo, which plays a similar role to the observeEn-
vironmentmethod in thePersonmeta-class. In addition, theVehiclemeta-class has an executeInstructionmethod
intended to execute specific actions of the vehicle (e.g. moving a rear-view mirror or turn on lights). The
VComponent meta-class presents this same method with a similar functionality.

3.3 Interactive cluster
The Interactive cluster (see Figure 5) illustrates how Person instances act. This acting is organised in a cycle of
perception, reasoning, and acting, which makes use of descriptions of the goals and capabilities of individuals.
The cycle includes the decision-making to choose the best possible action to achieve the person’s goals given
certain traffic situations, which are represented with the elements provided by theMental cluster (see Figure 3)
and the Environment cluster (see Figure 4). The cycle also includes the execution of the selected actions. The
cluster describes this information with two groups of elements: the first one represents the goals of individuals
and their abilities to try to reach them; the second one the elements to implement the cycle.

The first group comprises theGoal and Task meta-classes. These two concepts are taken from AOSE, where
agent-based methodologies as Tropos (Bresciani et al., 2004) and INGENIAS (Pavón et al., 2005) use them
to specify Multi-Agent Systems (MAS) (Van Der Hoek and Wooldridge, 2008). These methodologies include
a specific architecture of acting where actors (i.e. agents) play various roles that give them different skills,
knowledge, and goals. The agents try to enforce the conditions of satisfaction of their different goals. To do this,
agents have tasks linked to goals, so that the execution of these tasks is potentially able to satisfy their goals.

In the TML, the Mental cluster represents the mental state of agents, and the Environment cluster collects
the information from the scenario where traffic occurs and the vehicle (only when an individual plays the driver
or passenger role). The Goal meta-class describes a state of some elements related to road traffic that a person
aspires to maintain or achieve, while the Task meta-class models the skills of this person. Both meta-classes
provide specific attributes to define these aspects. Goal meta-class uses the Satisfaction attribute to represent
its fulfilment conditions and a method called calculateSatisfaction in order to manage these conditions. The
Task meta-class includes the Instructions attribute to specify the atomic actions that are carried out to perform
it. These actions are executed to achieve the satisfaction of those goals to which tasks are associated through an
instance of the GImplies reference.

These meta-classes present a composition hierarchy where they can be decomposed into others of the same
type (restricted by OCL expressions). The structure of this hierarchy is similar to the other two clusters (i.e. a
main element and a XComponent). In this case the semantics are different, being similar to the compositions
of tasks and goals adopted by the agent-based methodologies previously introduced. Thus, they are related to
fulfilment instead of determining specific features of an element. The Goal and Task meta-classes own the
GType and TType attributes in order to specify the type of those compositions. This promotes both meta-classes
can support various semantic structures and classifications. Currently, theGType attribute describes the different
types of satisfaction compositions allowed for the goal, while the Ttype attribute indicates whether the current
task is carried out completing one or a specific set of its sub-tasks.

The second group has the elements of a Person instance that are responsible for assessing the known state
(both environmental and internal to the agent) and execute actions. This group incorporates a classic cycle of

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

7

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

perception, reasoning and acting for agents (Lind, 2001). In it, the perceived and extracted information from
the scenario is gathered in elements of the Mental cluster, while the reasoning is achieved by instances of the
Evaluator meta-class. Finally, the acting is implemented by instances of the Actuator meta-class.

Evaluator instances can be arranged in a hierarchical composition (i.e. they can be decomposed into other
Evaluator instances through the EVDecomposes reference). This allows the distribution of responsibilities
among them, but only one is related to the Person instance and vice versa through IsHarnessed and Harnesses
references respectively. On the contrary, Actuator instances do not have a hierarchical composition (i.e. Actuator
instances cannot be decomposed into others). Each Person instance (i.e. a type of individual) may be related
only to one Actuator instance through the Utilizes reference (see Figure 5).

The previous elements implement the cycle as follows. Evaluator instances evaluate the information obtained
from theEnvironment, Vehicle, Profile, andKnowledge instances linked to theirPerson instance, theirXComponent
elements, and other possible elements related through GeneralRelationship instances. To carry out this process,
these Evaluator instances present the predefined method evaluateGoals. Using it, they can update the internal
state of their Person instance. All this information determines the current state of Goal instances, that is, if
they are satisfied or not. For this evaluation, these instances have the calculateSatisfaction method. Once a
candidate Goal instance is selected for execution, an Actuator instance must collect its associated tasks. These
Task instances are executed through the executeChosenTask method, following the atomic instructions provided
by their Instructions attributes or executing their children Task instances.

4. Supporting tools
The MDE framework introduced in this work presents two supporting tools: a graphical editor and a code
generator. The first one is used to develop model specifications compliant with the TML, and the second for the
semi-automatic transformation to source code of these specifications. This code can be specialised in order to
adapt it to the requirements of target simulation platforms. Both tools are built using functionalities of the EMF
(Steinberg et al., 2008) and the GEF (Rubel et al., 2011).

