
Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

Special Issue #9
http://adcaij.usal.es

1

Advances in Distributed Computing
And Artificial Intelligence Journal

KEYWORDS ABSTRACT

Android malware detection
Kullback-Leibler Divergence
Back-off smoothing

Many recent reports suggest that malware applications cause high billing to
victims by sending and receiving hidden SMS messages. Given that, there is a
need to develop necessary technique to identify malicious SMS operations as
well as differentiate between good and bad SMS operations within applications.
In this paper, we apply Kullback-Leibler Divergence (KLD) as a distance metric
to identify the difference between good and bad SMS operations. We develop a
set of elements that represent sending or receiving of SMS messages, both
legitimately and maliciously. Then, we compare the divergence of the trained set
of elements. Our evaluation shows that the divergence between good and bad
applications remains significantly high, whereas between two applications
performing the same SMS operations remain low. We evaluate the proposed
KLD-based concept for identifying a set of malware applications. The initial
results show that our approach can identify all known malware and has less
false positive warning.

1 Introduction
Android has become the leading smartphone OS
in the world with staggering sales figure of 60
million phones in the third quarter of 2011, 50%
market share [AARON, D. B. 2011]. A recent
study shows that more than 50% of Android
mobile have unpatched vulnerabilities, opening
them up to malicious applications (malware)
and attacks. A compromised smartphone can
inflict severe damage to both users and the
cellular service provider. Malware applications
can make the phone partially or fully unusable,
cause unwanted billing, steal private
information, or infect every name in a user’s
phonebook [REZA, H. et al. 2012]. Recently, a
malware affected more than 100,000 Android
devices in China (known as MMarketPay). This
malware is a hidden application that appeared to
be legitimate and is designed to purchase
applications and contents without the consent of
the device users (victims). As a result, victims
saw a staggering amount of bills [BALDWIN,
C. 2012]. The incident prompted Google, the
developer of the Android OS, to introduce

stricter rules for applications on Android such as
naming of applications and banning applications
that disclose personal information without user
permission. An Android Short Message Service
(SMS) malware firm was fined £50,000 by the
UK premium phone services regulator
PhonepayPlus [PHONEPAYPLUS, 2013]. An
SMS is a text messaging service available on
most mobile devices and is a very popular
choice of communication. Among most known
malicious activities performed by malware,
SMS message sending and receiving operations
are the starting point to perform further
malicious activities. Given that, it is important
to ensure that functionalities related to sending
and receiving SMS messages are checked for
their potential malicious behaviors even before
applications are installed to reduce much of the
unwanted consequences.

This work is intended to identify malicious SMS
operations (both sending and receiving) in
Android applications. More specifically, we
address the following research question: Given
that we have an access to both legitimate and
malicious applications performing a specific

Android Malware Detection Using
Kullback-Leibler Divergence
Vanessa N. Cooper, Hisham M. Haddad, Hossain Shahriar
Department of Computer Science, Kennesaw State University, Kennesaw, Georgia, USA

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

2

Advances in Distributed Computing
And Artificial Intelligence Journal

functionality, how do we distinguish the good
behavior from the bad behavior? To answer this
question, in this paper, we propose Kullback-
Leibler Divergence (KLD) as a choice of
measure to differentiate SMS operations
between legitimate and malicious applications.

Our work is motivated by a number of works
that apply the concept of KLD as a measure to
solve a number of problems from various
domains. Our assumption is that KLD between
a good and malware application for a specific
functionality should be significantly higher than
that of another good application performing the
same functionality. However, to compute the
KLD between two applications, the following
two challenges arise: (i) identifying the specific
set of elements with the occurrence
probabilities, where the elements are relevant to
performing SMS operations in good and
malicious ways, and (ii) addressing the
computational issue inherent for KLD, where
zero probability for any element in a set would
result in an infinite KLD distance. This paper
addresses the above issues, and performs an
initial evaluation on the effectiveness of KLD as
a measure to differentiate between malware and
good applications.

This paper is organized as follows: Section 2
discusses the motivation of our approach.
Section 3 presents the theory and discussion of
related work; it includes an example application
of KLD-based measure to detect malware.
Section 4 discusses the results; finally, Section 5
concludes and discusses the future work.

