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Many recent reports suggest that malware applications cause high billing to 
victims by sending and receiving hidden SMS messages. Given that, there is a 
need to develop necessary technique to identify malicious SMS operations as 
well as differentiate between good and bad SMS operations within applications. 
In this paper, we apply Kullback-Leibler Divergence (KLD) as a distance metric 
to identify the difference between good and bad SMS operations. We develop a 
set of elements that represent sending or receiving of SMS messages, both 
legitimately and maliciously. Then, we compare the divergence of the trained set 
of elements. Our evaluation shows that the divergence between good and bad 
applications remains significantly high, whereas between two applications 
performing the same SMS operations remain low. We evaluate the proposed 
KLD-based concept for identifying a set of malware applications. The initial 
results show that our approach can identify all known malware and has less 
false positive warning.  

1 Introduction 
Android has become the leading smartphone OS 
in the world with staggering sales figure of 60 
million phones in the third quarter of 2011, 50% 
market share [AARON, D. B. 2011]. A recent 
study shows that more than 50% of Android 
mobile have unpatched vulnerabilities, opening 
them up to malicious applications (malware) 
and attacks. A compromised smartphone can 
inflict severe damage to both users and the 
cellular service provider. Malware applications 
can make the phone partially or fully unusable, 
cause unwanted billing, steal private 
information, or infect every name in a user’s 
phonebook [REZA, H. et al. 2012]. Recently, a 
malware affected more than 100,000 Android 
devices in China (known as MMarketPay). This 
malware is a hidden application that appeared to 
be legitimate and is designed to purchase 
applications and contents without the consent of 
the device users (victims). As a result, victims 
saw a staggering amount of bills [BALDWIN, 
C. 2012]. The incident prompted Google, the 
developer of the Android OS, to introduce 

stricter rules for applications on Android such as 
naming of applications and banning applications 
that disclose personal information without user 
permission. An Android Short Message Service 
(SMS) malware firm was fined £50,000 by the 
UK premium phone services regulator 
PhonepayPlus [PHONEPAYPLUS, 2013]. An 
SMS is a text messaging service available on 
most mobile devices and is a very popular 
choice of communication. Among most known 
malicious activities performed by malware, 
SMS message sending and receiving operations 
are the starting point to perform further 
malicious activities. Given that, it is important 
to ensure that functionalities related to sending 
and receiving SMS messages are checked for 
their potential malicious behaviors even before 
applications are installed to reduce much of the 
unwanted consequences. 

This work is intended to identify malicious SMS 
operations (both sending and receiving) in 
Android applications. More specifically, we 
address the following research question: Given 
that we have an access to both legitimate and 
malicious applications performing a specific 
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functionality, how do we distinguish the good 
behavior from the bad behavior? To answer this 
question, in this paper, we propose Kullback-
Leibler Divergence (KLD) as a choice of 
measure to differentiate SMS operations 
between legitimate and malicious applications.  

Our work is motivated by a number of works 
that apply the concept of KLD as a measure to 
solve a number of problems from various 
domains. Our assumption is that KLD between 
a good and malware application for a specific 
functionality should be significantly higher than 
that of another good application performing the 
same functionality. However, to compute the 
KLD between two applications, the following 
two challenges arise: (i) identifying the specific 
set of elements with the occurrence 
probabilities, where the elements are relevant to 
performing SMS operations in good and 
malicious ways, and (ii) addressing the 
computational issue inherent for KLD, where 
zero probability for any element in a set would 
result in an infinite KLD distance. This paper 
addresses the above issues, and performs an 
initial evaluation on the effectiveness of KLD as 
a measure to differentiate between malware and 
good applications.  

This paper is organized as follows: Section 2 
discusses the motivation of our approach. 
Section 3 presents the theory and discussion of 
related work; it includes an example application 
of KLD-based measure to detect malware. 
Section 4 discusses the results; finally, Section 5 
concludes and discusses the future work. 

2 Related Work 
Bigi [BIGI, B. 2003] applied KLD to identify 
authorship of documents. The approach first 
builds a model of each document author by 
aggregating documents generated by that 
author. First, it develops a set of candidate 
models. Then, for a given document of 
unknown author, the approach finds the smallest 
KLD between a known model and the 
document. The model that is closest to the 
document is selected as the author. Similar to 
this work, we apply constant back-off 
smoothing technique to address the missing 

elements (or tokens derived from Java code of 
the malware). Specifically, we compare the 
KLD between the code level features captured 
by population elements of an application and the 
expected population obtained from benign 
applications. The deviation, if exceeds a given 
threshold value, provides an indication of the 
presence of malware operation in an application. 