The graphical editor is an Eclipse plug-in that provides assistance and guidance to users during the model
specifications development. In order to achieve this, it uses two XMI files (Object Management Group, 2015c),
one to store the design of the model specification and another for the graphical location of the elements contained
in the model. The former also allows the validation of the current model specification, ensuring its compliance
with the TML and the OCL constraints included. The interface of this tool provides a canvas and a palette to
display the specifications and the concepts contained in the metamodel respectively.

The code generator is a tool particularly developed to achieve the multiple functions related to the transforma-
tions of the model specifications produced by the graphical editor. It is used to modify the code templates EMF
generates and specialise this source code according to the requirements of the target simulation platform. Most of
these operations are partially automated through wizards in order to provide support and guide to users during
the process. This allows playing a preponderant role to traffic experts, while programmers only work in the
different development phases where the insertion or modification of source code is indispensable. A text editor
and a compiler are integrated into the tool in order to support these features.

Once a model specification is loaded, the graphical interface of the tool allows visualising the data contained
in the file, providing an intuitive tab-based navigation among its elements. When one of these elements is
selected, the tool displays information about its associated methods, its composition and inheritance hierarchies,
and the related GeneralRelationship instances (see Figure 6).

As said before, the code generator is able to achieve multiple purposes through graphical wizards. They
can be grouped as functionalities related to code generation and modification, configuration and documentation,
structural changes modifications and platform specialisation.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

8

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

The insertion of source code is a feature related to code generation that provides the possibility of modifying
the body of the methods of different classes introducing code-snippets, or creating new attributes and methods
updating the original class completely. This functionality is based on the code templates EMF generates by
default. These operations demand programming skills and are supported by the graphical interface and the
integrated modules (i.e. the compiler and the text editor). The tool also provides a user guide and on-line
assistance.

The configuration and documentation functionality produces different XML files. In the first case, the
configuration file sets the initial values of the XValues attribute (see Section 3). In the second case, the tool
generates the project documentation.

The cluster integration is the operation includedwithin the structural changes functionalities. This is achieved
in two steps: the integration of two incomplete and complementary model specifications (i.e. the elements of the
first cannot belong to a cluster provided by the second and vice versa), and the addition of newGeneralRelationship
instances in order to model the impact an element exerts on another in the resulting new model specification.
Two graphical wizards guide users during the process indicating the possible references to add according to the
TML, or theGeneralRelationship instances that are incomplete (i.e. they do not present an origin or a destination
yet). This feature promotes the reutilisation of model specifications.

The code specialisation eases the adaptation of the current source code to the demands of target simulation
platform. This feature presents two main operations: the dynamic insertion of external files in the path of the
compiler and the generation of new classes.

The dynamic insertion operation handles and stores external libraries (and their dependencies). These files
usually come from the target platform. Once the library is selected, the process is managed internally by the
tool, so it is transparent to users. It allows the inclusion of items not related to the TML in the source code of a
class of the current model specification.

The generation of new classes is an operation that is achieved with the support of an assistant. These classes
can be empty, extended from others provided by the external libraries, or predefined. The latter can be built
using additional templates and are intended to automate tasks that are similar in every project (e.g. read the
model specification XMI file). These classes are considered by the compiler dynamically. This feature allows
the instantiation and use of them in other classes of the current project.

The code generator produces two types of outcomes: a plug-in directly usable as a library in the target
traffic platform, or a new platform that integrates the aspects provided by the model specification and the target
platform. In both cases, the generation process is supported by graphical wizards that make it more intuitive to
users. Also, associated documentation and configuration files can be produced.

These development tools support our MDE framework intended to adapt traffic theories and generate source
code to simulate them. They ease the process through graphical wizards, which provide the appropriate functiona-
lity to examine elements and integrate multiple artefacts (e.g. model specifications or predefined classes). They
also promote reusability and incremental development, reducing as a consequence manual coding and the need
of programmers.

5. Development process
The development process used to generate traffic simulations covers from the moment when experts study
the problem and choose to model certain traffic theories, until the instant the simulation is executed on the
target traffic platform. Here, it is described using SPEM (Object Management Group, 2008). It identifies
five main phases (see Figure 7): Preliminary theory evaluation, Model design, Preliminary code generation,
Platform specialisation, and Simulation. Although the representation of the process in the diagram shows a
linear workflow in order to simplify it, the process must be considered as incremental and iterative (i.e. spiral

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

9

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

development). This means that users can return to a previous phase from the current one and continue the process
from there.

There are two main roles involved in the process: traffic expert and programmer. The first one achieves
most of tasks, evaluating the selected traffic theory, designing the current model and validating the simulation.
The second one mainly works in the Preliminary code generation and Platform specialisationmain phases (also
in the Simulation main phase in the case of a plug-in outcome). It is responsible for encoding operations (e.g.
changes in the body of the predefined methods or programming new ones), and introducing new elements (e.g.
specific classes or methods to implement the specialisation of the model specification to a target platform).

The Preliminary theory evaluation main phase is the first in the process. In it, experts assess the selected
traffic theory and try to generate a modelling plan of the future model specification. This plan identifies the
elements extracted from the traffic theory and their correspondences to concepts provided by the TML. If there
is an acceptable mapping, then the process continues through the next phase. In other case, if experts fail to
reach an appropriate modelling plan of the theory, it is discarded. Alternatively they could consider a review of
the TML, and consequently of the supporting tools, in order to incorporate the requirements presented by that
theory.

