
SERGIO, A. T.; CARVALHO, S. A. L.; COSTA 
REGO, M. A. Q. 

On the Use of Compact Approaches in 
Evolution Strategies 

 
 
 
 

 

 
 

13 
 
 

Advances in Distributed  
Computing and Artificial  

Intelligence Journal 

Regular Issue 
Vol. 3 n. 4 Vol. 3 n. 4 
http://adcaij.usal.es 

 
KEYWORD 
 

 ABSTRACT 

 
Adaptive systems;  
Compact evolutionary; 
algorithms; Evolution 
strategies; Estimation of 
distribution algorithms 

  
Compact evolutionary algorithms have proven to be an efficient alternative for 
solving optimization problems in computing environments with low processing 
power. In this kind of solution, a probability distribution simulates the behavior 
of a population, thus looking for memory savings. Several compact algorithms 
have been proposed, including the compact genetic algorithm and compact 
differential evolution. This work aims to investigate the use of compact 
approaches in other important evolutionary algorithms: evolution strategies. 
This paper proposes two different approaches for compact versions of evolution 
strategies. Experiments were performed and the results analyzed. The results 
showed that, depending on the nature of problem, the use of the compact version 
of Evolution Strategies can be rewarding. 
 

 
 

  

1. Introduction 
According to IDC (International Data Corporation), sales of embedded computer systems generate more 
than US$1 trillion in revenue annually. This sum will double over the next four years. The Intelligent 
Systems, which are a part of the embedded systems, will be representing more than one fourth of the 
volume of all embedded systems by 2019 and will be capturing more than 75% of the revenue [IDC 
2014].  
In many real-world applications, an optimization problem must be solved even in situations where 
massive computational power is not available due to budget limitations and/or space. This is a typical 
situation in embedded systems like robotics and process control problems. To overcome these adversities, 
use of Compact Evolutionary Algorithms (cEAs) was proposed. 
A major constraint of embedded systems is the need of operation with low power consumption. The 
increase in the technology of processors, disks, memory, and communication has highlighted that the 
capacity of batteries is not following the growth of other technologies used in embedded systems 
[Paradiso, J. et al. 2005]. 
With less memory space needed, the embedded system can load more data applications than used to. 
About power consumption, when we have less memory addressed to an application, the probability to 
have memory miss is lower and the change of no need to save data in hard disk is higher. This can imply 
less power consumption. Carroll [Carroll, A. et al. 2010] showed that in some scenarios, memory RAM 
can overcome CPU in power consumption. 
To help optimizations problems to use less memory, Compact Evolutionary Algorithms can be used. 
They belong to the category of Estimation of Distribution Algorithms (EDAs) [Larrañaga, J. et al. 2002]. 
In this class of algorithms, a population is not stored and processed. To continue the optimization process, 
a static representation of individuals is used. This feature allows a smaller number of parameters stored in 
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the memory, so that this implementation requires less storage space when compared to standard 
evolutionary algorithms. Several cEAs have been proposed, including the Compact Genetic Algorithm 
(cGA) [Harik, J. et al. 1999] and the Compact Differential Evolution (cDE) [Mininno, J. et al. 2011]. 
Although Evolution Strategy (ES) solutions are widely used, no compact version for these algorithms has 
been proposed. This study proposes two versions of compact development strategies, c(1+1)-ES and c(μ, 
λ)-ES. The main objective is to investigate the use of compact approaches of this classic algorithm 
through the analysis of results obtained in benchmark databases. 
This paper is organized as follows: in session two, an overview of the compact algorithms and evolution 
strategies used as the basis for the approaches proposed in this paper is presented. Session three describes 
the algorithms c(1+1)-ES and c(μ, λ)-ES and discusses its operating principles and details. Session four 
shows the numerical results and is divided into two parts: the results of the algorithm c(1+1)-ES when 
compared with no compact version of it, and the results of c(μ, λ)-ES, with their proper comparisons. The 
conclusions and suggestions for future work are in section five. 