Tapiador [TAPIADOR, J. et al. 2010] detected 
masquerade attacks based on an anomaly-based 
technique that compares a given request with 
known normal request using KLD measure. In a 
masquerade attack, an attacker steals credentials 
of legitimate users and performs further 
malicious actions using the credentials. The 
KLD enables the detection of padding in 
command sequences independent of the length 
and position in a block of request. In contrast, 
we apply KLD to detect malware activities 
based on code level features.  

Li [LI. H. et al. 2012] applied differential KLD 
to detect anomalous data value in wireless 
sensor networks. The network is divided into 
clusters. In each cluster, the sensors remain 
physically close to each other and sense similar 
values. The outlier values are detected using 
KLD. Sarkar [SARKAR, S. et al. 2007] applied 
information theoretic measure including KLD to 
measure the quality of modularization in non-
object oriented software systems. Fukui 
[FUKUI, K. et al. 2010] measured the similarity 
of events based on KLD and applied it in the 
domain of fuel-cell study. 

3 KLD-Based Approach 
Instead of using heuristic-based approaches, 
such as Euclidean Distance or other measures, 
to compare an application with known sample 
applications, this work uses a formal method 
based on probabilistic models. It is assumed that 
a hidden probabilistic model is generated for 
each benign application (M_benign) and 
malicious application (M_malicious). The 
hypothesis is that the divergence between the 
models M_benign and M_malicious should be 
detectable. Then, KLD is used to evaluate the 
divergence between the M_benign and 
M_malicious models. 
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Since the hidden probabilistic models are 
unknown, observable features generated from 
either model are used to approximate the 
model.  For this purpose, features (f1 to f10) are 
extracted.  It is further assumed that each 
application is generated by randomly sampling 
(f1 to f10) from the hidden model. Since the 
observed population is very limited, a 
smoothing technique is needed to avoid zero 
probability of feature observation. The KLD 
computes the divergence between two given 
probability distributions. Let us assume that P 
and Q represent two probability distributions, 
where 

},...,{ ni ppP =  (1) 

},...,{ ni qqQ =  (2) 

Then, the KLD is defined as follows [COVER,
T. et al. 2006]: 
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We start with a hypothesis that the KLD 
between benign and malicious application for 
performing a specific operation should be 
relatively high [COOPER, V. N. 2014]. On the 
other hand, the KLD among benign applications 
performing the same operation should be 
relatively low. This approach uses different 
features to detect malicious applications. We 
define feature elements from the source code 
that relates to the primary purpose of the 
application’s functionality. Using this 
information, we are able to determine suspicious 
malware applications. Our prototype 
implementation analyzes the source code of a 
suspected malware application in a secure 
environment without running the malware 
application on a mobile device.  

We consider SMS message sending as a case 
study for this work. For a given SMS 
functionality, we identify the source code 
responsible for invoking it along with source of 
inputs. The malicious applications typically do 
not accept inputs from users and mostly supplies 
static values during the invocation of method 

calls. On the other hand, the legitimate 
applications, while performing the same 
functionality, rely on user-supplied inputs. This 
makes a difference between the behavior of a 
malicious and a legitimate application. KLD can 
be a suitable measure to understand it as an 
automated process; hence, it can be used to 
detect malicious applications. To compute the 
KLD between two population sets (or 
probability distributions), we need to define a 
set of elements relevant to the specific SMS 
operations and obtain a collection of legitimate 
application samples to build P set. Now, given 
that we have a new application (Q), we can then 
find how divergent is the new application 
compared to the P set with respect to SMS 
operation to label the new application as 
malware or good application. 

Tables 1 and 2 show the list of 10 elements (f1-
f10) that we consider in building the population 
of elements and compute their occurrence 
probabilities from Android applications. Among 
them, the first five elements are commonly 
found to be legitimate ways of sending (f1-f4) or 
receiving (f5) SMS messages (based on 
extensive survey and reports from related work). 