The Model design main phase develops the model specification according to the modelling plan obtained
in the previous phase. In this phase, traffic experts introducemodifications incrementally, inserting new elements
and checking their compliancewith the constraints of the TML.Once the specification is completed and validated,
users can go forward with the next phase.

The Preliminary code generation main phase is in charge of generating the source code using the model
specification. This phase introduces specific code snippets in the generated classes through the code generator.
These snippets take as basis the original templates EMF generates from the classes in the TML metamodel. The
code generator supports through assistants the creation of newmethods and attributes in a class, and the insertion
of specific code in the body of methods. It is also responsible for compiling these modifications and saving the
current state of the project. For instance, this inserted code is used to encode some mathematical formulas or
quantify the influence of interactions among individuals in a specific attribute.

In the Platform specialisation main phase, the source code is modified to adapt it to the requirements of the
target platform. To do that, new classes are created with the purpose of packaging the model specifications and
the decision-making of individuals. This step considers the information and specifications available about the
target platform.

This phase has an optional internal phase that allows integrating complementary incomplete model specifica-
tions. It considers two possible types of these specifications: models that contain elements from the Mental
cluster and the Environment cluster, and models only with elements from the Interactive cluster. This particular
issue is directly related to the domain literature, where there are traffic theories only focused on the decision-
making of individuals and others that only consider mental aspects and features of participants. Also, it promotes
reusability being able to produce complete model specifications (i.e. a model specification with elements of the
three conceptual clusters of the TML) based on two different traffic theories.

This main phase produces as output two possible types of archives, which are the outcomes of the code
generator tool (see Section 4). The first one is a plug-in directly usable in the target platform as a library.
Thus, the platform can be modified introducing new source code to consider the aspects supplied by the model
specification contained in the library. This encourages the development of traffic platforms specialised in the
proposed TML. The second one implements an integration of the current model specification and the target
platform, creating an enhanced traffic platform that encompasses aspects of the model specification. In both
cases, the associated documentation (i.e. Javadoc) and a configuration file are provided. This last file can be
modified to change the behaviour of the individuals considered in the traffic simulation.

Finally, the Simulation main phase addresses the simulation process. In it, the traffic platform collects the

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

10

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

values set in the configuration file and then executes the simulation. If the file produced in the previous main
phase is a plug-in, in this phase it is added as a library to the target platform. Then, the platform must be adapted
introducing modifications in the existing classes or even creating new ones. This process allows achieving
simulations that consider the new features provided by this library.

6. Case Study
The case study describes the use of the MDE framework to produce an enhanced traffic platform. This modified
platform is based on an existing one and includes a model specification that adapts several domain theories.

The considered theoretical works are: the application of a formula based on fuzzy logic (Pappis andMamdani,
1977) to calculate the XValues attributes of the instances of theMental and Environment clusters (see Section 3)
from the related elements; the theory on driving risk factors in (Schieber and Thompson, 1996); and the decision-
making theory from (Fernandez-Isabel and Fuentes-Fernandez, 2015), completed herewith an equivalent structure
for pedestrians. The target platform to extend isMATSim (Transport Systems Planning and Transport Telematics
Group, Transport Planning Group and Senozon Company, 2015).

The theory in (Schieber and Thompson, 1996) describes groups of risk factors related to traffic accidents
among young pedestrians. These groups hierarchically classify certain features, like the involvement drivers or
features of the surrounded environment. This organisation conforms a taxonomy where certain factors depend
upon or are influenced by others.

The traffic theory does not consider theDVE approach (Amditis et al., 2010) integrated in the TML.Modelling
it with the TML requires a more detailed study to determine how to fit the factors provided in the theory as
components of the main meta-classes (e.g. Knowledge or Environment). It can be observed this theory does
not consider elements related to the decision-making of individuals, as these risk factors can be described only
using the instances of meta-classes provided by the Mental cluster and the Environment cluster. Therefore, it
is necessary to select a complementary traffic theory focused on individual decisions to generate a complete
specification model.

Following the development process (see Section 5), in the Preliminary theory evaluation main phase, a
modelling plan is developed. This pursues finding equivalences among the factors considered in the theory
based on young pedestrians and the concepts from the TML. Note that the names of the factors used in the
traffic theory has been modified and shortened to facilitate their display in diagrams.

Four main groups of concepts are specified: Pedestrian Profile (i.e. PProfile), Environment, Vehicle and
Driver Profile (i.e. DProfile). The first group includes all the elements related to the features of young pedestrians
(e.g. Family factors or Anatomic development). The second group comprises the factors present in the environ-
ment (e.g. Layout of road or Type of road). These factors are common to drivers and pedestrians. The third
group describes the factors of vehicles (e.g. Design or Speed). These factors are not considered as related
to the environment, as it happens in the original work. As the TML is based on the DVE approach and this
considers vehicles apart from the environment, these factors are part of a Vehicle instance. Finally, the fourth
group considers the features of drivers (e.g. Driver fatigue or Use of alcohol). In both cases (i.e. pedestrians
and drivers), concepts related to the Knowledge meta-class do not appear.