2. Background 

2.1. Compact Algorithms 
 
Compact algorithms are estimates of distribution algorithms that mimic the behavior of a population base 
by means of a probable representation of the population of candidate solutions. These algorithms have a 
similar behavior in respect to the algorithms based on the population, but require a much smaller memory 
[Mininno, J. et al. 2011]. 
The first cEA proposed was the Compact Genetic Algorithm (cGA), introduced by [Harik, J. et al. 1999]. 
The cGA simulates the behavior of a Genetic Algorithm (GA) with binary encoding [Holland, J. et al. 
1975]. The work proposed by [Harik, J. et al. 1999] demonstrate that performance of cGA is almost good 
as the GA one. As expected, the main advantage of a cGA with respect to a standard GA is the memory 
savings. 
In the cGA, a binary vector of length n is generated randomly with probability of 0.5 for each gene that 
can be of values 0 or 1. This vector that describes the probabilities initialized with n values equal to 0.5 is 
called Probability Vector (PV). 
Through the PV, two individuals are chosen and their fitness values are calculated. The solution 
characterized by higher performance changes PV based on a parameter called virtual Np, which represents 
the population. More specifically, if the winner solution in their gene i position is of value 1, while the 
losing solution value is 0 in the same position, the probability value at position i of the PV is increased by 
!
!"

. Otherwise, PV is reduced by !
!"

. If genes at i position exhibit the same value for both, for the winner 
and for the loser, the probability of  PV at position i is not modified. 
This study is based on the compact genetic algorithm for real values (cGAr) that was introduced by 
[Mininno, J. et al. 2011]. The cGAr is a compact algorithm inspired by cGA exporting compact logic to a 
domain of real values, obtaining an optimization algorithm with a high performance, despite the limited 
amount of memory. In cGAr the PV is not a vector, but a n × 2 matrix: 
 
 𝑃𝑉! = [𝜇! ,𝜎!] (1) 

 
Where μ and σ are, respectively, the vectors containing, for each design variable, mean and standard 
deviation of a Gauss’ probability distribution function truncated within the range [-1,1]. At the beginning 
of the optimization process, for each variable i, μ¹[i] = 0 and σ¹[i] = λ, the λ is a large positive constant (λ 
= 10). The initialization values of σ[i] are made to simulate a uniform distribution. Subsequently, an 
individual is chosen as elite. A new individual is generated and compared with the elite. cGAr solution 
also changes the bias of PV as in cGA. The update rule for each element of μ is given by: 
 
 𝜇!!! 𝑖 =   𝜇! 𝑖 +    !

!!
(𝑤𝑖𝑛𝑒𝑟 𝑖 −   𝑙𝑜𝑠𝑒𝑟[𝑖])   (2) 
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Where Np is the population size.  The update rule for σ is: 
 
   (𝜎!!![𝑖])!   =    (𝜎! 𝑖 )! + (𝜇! 𝑖 )! − (𝜇!!! 𝑖 )!  

+      !
!!
(𝑤𝑖𝑛𝑛𝑒𝑟[𝑖]! − 𝑙𝑜𝑠𝑒𝑟[𝑖]!)   

(3) 

 
μ is the mean of PV, σ is the standard deviation of PV, winner is the step of mutation that generated the 
best individual, and loser is the step of mutation that generated the worst individual. 
Other compact versions of genetic algorithms can be found in literature. The Extended Compact Genetic 
Algorithm (ecGA) was proposed by [Sastry, J. et al. 2000]. In ecGA, the probability distribution used is a 
class of models known as marginal probability model product. A hybrid version of ecGA with the Nelder-
Mead algorithm is proposed by [Sastry, J. et al. 2001] and the study of its scalability is shown by 
[SASTRY, J. et al. 2007]. Additionally, a memetic variant was presented in [BARAGLIA, J. et al. 2001], 
with the aim of increasing the convergence of the algorithm in the presence of a large number of 
dimensions. The various compact versions of genetic algorithms have been used in practical applications 
implemented in hardware, in which the computer resources can be smaller [Aporntewan, J. et al. 2001] 
[Jewajinda, J. et al. 2008]. 
With similar ideas to compact genetic algorithms, a compact version of the differential evolution called 
cDE is presented by [Mininno, J. et al. 2011]. In differential evolution, a set of vector parameters is 
randomly generated early in the process, covering the entire search space. The algorithm then recombines 
these vectors in order to minimize or maximize an objective function. The compact version of the 
differential evolution was applied to a case study related to the online training, a neural network 
implemented directly on a microcontroller. The numerical and experimental results confirmed the 
efficiency of the proposed algorithm. 
A study that uses another type of approach is [Neri, F. et al. 2013]. This work proposes a compact 
Particle Swarm Optimization (cPSO) algorithm based on PSO principles.  
 