2 Related Work
Bigi [BIGI, B. 2003] applied KLD to identify
authorship of documents. The approach first
builds a model of each document author by
aggregating documents generated by that
author. First, it develops a set of candidate
models. Then, for a given document of
unknown author, the approach finds the smallest
KLD between a known model and the
document. The model that is closest to the
document is selected as the author. Similar to
this work, we apply constant back-off
smoothing technique to address the missing

elements (or tokens derived from Java code of
the malware). Specifically, we compare the
KLD between the code level features captured
by population elements of an application and the
expected population obtained from benign
applications. The deviation, if exceeds a given
threshold value, provides an indication of the
presence of malware operation in an application.

Tapiador [TAPIADOR, J. et al. 2010] detected
masquerade attacks based on an anomaly-based
technique that compares a given request with
known normal request using KLD measure. In a
masquerade attack, an attacker steals credentials
of legitimate users and performs further
malicious actions using the credentials. The
KLD enables the detection of padding in
command sequences independent of the length
and position in a block of request. In contrast,
we apply KLD to detect malware activities
based on code level features.

Li [LI. H. et al. 2012] applied differential KLD
to detect anomalous data value in wireless
sensor networks. The network is divided into
clusters. In each cluster, the sensors remain
physically close to each other and sense similar
values. The outlier values are detected using
KLD. Sarkar [SARKAR, S. et al. 2007] applied
information theoretic measure including KLD to
measure the quality of modularization in non-
object oriented software systems. Fukui
[FUKUI, K. et al. 2010] measured the similarity
of events based on KLD and applied it in the
domain of fuel-cell study.

3 KLD-Based Approach
Instead of using heuristic-based approaches,
such as Euclidean Distance or other measures,
to compare an application with known sample
applications, this work uses a formal method
based on probabilistic models. It is assumed that
a hidden probabilistic model is generated for
each benign application (M_benign) and
malicious application (M_malicious). The
hypothesis is that the divergence between the
models M_benign and M_malicious should be
detectable. Then, KLD is used to evaluate the
divergence between the M_benign and
M_malicious models.

Special Issue #9
http://adcaij.usal.es

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

3

Advances in Distributed Computing
And Artificial Intelligence Journal

Since the hidden probabilistic models are
unknown, observable features generated from
either model are used to approximate the
model. For this purpose, features (f1 to f10) are
extracted. It is further assumed that each
application is generated by randomly sampling
(f1 to f10) from the hidden model. Since the
observed population is very limited, a
smoothing technique is needed to avoid zero
probability of feature observation. The KLD
computes the divergence between two given
probability distributions. Let us assume that P
and Q represent two probability distributions,
where

},...,{ ni ppP = (1)

},...,{ ni qqQ = (2)

Then, the KLD is defined as follows [COVER,
T. et al. 2006]:

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

i i

i
i q

p
pQPKLD 2log*),((3)

We start with a hypothesis that the KLD
between benign and malicious application for
performing a specific operation should be
relatively high [COOPER, V. N. 2014]. On the
other hand, the KLD among benign applications
performing the same operation should be
relatively low. This approach uses different
features to detect malicious applications. We
define feature elements from the source code
that relates to the primary purpose of the
application’s functionality. Using this
information, we are able to determine suspicious
malware applications. Our prototype
implementation analyzes the source code of a
suspected malware application in a secure
environment without running the malware
application on a mobile device.

We consider SMS message sending as a case
study for this work. For a given SMS
functionality, we identify the source code
responsible for invoking it along with source of
inputs. The malicious applications typically do
not accept inputs from users and mostly supplies
static values during the invocation of method

calls. On the other hand, the legitimate
applications, while performing the same
functionality, rely on user-supplied inputs. This
makes a difference between the behavior of a
malicious and a legitimate application. KLD can
be a suitable measure to understand it as an
automated process; hence, it can be used to
detect malicious applications. To compute the
KLD between two population sets (or
probability distributions), we need to define a
set of elements relevant to the specific SMS
operations and obtain a collection of legitimate
application samples to build P set. Now, given
that we have a new application (Q), we can then
find how divergent is the new application
compared to the P set with respect to SMS
operation to label the new application as
malware or good application.