The original decision-making theory for people involved in traffic (Fernandez-Isabel and Fuentes-Fernandez,
2015) only considers drivers. Here, it is extended to pedestrians with the activities described in (Gipps and
Marksjö, 1985). This work introduces a set of activities that pedestrians carry out when they interact with other
elements of road traffic. Comparing both theories, it follows that drivers and pedestrians have many common
goals (e.g. both search obstacles or accelerate) in those works. Therefore, both types of people can be modelled
pursuing a similar tree structure of Goal instances with AND and OR compositions. However, these goals are
related to different tasks and conditions. For instance, a pedestrian cannot overtake another in the same way as

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

11

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

a driver overtakes another vehicle.
In theModel design main phase, the model specifications are designed in the graphical editor following the

modelling plan. Thus, a Person instance for drivers is created. It is linked with the suitable references to Profile,
Vehicle, and Knowledge instances. The first presents three PComponent instances as children: UseofAlcohol,
ChildrenintheRoad, and DriverFatigue. The second is related to two children VComponent instances called
Design and Speed (see Figure 8). The latter is extracted from the division into two new factors of the attribute
from the original theory called Traffic density and speed. This division is necessary because the TML follows
the DVE approach. Thus, the traffic density is considered part of the scenario, while the speed is related to
vehicles. The Knowledge instance does not present a composition hierarchy.

TheEnvironment instance is the root of all the environmental factors that influence both drivers and pedestrians.
It is decomposed into five EComponent instances: TypeofRoad, LayoutofRoad, TrafficSignalsandIslands, Adver-
seTrafficConditions, and SocialEnvironment. The last one is originally a factor related to young pedestrians,
but in the modelling plan it has been reclassified as a component of the environment. It is decomposed into an
EffectofOthers instance, which at the same time is composed by three instances: CrossingGuards, Accompanying-
Adult, andPeers. TheAdverseTrafficConditions instance is decomposed into five instances: Darkness, Inclement-
Weather, RoadsideParking, TrafficDensity, andNeightbordhoodCharacteristics. The TypeofRoad instance considers
types of roads through its EValues attribute (e.g. Local Driveway or Street).

A Person instance for pedestrians is only linked to Knowledge and Profile instances. The first one does not
present a composition hierarchy, while the second has two levels according to the original classification. The first
level includes the AnatomicDevelopment, StateofDevelopment, and FamilyFactors PComponent instances. The
first one is decomposed into three instances: Stature, ReflectiveClothes, and SuddenAppearance. The second
instance is also decomposed into three instances called AttentionSpan, WalkingSpeed, and MidblockDart-outs.
The third instance is composed by other three instances: Poverty, Crowding, and CareofLocalAuthorities (see
Figure 9).

Once the pedestrian factors model specification is completed (i.e. the specification with elements belonging
to theMental cluster and the Environmental cluster), the next step is designing the model specification related to
the decision-making (i.e. the specification with only elements included in the Interactive cluster). Note that this
model specification is extended from another one created for drivers (Fernandez-Isabel and Fuentes-Fernandez,
2015), so for avoiding overlapped names the pedestrian instances begin with a P.

The root goal introduced for pedestrian is described by the PArrivedFastDestination Goal instance. This
instance contains an AND composition through the Goal instances PEndedRoute and PActuated. The last
one has an OR composition with seven instances corresponding to actions: PMoved, PDodged, PAccelerated,
PSearchedObstacle, PUpdatedEnvironment, PSlowed, and PTurned. PMoved has an OR composition that
consists of three instances (PContinuedPath, PCrossedWay, and PPassedCrossing), while PDodged has an OR
composition with two instances (GDodgedLeft and GDodgedRight). PSearchedObstacle has a composition
with four instances: PSearchedForward, PSearchedBackward, PSearchedLeft, and PSearchedRight. Finally,
PTurned is decomposed into the PChangedDirection instance.

Each Goal instance has its Task responsible for providing instructions when it is executed. These Task
instances for pedestrians have also changed their name to distinguish them from Task instances of drivers.

Then, in the Preliminary code generation main phase, both model specifications are transformed to source
code by the code generator tool. Moreover, the fuzzy logic formula is codified and inserted in the body of the
appropriate calculateXValuemethods of the pedestrian factors specification. The evaluateGoals and executeCho-
senTask methods of the Evaluator and Actuator instances are redefined in order to consider the pertinent Goal
and Task instances respectively.

After completing these changes in both model specifications and save their projects, they are integrated in
order to generate a complete specification that includes both traffic theories. This operation is achieved in the

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

12

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Platform specialisation main phase of the development process.
Themodel specification related to the factors presents two differentPerson instances (Driver andPedestrian).

The first instance is linked to the rootGoal instance (i.e. ArrivedFastDestination) through the Pursues reference.
This allows drivers to access the tree structure of goals with the associated tasks. Then, the second instance is
linked to the PArrivedFastDestination Goal using another Pursues reference. After that, each Person instance is
linked to its corresponding Evaluator root instance through the IsHarnessed andHarness references. Finally, the
two Actuator instances (one for each type of person) are respectively linked to Driver and Pedestrian instances
using the Utilizes reference.