2.2. Evolution Strategies 
 
Evolution Strategies (ES) are a subclass of direct search algorithms based on nature and belonging to the 
class of evolutionary algorithms [Eiben, J. et al. 2003]. ES use mutation, recombination and selection 
applied to a population of individuals containing candidate solutions in order to find better solutions 
iteratively. The algorithm was first proposed in 1974 [Shwefel, J. et al. 1974]. 
An evolutionary algorithm is usually described according to characteristics such as representation of 
individuals, recombination and mutation types and parent selection.  
ES are typically used for continuous optimization problems. The standard representation of individuals is 
given by a real vector x1, ..., xn, where each xi is a floating point variable. However, most modern ES 
algorithms use this vector only as a part of the genotype. Individuals may contain some strategy 
parameters influencing directly the mutation operation. Thus, the genotype can be completely defined by 
(x1, ..., xn,, σ1, ..., σnσ, α1, ..., αnα). 
The mutation operation is based on a normal distribution that requires the parameters: mean and standard 
deviation. In general, the engine uses a value for adding a noise, formed from this distribution. This value 
is called the step size of mutation, a part of the genotype to evolve. The operation of mutation can be 
accomplished in several ways. Below is a description of the mechanisms used in this work. 
In non-correlated with one step, a single value per individual is calculated by multiplying this value by a 
lognormal distribution mutation. Below, the update equations: 
 
 𝜎! = 𝜎 ∗ exp 𝜏 ∗ 𝑁 0, 1  (4) 
   
 𝑥!! = 𝑥! + 𝜎! ∗ 𝑁(0, 1) (5) 
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σ is the mutation step, xi a gene of the genotype and τ a learning rate, usually proportional to 1/n1/2. The 
mutation step is the same in each direction. 
In non-correlated mutation with n steps, there is a mutation step for each gene. The equations are as 
follows: 
 𝜎!! = 𝜎! ∗ exp 𝜏! ∗ 𝑁 0, 1 +   𝜏 ∗   𝑁!  (0, 1)  (6) 
   
 𝑥!! = 𝑥! + 𝜎!! ∗ 𝑁!(0, 1) (7) 
 
In this case, 𝜏!is the global learning rate, the same for all individuals. τ is the specific learning rate, 
allowing the mutation in many directions. The first one is proportional to 1/(2n)1/2 and the second one to 
1/(2n1/2)1/2. 
In the recombination of evolution strategies, two parents generate a child. Acting for position, the 
recombination may be intermediate or discrete. In the intermediate recombination, the children are 
formed by averaging the values of the parents. In the discrete recombination, the son is generated by 
selecting the gene of one parent, from a probability distribution. The strategy parameters (mutation) are 
typically recombined in an intermediate manner, while the objective parameters (genes) are recombined 
discretely [Eiben, J. et al. 2003]. Recombination also differs with respect to the parents used: two parents 
previously selected to generate a child or two different parents for each position. 
The parents are selected from a random uniform distribution. Thus, each individual has the same 
probability of being selected, regardless of their fitness. 
The classic versions of ES coexist with more modern versions. One of these newer algorithms is the 
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen, J. et al. 2006].  In this algorithm, 
the dependencies between variables in the probability distribution are represented by a covariance matrix. 
The CMA-ES takes this matrix into account when performing the adjustment operations. 
The Evolution Strategies are stronger at exploiting, to find the best local, where in Particle Swarm 
Optimization we have more exploration, stronger at global search. A hybrid algorithm is designed mainly 
to take the advantage of the balance between exploring and exploit. A hybrid version of Evolution 
Strategy with Particle Swarm Optimization was proposed by [Matsumura, Y. et al. 2013] and was applied 
to a dinosaur’s gait generation problem. Experimental results by Matsumura et al indicate that hybrid 
algorithm converges faster in the beginning phase and finds maximum fitness. 

3. Compact Evolution Strategies 
In the following session, the two proposed versions for compact evolution strategies will be presented. 
Basically, they differ in the representation of the population. 

3.1. C(1+1)-ES algorithm 
 
Since the evolution strategies were first proposed, several approaches were investigated by varying 
parameters such as the type of mutation and the organization of the population. Another important change 
is the mechanism of selection of the survivors. In general, these different mechanisms are known as (μ, λ) 
and (μ + λ). µ is the population size in a given iteration (the parents) and λ the offspring size. The first 
mechanism indicates that the population of the next iteration will not take into account the parents, and is 
therefore a non-elitist approach. In the second case, the next iteration population will be composed of 
both, the parents and the offspring. 
In the approach known as (1+1)-ES, the population is made up of only two individuals who are being 
adapted along the algorithm execution. It suggests a compact version for this approach and does not 
provide memory saving therefore. But the c(1+1)-ES (compact version of (1+1)-ES) was proposed to 
investigate the use of compact approaches in a simpler algorithm evolution strategy, checking that its 
performance is acceptable. 
The proposed algorithm is performed following the sequence of steps in Figure 1. 
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Fig. 1. c(1+1)-ES algorithm 