Type Name Description 

 Benign 

f1 
SMS message is sent with 
visual input, through even 
handler method 

f2 

SmsManager object is 
created, sendTxtMsg is 
invoked, variable argument 
is present 

f3 

Create Intent object, write 
SMS message, variable 
argument message, start 
Activity 

f4 

Start activity with “smsto:” 
string in Uri.parse method 
and variable parameter for 
SMS message 

f5 
Message delivery or 
receiving status is notified 

Table 1: SMS Operational Elements for Building Population 
Set of Malicious Actions 
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Type Name Description 

 Malicious 

f6 

SMS message is sent 
without input from 
visual interfaces, and in 
presence or absence of 
event handler method 

f7 

SmsManager object is 
created, sendTxtMsg is 
invoked, constant 
argument present 

f8 

Using intent object, 
putting SMS body, and 
constant argument 
message 

f9 

Start activity with 
“smsto:” string in 
Uri.parse method and 
constant parameter 
representing SMS 
message 

f10 
Message delivery or 
receiving status is not 
notified 

Table 2: SMS Operational Elements for Building Population 
Set of Malicious Actions 

For example, f1 represents sending SMS 
message by creating a visual Action window 
where a user can provide message and 
destination number for sending a message. At 
the Java source code level, we then look for the 
following sequence of method call invocation: 
setContentView() that allows for displaying of 
an Action window on the screen, one or more 
call of getText() to access the current values of 
input from GUIs passed as SMS sending 
operation argument, and the presence of the 
event handler that invokes the text retrieval 
operation and SMS sending operation. Good 
applications send SMS messages using variables 
as part of their arguments of the respective 
method (sendTextMessage() and variable 
argument) as shown in f2. An application may 
rely on creating an Intent object and store SMS 
messages as part of the method call argument 
(putExtra) followed by launching the Activity 
(f3). The Uri.parse() method can be invoked as 
well for sending messages (f4). 

For a given set of legitimate Android 
applications, we compute the P set containing 

the occurrence of f1 - f10 and the probability 
distribution. Then, given a new Android 
application we identify the Q set containing the 
occurrence probability of f1 - f10 and see how 
divergent the two sets are to understand the 
closeness. The less divergence we find, the 
closer the two sets, hence Q is identified to be 
good application with respect to the specific 
SMS operation. On the other hand, if the 
distance is very high, then we label Q as 
malware. As one or more elements from P and 
Q may not have any occurrence (zero 
probability), they need to be smoothed. 

However, the challenge here is computing the 
term pi * log2 (pi/qi). It can be rewritten as 
subtraction of two terms: pi * log2(pi) – pi * 
log2(qi). While we compute KLD (P, Q), if 
either pi or qi is zero (no occurrence of 
probability is observed from applications), then 
the term becomes infinite, which results in KLD 
(P, Q) to be zero. To address this issue, we 
propose to apply a well-known smoothing 
technique known as constant back-off [BIGI, B. 
2003]. Here, all zero probability values in both 
P and Q are substituted with a very negligible 
constant value and all the non-zero values are 
equally subtracted with the same constant 
amount proportionally so that Equations (1) and 
(2) are still satisfied. This simple step results in 
two smoothed probability distributions denoted 
as P' (derived from P) and Q' (derived from Q). 
So, we essentially compute KLD (P', Q') to 
avoid infinity problem instead of KLD (P, Q).  

4 Results 
We evaluated our approach as follows: first we 
gather a set of legitimate Android applications 
downloaded randomly from the web, where 
each of the applications contains Java code for 
performing SMS functionalities. To ensure 
diversity in the test applications, selected 
applications rely on different known techniques 
of sending or receiving SMS messages 
(SmsManager, putExtra for Intent, Uri.parse). 
We have 17 applications in our data set to 
construct the P set.  For the Q set, we use one 
application that we are comparing with the P 
set. Table 3 shows the KLD between P and each 
of the malware (Q). We show the results in 
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terms of P' and Q' (after smoothing the sets). 
The value ranges between 12.47 and 17.25, 
which provides a basis of threshold values for 
consideration to detect new malware samples 
for their benign nature or maliciousness. 