The next step is the insertion of GeneralRelationship instances among the elements provided by both model
specifications. These instances are created to indicate which elements of the Mental and Environment clusters
impact on which Task instances and vice versa. For instance, the Darkness and
InclementWeather EComponent instances respectively affect Task instances SearchObstacle and Accelerate.

In the case of elements that belong to theMental or Environment clusters, the body of their calculateXValue
methods must be updated to consider these influences. Also, the body of the executeChosenTask method of the
Actuator instance has to be modified in order to alter the XValues attribute of the appropriate element related to
the executed task. All these aspects must be considered by the Evaluator instances. Fro this purpose, appropriate
code snippets must be added to the body of the evaluateGoals methods.

When this step is completed, users carry out the platform adaptation to MATSim. MATSim is based on
agents, but it only considers route configuration through a path to follow (i.e. the interactions and decisions of
participants in traffic are not contemplated). The platform environment offers different functionalities to work
with these elements.

The adaptation starts with users loading the platform and its dependencies in the code generator tool. This
adds them to its compiler.

The generation of the enhanced platform requires developing and adding a new class using the appropriate
graphical wizard provided by the code generator. This classmust combine the elements of themodel specification
and the platform through programming procedures (i.e. the model specification is encapsulated in a class which
is integrated in MATSim).

Some classes provided by MATSim must be extended in order to introduce the model specification structure
in the decision-making of its agents. Its original classes only plan the route, and now they have to achieve
multiple actions related to drivers and pedestrians (e.g. overtake or dodge) and also preserve their original
functionalities. They are integrated into the project using the code generator tool, which allows the compiler
considers them.

The Instructions attribute and the executeIntructions method of Task instances must be redefined. They
need to be specialised according to the requirements of MATSim and its source code. This allows producing the
suitable platform-specific actions to exhibit the suitable behaviour.

Once the specialisation of the source code has been done, a configuration file is created through the appropriate
wizard of the code generator tool. It contains the initial parameters of the XValues attributes of the elements that
belong to the Mental and Environment clusters. These parameters can be modified to obtain different levels
of impact among the elements. Another class is also generated in the code generator and integrated into the
project in order to load this configuration file into the simulation. Predefined classes are provided by the tool in
order to simplify this step. When these operations are completed, a new directory is generated through the code
generator. It contains the enhanced platform in a compressed file, the configuration file, sub-directories with its
associated documentation, and the libraries and dependencies it requires to run.

Finally, in the Simulationmain phase the new platform is set up and executed in a similar way to the original
MATSim. Traffic experts can then study the result according to their original needs.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

13

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

7. Related work
Road traffic simulation encompasses multiple areas of research. In this case, this approach is focused on two
main issues: how to model the aspects that affect people’ behaviour and the development process of simulations.
The first one considers the state of participants in traffic and their particular features, alongside the aspects
related to the environment that influence their behaviour. The second one describes how to organise development
projects for these simulations.

These simulations can be classified according to the way they consider the individuals involved in traffic.
Thus, microscopic simulations (Paruchuri et al., 2002) are focused on a particular individual or a small group
of them, while macroscopic simulations (Van Den Berg et al., 2003) contemplate the traffic flows. Mesoscopic
simulations (Tolujew and Alcalá, 2004) are hybrids based on the traffic flows but they are able to centre the
attention in an individual in a specific moment.

Regarding the existing road traffic simulation platforms, they mainly represent individuals through basic
entities that follow a predefined route (Transport Systems Planning and Transport Telematics Group, Transport
Planning Group and Senozon Company, 2015; Behrisch et al., 2011). Although some of them exhibit some
types of random behaviours, the organisation of their particular characteristics, the decision-making, and their
interaction with other participants or with the surrounded environment are contemplated in a simplified way.
Furthermore, there are roles of individuals involved in traffic that are commonly dismissed in these platforms
although pedestrians and the impact of passengers over drivers are also important aspects to consider. For
instance, (Visual Solutions, Incorporated, 2015) allows using pedestrians that carry out interactions with the
elements of the scenario and drivers, but the impact of the close individuals is not considered.

The proposedmetamodel allows describing themultiple roles of participants in traffic (i.e. drivers, pedestrians
and passengers). It is focused on microscopic models, as it is in this type of design where it can represent the
different artefacts of individuals (e.g. instances of Person and Vehicle). Mesoscopic models could also be
integrated in the ML with certain restrictions. The ABM approach considered by the TML eases this point, as
this is frequently adopted for this type of models (Vasirani and Ossowski, 2009).

Another point of discussion is related to the modelling of individuals involved in traffic. As there is not an
accepted standard, multiple approaches have been developed for different purposes. These models range from
simple ones, where only reactions are considered, to quite complex, where different levels of deliberation are
included. For instance, a simple approach is introduced in (Doniec et al., 2008), where agents adopt a set of
basic rules to react to the surrounding environment. Another more complex is described in (Burmeister et al.,
1997), where driver’s purposes and actions are organised in workflows. These allow considering the multiple
situations that can befall until individuals reach their destinations.