 
Differently from conventional strategy, (1+1)-ES, the initialization of individuals with this approach uses 
a Probability Vector (PV). This PV stores the mean and standard deviation that is used to generate the 
values of the genes of the individuals. This approach uses the PV to induce individuals to be generated in 
a promising area of the search space. At the end of each generation, the PV is updated according to the 
equations described in the rcGA algorithm (equations 2 and 3). 
In conventional (1+1)-ES, the individuals are randomly generated by a normal distribution of average 0 
and standard deviation 1, leaving at total random the value of the gene. By comparing these approaches, 
one can see that the compact version is more likely to generate more fit individuals. Over time, the 
generation of individuals is directed to a promising area and does not move randomly. 
The two approaches differ as mentioned above, in generation of individuals and use of PV. Other 
operators such as mutation, recombination and the evaluation function of fitness to each individual are 
equal. 
 

3.2. c(µ, λ)-ES algorithm 
 
Eiben and Smith [Eiben, J. et al. 2003] indicate that the mechanism that is not elitist in survivors’ 
selection is the most widely used and offers the best results. According to these authors, (μ, λ) should be 
preferable because it’s better in leave local optimum and move to promising regions, since it discards all 
parents and does not preserve outdated solutions. Additionally, by using the mechanism (μ + λ), bad 
mutation values may persist in the population for a long time. 
Given these issues, this paper also proposes an investigation of use of compact approaches in (μ, λ)-ES, 
this approach will be called c(μ, λ)-ES. The algorithm c(μ, λ)-ES is inspired in the rcGA and cDE to give 
to (μ, λ)-ES a compact treatment. Figure 2 shows a general description of c(μ, λ)-ES. 
First the PV is initialized with a mean and standard deviation. The average is generated from a uniform 
probability distribution between a lower and upper limit for each goal function. These limits are defined 
empirically. The standard deviation is generated from a normal distribution N(0, 1). The elite individual 
is also generated from a uniform distribution between the lower and upper limits of the objective 
function. The same logic is applied to the PV of mutation steps and elite mutation. The difference is in the 
limits. The mutation is given by -1 to 1 and in c(μ, λ)-ES the mutation approach is not correlated with the 
n steps. 
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Fig. 2. c(µ, λ)-ES algorithm 

 
After initialization of these vectors, the iterations are initiated corresponding to the number of 
generations. In each generation, the first step is to perform population recombination. Following the 
characteristics of rcGA and cDE, two parents are sampled from the population PV. The current individual 
is generated from the combination of these two parents. The combination may be intermediary or 
discrete. Then, similar logic is used for the generation of the current vector changes. Two parents are 
sampled from the PV mutations and recombined with intermediate or discrete approaches. 
At this generation point, the algorithm takes into memory a current individual and a vector of current 
mutation steps. Following the standard update rules of Evolution Strategies, the individual is mutated by 
the mutation current vector changes and the elite mutations vector. The current individual is updated by 
the best individual generated from these two mutations, and this information is used to update the PV 
mutations. The update is similar to what occurs in c(1 + 1)-ES, given by equations 1 and 2. 
After changing the current individual and the update of PV mutation steps, there is a competition between 
this individual and the elite individual. The result of this competition influences the population of PV 
update, again according to equations 1 and 2. All these operations are performed until the maximum 
number of generations is reached. 

4. Results 
To validate the results, the proposed algorithms were compared with respective non-compact versions. 
The c(1+1)-ES was compared with the (1+1)-ES and c(μ, λ)-ES was compared with the (μ, λ)-ES. The 
comparison was made by using the best fitness values achieved by algorithms in 10 functions. The 
functions used were, each one with dimension n = 2: Beale, Booth, Dixon, Griewank, Hump, Levy, 
Matyas, Rastrigin, Rosenbrock, Sphere. In all cases, the fitness is the function value for each problem. All 
optimizations functions are in [Surjanovic, S. et al. 2015]. 
To confer statistical validity to the comparisons, the unpaired Student’s t test [Efron 1969] was used after 
30 runs, with a confidence level of 95%. In tables 3 and 6, "+" indicates the case when the compact 
algorithm has overcome the traditional version at given function; an "=" indicates that the difference 
between the results is statistically irrelevant and, therefore, the algorithms have the same performance; a 
"-" indicates that the traditional version surpassed the compact approach. 
In addition, not only performance is considered, we also investigated memory consumption in proposed 
approaches. In Table 1 we can see that for (µ, λ)-ES our proposed c(µ, λ)-ES can reduce memory usage 
by half, but in contrast (1+1)-ES have the same memory usage as c(1+1)-ES with similar or even better 
performance for some function tests that we investigated.  
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Algorithm Memory Slots 