Tables 1 and 2 show the list of 10 elements (f1-
f10) that we consider in building the population
of elements and compute their occurrence
probabilities from Android applications. Among
them, the first five elements are commonly
found to be legitimate ways of sending (f1-f4) or
receiving (f5) SMS messages (based on
extensive survey and reports from related work).

Type Name Description

 Benign

f1
SMS message is sent with
visual input, through even
handler method

f2

SmsManager object is
created, sendTxtMsg is
invoked, variable argument
is present

f3

Create Intent object, write
SMS message, variable
argument message, start
Activity

f4

Start activity with “smsto:”
string in Uri.parse method
and variable parameter for
SMS message

f5
Message delivery or
receiving status is notified

Table 1: SMS Operational Elements for Building Population
Set of Malicious Actions

Special Issue #9
http://adcaij.usal.es

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

4

Advances in Distributed Computing
And Artificial Intelligence Journal

Type Name Description

 Malicious

f6

SMS message is sent
without input from
visual interfaces, and in
presence or absence of
event handler method

f7

SmsManager object is
created, sendTxtMsg is
invoked, constant
argument present

f8

Using intent object,
putting SMS body, and
constant argument
message

f9

Start activity with
“smsto:” string in
Uri.parse method and
constant parameter
representing SMS
message

f10
Message delivery or
receiving status is not
notified

Table 2: SMS Operational Elements for Building Population
Set of Malicious Actions

For example, f1 represents sending SMS
message by creating a visual Action window
where a user can provide message and
destination number for sending a message. At
the Java source code level, we then look for the
following sequence of method call invocation:
setContentView() that allows for displaying of
an Action window on the screen, one or more
call of getText() to access the current values of
input from GUIs passed as SMS sending
operation argument, and the presence of the
event handler that invokes the text retrieval
operation and SMS sending operation. Good
applications send SMS messages using variables
as part of their arguments of the respective
method (sendTextMessage() and variable
argument) as shown in f2. An application may
rely on creating an Intent object and store SMS
messages as part of the method call argument
(putExtra) followed by launching the Activity
(f3). The Uri.parse() method can be invoked as
well for sending messages (f4).

For a given set of legitimate Android
applications, we compute the P set containing

the occurrence of f1 - f10 and the probability
distribution. Then, given a new Android
application we identify the Q set containing the
occurrence probability of f1 - f10 and see how
divergent the two sets are to understand the
closeness. The less divergence we find, the
closer the two sets, hence Q is identified to be
good application with respect to the specific
SMS operation. On the other hand, if the
distance is very high, then we label Q as
malware. As one or more elements from P and
Q may not have any occurrence (zero
probability), they need to be smoothed.

However, the challenge here is computing the
term pi * log2 (pi/qi). It can be rewritten as
subtraction of two terms: pi * log2(pi) – pi *
log2(qi). While we compute KLD (P, Q), if
either pi or qi is zero (no occurrence of
probability is observed from applications), then
the term becomes infinite, which results in KLD
(P, Q) to be zero. To address this issue, we
propose to apply a well-known smoothing
technique known as constant back-off [BIGI, B.
2003]. Here, all zero probability values in both
P and Q are substituted with a very negligible
constant value and all the non-zero values are
equally subtracted with the same constant
amount proportionally so that Equations (1) and
(2) are still satisfied. This simple step results in
two smoothed probability distributions denoted
as P' (derived from P) and Q' (derived from Q).
So, we essentially compute KLD (P', Q') to
avoid infinity problem instead of KLD (P, Q).

4 Results
We evaluated our approach as follows: first we
gather a set of legitimate Android applications
downloaded randomly from the web, where
each of the applications contains Java code for
performing SMS functionalities. To ensure
diversity in the test applications, selected
applications rely on different known techniques
of sending or receiving SMS messages
(SmsManager, putExtra for Intent, Uri.parse).
We have 17 applications in our data set to
construct the P set. For the Q set, we use one
application that we are comparing with the P
set. Table 3 shows the KLD between P and each
of the malware (Q). We show the results in

Special Issue #9
http://adcaij.usal.es

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

5

Advances in Distributed Computing
And Artificial Intelligence Journal

terms of P' and Q' (after smoothing the sets).
The value ranges between 12.47 and 17.25,
which provides a basis of threshold values for
consideration to detect new malware samples
for their benign nature or maliciousness.