Themodelling of the decision and interactions achieved by the individuals can be organised through hierarchi-
cal architectures. These structures usually present multiple abstraction layers. For instance, (Michon, 1985)
proposes the Michon’s hierarchical control model for drivers, where their decisions are classified in different
levels. In the case of the metamodel, it provides a hierarchical composition of most of its concepts, but the
definition of these type of layer as required by hierarchical architectures is not considered.

The discussion in literature about which of the characteristics of participants and the environment have
influence on road traffic is an open issue. Approaches such as (Greenberg, 1959; Paruchuri et al., 2002) revise
some of these features. The metamodel is intentionally open to these considerations. Main meta-classes (e.g.
Vehicle or Knowledge) belong to the Environment or Mental clusters present a hierarchical composition in
order to classify a wide set of different elements or features. The metamodel also allows describing additional
aspects (i.e. via the GeneralElement meta-class) and influence relationships among elements (i.e. through the
GeneralRelationship meta-class), and specialising them using inheritance hierarchies. These capabilities ease
the customisation of the TML in order to cover the larger amount of demands of the road traffic domain.

In relation to the development process, most of revised approaches do not indicate the type of approach they

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

14

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

adopt. When it is specified, it is usually a traditional development process based on source code and manual
coding, where model specifications are used only to generate documentation. The benefits of MDE in this
domain have been already pointed out in the related literature (Fuentes-Fernández et al., 2012): explicit and
visual description of the information, development oriented to specific domain profiles (i.e. traffic experts), and
artefacts with higher abstraction and reusability.

8. Conclusions
This paper has presented a MDE framework for traffic simulations. It is focused on the behaviour of individuals
and their interactions among them and the environment. The framework has been designed with special attention
to ease the modification of existing elements and the integration of new ones. The other main goal is giving a
greater autonomy in the development of simulations to traffic experts, so they can participate more actively in
it. The framework includes the TML, two specific tools, and the development process.

The TML is focused on the participants in traffic. It adopts an approach based on agents (Janssen, 2005) and
incorporates the DVE model (Amditis et al., 2010) to organise its concepts. Extending this model, it assumes
that people can play three roles in traffic: drivers, pedestrians, and passengers. These roles determine their
potential relationships with the environment.

Elements in the TML are structured around the specification of different aspects of traffic problems. These
aspects are addressed through three conceptual clusters: Mental, Environment, and Interactive. The first one
is based on the theories of (Shinar, 1978) and describes the features and current knowledge of an individual or
group of them. The second one is based on the DVE model. This model considers that drivers interact with
their vehicles and the rest of the environment to obtain information to guide their actions. This cluster extends
this model to consider the other two types of people involved in traffic, pedestrians and passengers. Finally, the
Interactive cluster adapts elements and concepts from the agent paradigm (VanDer Hoek andWooldridge, 2008),
particularly notions related to decisions inspired by the BDI model (Rao and Georgeff, 1992) and methodologies
as Tropos (Bresciani et al., 2004) or INGENIAS (Pavón et al., 2005). This cluster models a perception, reasoning,
and action cycle based on goals that can be achieved through tasks.

The TML is oriented to provide a flexible and extensible conceptual framework in order to facilitate the
integration of different theories and aspects related to road traffic. To do this, it includes mechanisms to support
inheritance and composition hierarchies. Inheritance allows obtaining specialisations in the language concepts
(both entities and relationships). Composition supports establishing the parts of a specific at multiple nested
levels.

Supporting tools are built on top of the Eclipse MDE frameworks EMF (Steinberg et al., 2008) and GEF
(Rubel et al., 2011). The graphical editor allows the visual specification of models conforming to the TML. Its
implementation is a direct use of GEF. These specifications can be validated to guarantee its compliance. The
code generator carries out the transformations of model specifications to source code. It also provides through
graphical wizards a set of functionalities that guide users in the generation of specific source code for a target
traffic simulation platform.

Regarding the development process, it is an iterative and incremental procedure organised into five main
phases: Preliminary theory evaluation, Model design, Preliminary code generation, Platform specialisation,
and Simulation. The first phase evaluates the selected traffic theory and makes a preliminary specification model
only with the key concepts to consider. The second phase develops the specifications based on the approach of
the previous phase. The third one transforms the specifications to source code. This source code is modified to
complete the bodies of the predefined methods and add non-existent attributes and methods. Also, it develops
and codifies the mechanisms of influence between the instances of the elements that belong to the Mental and
Environment clusters. The fourth phase specialises the source code to a target platform. The results of this phase

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

15

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

can be two: a plug-in library directly embedded in the target platform, or an enhanced platform that contains the
original one with modifications in order to consider the new model specification. Finally, the fifth phase sets up
the target platform if necessary, and runs the simulation.