(1+1)-ES 2 
c(1+1)-ES 2 
(µ, λ)-ES 2Np 

c(µ, λ)-ES Np 

  

Table 1. Memory consumption 
 
 
 

4.1. c(1+1)-ES algorithm 
 

This session presents the results achieved by the algorithm c(1+1)-ES, the comparison with the original 
algorithm (1+1)-ES and the statistical test results to verify if the results are statistically equivalent. The 
compact algorithm was equivalent to conventional (1+1)–ES.  
An adapted strategy of not correlated mutation with mutation step 1 was used. In the compact approach, 
each individual gene has a σ representing the mutation step for that gene. The conventional approach uses 
a σ for all the same individual genes. An intermediate population recombination, an adapted mutation 
version of not correlated mutation with one mutation step and 100 generations steps were used for both 
algorithms. The parameters of each algorithm are presented in Table 2.  
 

 

Algorithm Parameter Name Value 
(1+1)-ES µ 1 
(1+1)-ES λ 1 
c(1+1)-ES µ 1 
c(1+1)-ES λ 1 

   

Table 2. Parameters of the algorithms 
 
Table 3 shows mean and standard deviations of the best fitnesses achieved by individuals. One can see 
that the values are very similar in the two approaches. 
The third column of Table 3 shows the validation of the results using the Student’s t test. One can see that 
in half of the functions the compact version of the algorithm was superior. In other functions, 
performance was equivalent, even if the absolute result of the compact version was better in all functions. 
Confirming that the first compact approach at least has equivalent performance to the conventional 
version, the next section shows the results for the compact version of a more sophisticated evolution 
strategy algorithm. 
 

4.2. c(µ, λ)-ES algorithm 
 
This session presents the results achieved by c(μ, λ)-ES and a comparison with the traditional version of 
the algorithm. For the traditional version of the algorithm, two sets of parameters were tested. The 
following parameters were selected according to indications of previous work or empirically. An discrete 
population recombination, an intermediate mutation steps recombination and 100 generations steps were 
used for (µ, λ)-ES-1, (µ, λ)-ES-2 and c(µ, λ)-ES algorithms. The lower limit for mutation step was -1 and 
the upper limit was 1 for all algorithms. The parameters of each algorithm are presented in Table 4. The 
number of generations and the upper and lower limits of the mutation steps were defined empirically. For 
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the type of population and mutation steps recombination, the indications of [Eiben, J. et al. 2003] were 
used. µ and λ were varied in order to justify a more fair comparison, as explained in the following 
paragraphs. 
 

 

Function (1+1)-ES c(1+1)-ES Student’s t Test 

Beale 2.402333 (4.499564) 0.692157 (0.604413) + 
Booth 3.024351 (6.463611) 0.006861 (1.255636) + 
Dixon 9.390236 (31.056936) 0.102423 (0.083324) = 
Griewank 0.025824 (0.034090) 0.014437 (0.018447) = 
Hump 89.627260 (302.804438) 0.171184 (0.226865) = 
Levy 1.812646 (2.706391) 0.013224 (0.017839) + 
Matyas 0.142203 (0.228759) 0.008207 (0.010866) + 
Rastrigin 19.088306 (19.322502) 2.427251 (1.640313) + 
Rosenbrock 49.222358 (219.097925) 2.154793 (6.462810) = 
Sphere 3.336067 (12.948437) 0.038378 (0.083356) = 
    

Table 3. Mean of best fitnesses 
 
 

 

Algorithm Parameter Name Value 
(µ, λ)-ES-1 µ 10 
(µ, λ)-ES-1 λ 10 
(µ, λ)-ES-2 µ 10 
(µ, λ)-ES-2 λ 20 

   

Table 4. Parameters of the algorithms 
 
 
Table 5 shows the mean of best fitnesses achieved by the algorithms in each tested function, in 30 runs. In 
brackets, standard deviation values are shown. Table 6 shows the statistical comparison between (μ, λ)-
ES-1 and c(μ, λ)-ES and, similarly, a comparison between (μ, λ)-ES-2 and c(μ, λ )-ES. 
 