Malware Application (Q') KLD (P', Q')

AndroidDogwar 16.93
DroidDeluxe 17.25
DroidDreamlight2 17.25
DroidKungFu2A 12.47
DroidSlasher_1_1.0.1 12.47
HippoSMS 12.47
Lovetrap 12.47
Spitmo 16.38
Zitmo 17.25
zj_NinjaChicken_other 12.47

Table 3: KLD Between Good (P') and Malware (Q')
Applications

Good Application (Q') KLD (P', Q')

Barcode Scanner 10.81
FxCamera 9.97
Huffington Post 11.82
My Currency – Converter 8.77
Skype 7.23
To-Do Calendar Planner 5.12
Viber 9.42
Virtual Table Tennis 3D 17.25
WhatsApp 12.32
YouTube 8.65

Table 4: KLD Between Good (P') and Good (Q')
Applications

To further complement our evaluation, we
randomly computed the KLD between the
trained samples (P) and another new set of good
applications performing SMS operations. Table
4 shows a snapshot of the obtained KLD values
showing the divergence between good and good
applications ranges between 5.12 and 17.25.
Our experiment led to one false-positive
warning. Considering the threshold values
obtained from malware analysis in Table 4
(12.47-17.25), we find that Virtual Table Tennis
3D application is labeled as malware. The other
nine applications are considered as benign.
Thus, KLD can be a suitable measure to identify

malware and benign applications for SMS
operations if the threshold of divergence is
considered carefully.

Here, we will demonstrate how another metric-
based approach will give less accurate results
when compared to applying our KLD-based
approach. The metric-based approach is defined
as follows:

A malicious application is defined as follows:

() ()51106 ffSumffSum −≥− (4)

A benign application is defined as follows:

() ()10651 ffSumffSum −≥− (5)

Application Sum
(f1-f5)

Sum
(f6-f10)

SMS_Android-Build-In-
SMS-Application-Example 0 1

SMS_Android-Send-SMS-
Example 3 0

SMS_AndroidSMSExampl
e_1 3 0

SMS_AndroidSMSExampl
e_2 1 0

SMS_apriorit_SecureMess
ages 0 0

SMS_Cloud SMS 1 0
SMS_Free SMS India 8 2
SMS_GO SMS Pro 11 2
SMS_Handcent SMS 0 0
SMS_javacodegeeks_Andr
oidSMSExample_1 3 0

SMS_MightyText.src 8 1
SMS_mkyong-Android-
Send-SMS-Example 3 0

SMS_mkyoung-Android-
Build-In-SMS-
Application-Example

0 1

SMS_msatpathy_SMSTest 6 1
SMS_Ninja SMS 0 1
SMS_SecureMessages 0 0
SMS_SMSTest 6 1
Total 53 10

Table 5: Sum of Elements in the P Set

Special Issue #9
http://adcaij.usal.es

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

6

Advances in Distributed Computing
And Artificial Intelligence Journal

Table 5 compares the sum of the benign,
Sum(f1-f5), elements with the sum of the
malicious, Sum(f6-f10), elements. We see that
this metric-based approach does show that the
total sum for all benign elements is greater than
all of the malicious elements. When we
compare the sums for each of the applications in
the P set, we also see that most of the
applications have a higher Sum(f1-f5)value that
indicates the application is harmless. However,
we also see in Table 5 that Sum(f1-f5)is not
always greater than Sum(f6-f10). Three of the
applications had a Sum(f1-f5)value that was less
than the Sum(f6-f10). Our KLD-Based approach
shows that all of the applications in the P set
were within the benign threshold of values.

P set Correct 14/17
Incorrect 3/17

Table 6: Accuracy of Metric-Based Approach for the P Set

Next, we tested the metric-based approach on
the suspected malicious applications in the Q
set. Table 7 compares the sum of the benign,
Sum(f1-f5), elements with the sum of the
malicious, Sum(f6-f10), elements. As shown in
Table 3, our KLD-Based approach shows that
all of the applications in the malicious Q set fall
within the threshold of values. In Table 8, we
see that the accuracy of the metric-based
approach continues to decrease even though it
still holds true to our hypothesis.