The case study illustrates the use of the MDE framework. The supporting tools were applied to create
a model specification according to a specific road traffic theory, its specialisation to the requirements of the
MATSim platform, and the generation of the source code associated. The MATSim platform presents a route
optimisation functionality that does not consider interactions among individuals and only generates a path to
follow. It is improved generating decision-making actions based on (Fernandez-Isabel and Fuentes-Fernandez,
2015; Gipps andMarksjö, 1985) through a goal-task hierarchical structure withOR and AND compositions. This
structure is managed by a perception, reasoning, and acting cycle specified with instances of the Evaluator and
Actuatormeta-classes. The model also integrates a taxonomy that considers the risk factors of young pedestrians
(Schieber and Thompson, 1996) and their relationships with drivers and the rest of the environment. Thus,
people’ actions in the resulting simulation are affected by these multiple factors, producing different behaviours
in the participants according to their values.

The presented approach has several open issues. The TML structure must be reviewed in order to simplify
it. For instance, a new abstract meta-class that extends from GeneralElement could be added to encapsulate
the XValues and XName attributes of the Mental and Environment clusters meta-classes. Moreover, a notion of
time could be added to the TML to model traffic events. Regarding tools, the current graphical editor could be
integrated in the code generator tool, centralising the development process in only one tool. In order to improve
the maintenance of tools when there are changes in the metamodel, the use of meta-editors is being currently
considered.

9. Acknowledgment
This work has been done in the context of the project “Social Ambient Assisting Living - Methods (SociAAL)”
(grant TIN2011-28335-C02-01) supported by the Spanish Ministry for Economy and Competitiveness, and
the research programme MOSI-AGIL-CM (grant S2013/ICE-3019) supported by the Autonomous Region of
Madrid and co-funded by EU Structural Funds FSE and FEDER.

10. References
Amditis, A., Pagle, K., Joshi, S., and Bekiaris, E., 2010. Driver–Vehicle–Environment monitoring for on-board

driver support systems: Lessons learned from design and implementation. Applied Ergonomics, 41(2):225–
235.

Behrisch, M., Bieker, L., Erdmann, J., and Krajzewicz, D., 2011. Sumo-simulation of urban mobility-an
overview. In SIMUL 2011, The Third International Conference on Advances in System Simulation, pages
55–60.

Bézivin, J., 2006. Model driven engineering: An emerging technical space. InGenerative and Transformational
Techniques in Software Engineering, pages 36–64. Springer.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J., 2004. Tropos: An agent-oriented
software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–236.

Burmeister, B., Haddadi, A., and Matylis, G., 1997. Application of multi-agent systems in traffic and
transportation. In IEEE Transactions on Software Engineering, volume 144, pages 51–60. IET.

Crooks, A., Castle, C., and Batty, M., 2008. Key challenges in agent-based modelling for geo-spatial simulation.
Computers, Environment and Urban Systems, 32(6):417–430.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

16

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Czarnecki, K. and Helsen, S., 2006. Feature-based survey of model transformation approaches. IBM Systems
Journal, 45(3):621–645.

Doherty, S. T., Andrey, J. C., and MacGregor, C., 1998. The situational risks of young drivers: The influence of
passengers, time of day and day of week on accident rates. Accident Analysis & Prevention, 30(1):45–52.

Doniec, A., Mandiau, R., Piechowiak, S., and Espié, S., 2008. A behavioral multi-agent model for road traffic
simulation. Engineering Applications of Artificial Intelligence, 21(8):1443–1454.

Ehlert, P. A. and Rothkrantz, L. J., 2001. A reactive driving agent for microscopic traffic simulation. In
Proceedings of the 15th European Simulation Multiconference, Prague, Czech Republic, pages 943–949.

Fernandez-Isabel, A. and Fuentes-Fernandez, R., 2015. Developing an integrative Modelling Language for
enhancing road traffic simulations. In Computer Science and Information Systems (FedCSIS), 2015
Federated Conference on, pages 1745–1756. IEEE.

France, R. and Rumpe, B., 2007. Model-driven development of complex software: A research roadmap. In
2007 Future of Software Engineering, pages 37–54. IEEE Computer Society.

Fuentes-Fernández, R., Hassan, S., Pavón, J., Galán, J. M., and López-Paredes, A., 2012. Metamodels for role-
driven agent-based modelling. Computational and Mathematical Organization Theory, 18(1):91–112.

Gipps, P. G. andMarksjö, B., 1985. Amicro-simulation model for pedestrian flows.Mathematics and computers
in simulation, 27(2):95–105.

Greenberg, H., 1959. An analysis of traffic flow. Operations Research, 7(1):79–85.
Gronback, R. C. and Merks, E., 2008. Model-driven architecture at eclipse. The European Journal for the

Informatics Professional.
Janssen, M. A., 2005. Agent-based modelling. Modelling in Ecological Economics, pages 155–172. ISBN:

978-1-78195-866-7.
Kent, S., 2002. Model driven engineering. In Integrated Formal Methods, pages 286–298. Springer.
Lind, J., 2001. Issues in agent-oriented software engineering. InProceedings of the First International Workshop

on Agent-Oriented Software Engineering (AOSE), pages 45–58. Springer.
Michon, J. A., 1985. A critical view of driver behavior models: what do we know, what should we do? In

Human Behavior and Traffic Safety, pages 485–524. Springer.
Object Management Group, 2003. eXtensible Modelling Language (XML), Version 1.1. http://www.omg.