 

Function (µ, λ)-ES-1 (µ, λ)-ES-2 c(µ, λ)-ES 

Beale 0.837853 (1.421673) 0.063001 (0.218540) 0.685472 
(1.703286) 

Booth 13.085368 (19.615617) 0.000698 
(0.000756) 

0.029533 
(0.023305) 

Dixon 1.526911 (4.876232) 0.000639 
(0.000761) 

0.017207 
(0.019740) 

Griewank 0.723866 (0.465882) 0.255029 
(0.264967) 

0.660719 
(0.668455) 

Hump 0.964940 (1.860968) 0.000641 
(0.000499) 

0.052358 
(0.145693) 

Levy 0.056244 (0.146464) 0.005408 
(0.018034) 

0.114306 
(0.430628) 

Matyas 0.389642 (0.494220) 0.000033 
(0.000048) 

0.001468 
(0.002028) 

Rastrigin 3.200705 (2.371614) 0.175241 
(0.186175) 

2.321291 
(1.428543) 

Rosenbrock 0.849357 
(4.434919) 

0.033554 
(0.066951) 

1.174561 
(2.063353) 
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Sphere 0.263091 (0.368627) 0.000170 
(0.000170) 

0.007260 
(0.007272) 

    

Table 5. Mean of best fitnesses 
 

By analyzing the tables, one can see that the proposed compact approach outperformed traditional ES in 
the first set of parameters, μ = 10 and λ = 10, in half of the test functions. In the other half, the difference 
was statistically irrelevant. In addition to the gain in the best fitness, it should be noted that the expected 
gain were due to the characteristics of a compact algorithm. The memory savings are evident, since in 
c(μ, λ)-ES the population is stored in a vector n x 2, being n the function dimension. 
However, it is well known and it has been found empirically that performance of the (μ, λ)-ES approach 
can improve. The most straightforward idea to improve fitness is to increase the population size. Eiben 
and Smith [EIBEN, J. et al. 2003] indicate that the (μ, λ) approaches of evolution strategies improve 
significantly when λ > μ. This is precisely the characteristic of the approach (μ, λ)-ES-2, where λ = 20 
and μ = 10. As expected, the performance improved significantly and c(μ, λ)-ES could not overcome the 
traditional ES with this set of parameters in any of the tested functions. 
 
 

Function (µ, λ)-ES-1 vs.  
c(µ, λ)-ES 

(µ, λ)-ES-2 VS. 
 c(µ, λ)-ES 

Beale = - 
Booth + - 
Dixon + - 
Griewank = - 

Hump + - 
Levy = - 
Matyas + - 
Rastrigin = - 
Rosenbrock = - 
Sphere + - 
   

Table 6. Student’s t test for validation 
 
Taking into account the results obtained in the tested functions, one can infer that the performance of a 
non-compact approach tends to be better than the compact approach when the appropriate parameters are 
used. This behavior is expected since the compact approaches are inclined to lose performance due to 
probability vector usage rather than storage of population in memory. The advantage of the compact 
approach, as found empirically is to save memory. But even when compared with the approach (μ, λ)-ES-
1 using a population size of 10, the performance of c(μ, λ)-ES was superior. 

5. Conclusions and Future Works 
This work introduced the concept of compact evolution strategy and proposed two variants of algorithms, 
c(1+1)-ES and the c(μ, λ)-ES. Both variants do not require powerful hardware in order to exhibit a high 
performance. On the contrary, the proposed algorithms make use of a limited amount of memory in order 
to perform optimization. 
The algorithm c(1+1)-ES proved to be equal to (1+1)-ES original, thus validating the use of a probability 
vector. c(μ, λ)-ES version, however, showed that its performance is lower when the (μ, λ)-ES uses a high 
λ value, i.e., generates a lot of chromosomes during playback and uses a large amount of memory. 
Nevertheless, on those occasions when the compact version has lower performance, there is a great 
saving of memory, when you have less access to memory you can save energy, showing the usefulness of 
compact algorithm when there are few computing resources and the solution found does not need to be 
the best. 
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A possible future work would be the implementation of the evolution strategy with correlated mutation 
and its comparison with other algorithms already proposed in this article. Another important point would 
be the application of this algorithm in a real implementation problem in hardware, reinforcing its 
advantage in memory economy. 
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