Application Sum
(f1-f5)

Sum
(f6-f10)

AndroidDogwar 0 2
DroidDeluxe 0 1
DroidDreamlight2 0 1
DroidKungFu2A 0 0
DroidSlasher_1_1.0.1 1 1
HippoSMS 0 1
Lovetrap 1 1
Spitmo 0 2
Zitmo 0 1
zj_NinjaChicken_other 1 1

Table 7: Sum of Elements in the Malicious Q Set

Malicious Q
set

Correct 6/10
Incorrect 4/10

Table 8: Accuracy of Metric-Based Approach for the Q Set

Lastly, we tested the metric-based approach on
the suspected benign applications in the other Q
set. Table 9 compares the sum of the benign,
Sum(f1-f5), elements with the sum of the
malicious, Sum(f6-f10), elements.

Application Sum
(f1-f5)

Sum
(f6-f10)

Barcode Scanner 0 1
FxCamera 0 0
Huffington Post 0 0
My Currency – Converter 0 0
Skype 0 0
To-Do Calendar Planner 1 0
Viber 1 0
Virtual Table Tennis 3D 0 1
WhatsApp 0 0
YouTube 0 1

Table 9: Sum of Elements in the Benign Q Set

In Table 10, we see that the accuracy of the
metric-based approach is poor in comparison to
our KLD-Based approach. We received only
one false-positive warning for the Virtual Table
Tennis 3D application.

Benign
Q set

Correct 7/10
Incorrect 3/10

Table 10: Accuracy of Metric-Based Approach for the Q Set

Currently, our KLD-based approach is being
executed as a desktop application. The average
time to build our P set was a total of 0.146
seconds. The average time to build our
malicious Q set was a total of 0.153 seconds.
The average time to build our benign Q set was
a total of 0.113 seconds. These average times
are considered to be fairly efficient since they
do not require an excessive amount of time to
analyze the chosen applications and generate the
CSV file that tracks the occurrence of the
population elements. This performance would
change once transitioning from an offline
desktop application to a running service on a
mobile device.

Special Issue #9
http://adcaij.usal.es

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

7

Advances in Distributed Computing
And Artificial Intelligence Journal

The offline analysis of scanning Android
applications does not require an Internet
connection. However, as malicious activities
continue to evolve, the P set would require
updating. Our initial intention for the
deployment phase was to distribute the
approach as a running service on the Android
device. After careful consideration, we realized
that the large variety of device hardware would
affect the consistency of implementation and
efficiency. The added constraint of declining
battery power and device lifespan would deter
users from running our service on their devices.
In our future research, we plan to deploy our
approach as a service in the cloud environment
in order to maximize performance.

5 Conclusion
In this work, we propose to choose the
Kullback-Liebler Divergence (KLD) as a
measurement to differentiate between legitimate
and malicious application behavior at source
code level. The methodology builds probability
distributions from the available source code of
an application performing a specific
functionality. We show some highlights of
choosing possible elements of interest that can
be useful to differentiate between a benign and
malicious application behavior. Then, we apply
the KLD measure to show that the difference
between a legitimate and malicious application
is infinite, whereas the difference between two
legitimate applications is close to zero.

We believe that the application of KLD is very
practical and simply deduces the elements of
population for each functionality type into a
threshold of values (which can identify a simple
pass/fail). False positives were also investigated
to ensure that the range of values is correct for
both benign and malignant applications. We
conclude that our application implementation of
the KLD method accounts for more mitigation
techniques. By examining the Android Manifest
file (permission analysis), we can determine the
intended functionality of each application and

automatically generate its elements of
population from a predetermined list. Using that
information, our static analysis of the source
code will yield very accurate results by
checking for obfuscated code. Also, this is being
done in an isolated environment (sandboxing)
and the application is not being dynamically
executed which greatly reduces risk of infection.