org/spec/XML/. [Online: accessed 14-Dec-2015].
Object Management Group, 2008. Software & Systems Process Engineering Meta-Model (SPEM), Version 2.0.

http://www.omg.org/spec/SPEM/. [Online: accessed 14-Dec-2015].
Object Management Group, 2014. Object Constraint Language (OCL), Version 2.4. http://www.omg.org/

spec/OCL/. [Online: accessed 14-Dec-2015].
Object Management Group, 2015a. Meta-Object Facility (MOF) Core Specification, Version 2.5. http://www.

omg.org/spec/MOF/. [Online: accessed 14-Dec-2015].
Object Management Group, 2015b. Unified Modelling Language (UML), Version 2.5. http://www.omg.org/

spec/UML/. [Online: accessed 14-Dec-2015].
Object Management Group, 2015c. XMLMetadata Interchange (XMI), Version 2.5.1. http://www.omg.org/

spec/XMI/. [Online: accessed 14-Dec-2015].
Pappis, C. P. and Mamdani, E. H., 1977. A fuzzy logic controller for a traffic junction. Systems, Man and

Cybernetics, IEEE Transactions on, 7(10):707–717.
Paruchuri, P., Pullalarevu, A. R., and Karlapalem, K., 2002. Multi agent simulation of unorganized traffic. In

Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems:
Part 1, pages 176–183. ACM.

Pavón, J., Gómez-Sanz, J. J., and Fuentes, R., 2005. The INGENIAS methodology and tools. Agent-Oriented
Methodologies, 9:236–276.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

17

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es

http://www.omg.org/spec/XML/
http://www.omg.org/spec/XML/
http://www.omg.org/spec/SPEM/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/


Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Rao, A. S. and Georgeff, M. P., 1992. An abstract architecture for rational agents. In Proceedings of Knowledge
Representation and Reasoning (KR&R-92), volume 92, pages 439–449.

Rubel, D., Wren, J., and Clayberg, E., 2011. The Eclipse Graphical Editing Framework (GEF). Addison-Wesley
Professional.

Schieber, R. A. and Thompson, N., 1996. Developmental risk factors for childhood pedestrian injuries. Injury
Prevention, 2(3):228.

Shinar, D., 1978. Psychology on the Road. The Human Factor in Traffic Safety. John Wiley & Sons.
Shoham, Y., 1993. Agent-oriented programming. Artificial Intelligence, 60(1):51–92.
Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M., 2008. EMF: Eclipse Modeling Framework. Pearson

Education.
Tolujew, J. and Alcalá, F., 2004. A mesoscopic approach to modeling and simulation of pedestrian traffic flows.

In Proceedings of the 18th European Simulation Multi-Conference, SCS International, Ghent, pages 13–16.
Transport Systems Planning and Transport Telematics Group, Transport Planning Group and Senozon Company,

2015. MATSim,Multi-agent transport simulation. http://www.matsim.org/. [Online: accessed 14-Dec-
2015].

Van Den Berg, M., Hegyi, A., De Schutter, B., and Hellendoorn, J., 2003. A macroscopic traffic flow model
for integrated control of freeway and urban traffic networks. In Decision and Control, 2003. Proceedings.
42nd IEEE Conference on, volume 3, pages 2774–2779. IEEE.

Van Der Hoek, W. and Wooldridge, M., 2008. Multi-agent systems. Foundations of Artificial Intelligence,
3:887–928.

Vasirani, M. and Ossowski, S., 2009. A market-inspired approach to reservation-based urban road traffic
management. In Proceedings of The 8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 617–624. International Foundation for Autonomous Agents and Multiagent
Systems.

Visual Solutions, Incorporated, 2015. VisSim, A graphical language for simulation and model-based embedded
development. http://www.vissim.com. [Online: accessed 14-Dec-2015].

Wimmer, M. and Burgueño, L., 2013. Testing M2T/T2M Transformations. In Model-Driven Engineering
Languages and Systems, pages 203–219. Springer.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

18

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es

http://www.matsim.org/
http://www.vissim.com


Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 3: Excerpt of the Mental cluster

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

19

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 4: Excerpt of the Environment cluster.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

20

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 5: Excerpt of the Interactive cluster

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

21

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 6: Snapshot of the code generator interface.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

22

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 7: Main phases of the development process.

Figure 8: Excerpt of the element structure related to drivers.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

23

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es



Alberto Fernández-Isabel and Rubén Fuentes-Fernández Simulation of Road Traffic Applying MDE

Figure 9: Excerpt of the concept structure related to pedestrians.

Advances in Distributed CompuƟng and
ArƟficial Intelligence Journal
©Ediciones Universidad de Salamanca / cc by-nc-nd

24

ADCAIJ, Regular Issue Vol 4 n.2 (2015)
hƩp://adcaij.usal.es


	Introduction
	Model-Driven Engineering
	Traffic Modelling Language
	Mental cluster
	Environment cluster
	Interactive cluster

	Supporting tools
	Development process
	Case Study
	Related work
	Conclusions
	Acknowledgment
	References