Our future research includes theoretical and
implementation goals. On the theoretical side,
our goals are: (i) choosing an appropriate
smoothing technique to practically compute
KLD, when one of the elements occurrence
probability is found to be zero, (ii) finding more
elements of population to cover more cases, (iii)
documenting all possible known code patterns
for performing specific functionality of interests
that are common in malware applications, and
(iv) validating our hypothesis using a larger
collection of sample Android applications
consisting of both legitimate and malicious
behaviors.

On the implementation side, the conditions that
we used to check the occurrence of population
elements may not be exhaustive and accurate for
all types of malware activities. However, we
plan to create an interface where the end user
can specify the population elements based on
the activity. Our future goal includes automating
the process for decompiling the APK file and
analyzing the source code. We also plan to
research the possibilities of deploying the
application as a service in the cloud
environment.

6 Acknowledgment
This work has been partially funded by a
Graduate Research Assistantship from the
School of Graduate Studies, Kennesaw State
University, Georgia, USA.

Special Issue #9
http://adcaij.usal.es

Cooper, V. N. et al Android Malware Detection Using
Kullback-Leibler Divergence

8

Advances in Distributed Computing
And Artificial Intelligence Journal

7 References
[AARON, D. B. 2011] AARON, D. B. (2011, November 17). Google android passes 50% of

Smartphone Sales. Bloomberg Businessweek. Retrieved August 21, 2013,
from http://www.businessweek.com/news/2011-11-17/google2android-
passes-50-of-smartphone-sales-gartner-says.html.

[BALDWIN, C. 2012] Baldwin, C. (2012, September 17). Android devices vulnerable to security
breaches. ComputerWeekly.com. Retrieved August 21, 2013, from
http://www.computerweekly.com/news/2240163351/Android-devices-
vulnerable-to-security-breaches.

[BIGI, B. 2003] Bigi, B. (2003). Using Kullback-Leibler Distance for Text Categorization.
Lecture Notes in Computer Science (LNCS). Volume 2633, 2003, pp. 305-319.

[COOPER, V. N. 2014] Cooper, V. N. (2014). Android Malware Detection Based on Kullback-Leibler
Divergence”, Invited Student Research Abstract to the SAC 2014 Student
Research Competition (SRC) program. Proceedings of the ACM-
SIGAPP Conference on Applied Computing (SAC 2014), Gyeongju, Korea,
March 2014, pp. 1695-1696.

[COVER, T. et al.2006] Cover, T.& Thomas, J. Elements of Information Theory, John Wiley and Sons,
2006.

[FUKUI, K. et al. 2010] Fukui, K., Sato, K., Mizusaki, J., & Numao, M. (2010). Kullback-Leibler
Divergence Based Kernel SOM for Visualization of Damage Process on Fuel
Cells. IEEE International Conference on Tools with Artificial Intelligence,
October 2010, pp. 233-240.

[LI. H. et al. 2012] Li, G. & Wang, Y. (2012). Differential Kullback-Leibler Divergence Based
Anomaly Detection Scheme in Sensor Networks. In Proceedings of 12th IEEE
International Conference on Computer and Information Technology (CIT),
October 2012, pp. 966-970.

[REZA. H. et al. 2012] Reza, H. & Mazumder, N. (2012). A Secure Software Architecture for Mobile
Computing. In Proceedings of the 9th International Conference on Information
Technology- New Generations (ITNG 2012), Las Vegas, NV, pp. 566-571.

[PHONEPAYPLUS, 2013] PhonePay Plus. (2013). Phonepayplus.org.uk. Retrieved August 21, 2013, from
http://www.phonepayplus.org.uk.

[SARKAR, S. et al. 2007]

[TAPIADOR, J. et al. 2010]

Sarkar, S., Rama, G. & Kak, A. (2007). API-Based and Information-Theoretic
Metrics for Measuring the Quality of Software Modularization. IEEE
Transactions on Software Engineering, January 2007, Vol. 33, No. 1, pp. 14-32.
Tapiador, J. & Clark, J. (2010). Information-Theoretic Detection of Masquerade
Mimicry Attacks. In Proceedings of 4th International Conference on Network and
System Security (NSS), September 2010, pp. 183-190.

.

Special Issue #9
http://adcaij.usal.es