Malware Application (Q') KLD (P', Q') 

AndroidDogwar 16.93 
DroidDeluxe 17.25 
DroidDreamlight2 17.25 
DroidKungFu2A 12.47 
DroidSlasher_1_1.0.1 12.47 
HippoSMS 12.47 
Lovetrap 12.47 
Spitmo 16.38 
Zitmo 17.25 
zj_NinjaChicken_other 12.47 

Table 3: KLD Between Good (P') and Malware (Q') 
Applications 

Good Application (Q') KLD (P', Q') 

Barcode Scanner 10.81 
FxCamera 9.97 
Huffington Post 11.82 
My Currency – Converter 8.77 
Skype 7.23 
To-Do Calendar Planner 5.12 
Viber 9.42 
Virtual Table Tennis 3D 17.25 
WhatsApp 12.32 
YouTube 8.65 

Table 4: KLD Between Good (P') and Good (Q') 
Applications 

To further complement our evaluation, we 
randomly computed the KLD between the 
trained samples (P) and another new set of good 
applications performing SMS operations. Table 
4 shows a snapshot of the obtained KLD values 
showing the divergence between good and good 
applications ranges between 5.12 and 17.25. 
Our experiment led to one false-positive 
warning. Considering the threshold values 
obtained from malware analysis in Table 4 
(12.47-17.25), we find that Virtual Table Tennis 
3D application is labeled as malware. The other 
nine applications are considered as benign. 
Thus, KLD can be a suitable measure to identify 

malware and benign applications for SMS 
operations if the threshold of divergence is 
considered carefully. 

Here, we will demonstrate how another metric-
based approach will give less accurate results 
when compared to applying our KLD-based 
approach. The metric-based approach is defined 
as follows: 

A malicious application is defined as follows:

( ) ( )51106  ffSumffSum −≥−  (4) 

A benign application is defined as follows:

( ) ( )10651  ffSumffSum −≥−  (5) 

Application Sum 
(f1-f5) 

Sum 
(f6-f10) 

SMS_Android-Build-In-
SMS-Application-Example 0 1 

SMS_Android-Send-SMS-
Example 3 0 

SMS_AndroidSMSExampl
e_1 3 0 

SMS_AndroidSMSExampl
e_2 1 0 

SMS_apriorit_SecureMess
ages 0 0 

SMS_Cloud SMS 1 0 
SMS_Free SMS India 8 2 
SMS_GO SMS Pro 11 2 
SMS_Handcent SMS 0 0 
SMS_javacodegeeks_Andr
oidSMSExample_1 3 0 

SMS_MightyText.src 8 1 
SMS_mkyong-Android-
Send-SMS-Example 3 0 

SMS_mkyoung-Android-
Build-In-SMS-
Application-Example 

0 1 

SMS_msatpathy_SMSTest 6 1 
SMS_Ninja SMS 0 1 
SMS_SecureMessages 0 0 
SMS_SMSTest 6 1 
Total 53 10 

Table 5: Sum of Elements in the P Set 
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Table 5 compares the sum of the benign, 
Sum(f1-f5), elements with the sum of the 
malicious, Sum(f6-f10), elements. We see that 
this metric-based approach does show that the 
total sum for all benign elements is greater than 
all of the malicious elements. When we 
compare the sums for each of the applications in 
the P set, we also see that most of the 
applications have a higher Sum(f1-f5)value that 
indicates the application is harmless. However, 
we also see in Table 5 that Sum(f1-f5)is not 
always greater than Sum(f6-f10). Three of the 
applications had a Sum(f1-f5)value that was less 
than the Sum(f6-f10). Our KLD-Based approach 
shows that all of the applications in the P set 
were within the benign threshold of values.  

P set Correct 14/17 
Incorrect 3/17 

Table 6: Accuracy of Metric-Based Approach for the P Set 

Next, we tested the metric-based approach on 
the suspected malicious applications in the Q 
set.  Table 7 compares the sum of the benign, 
Sum(f1-f5), elements with the sum of the 
malicious, Sum(f6-f10), elements. As shown in 
Table 3, our KLD-Based approach shows that 
all of the applications in the malicious Q set fall 
within the threshold of values. In Table 8, we 
see that the accuracy of the metric-based 
approach continues to decrease even though it 
still holds true to our hypothesis. 

Application Sum 
(f1-f5) 

Sum 
(f6-f10) 

AndroidDogwar 0 2 
DroidDeluxe 0 1 
DroidDreamlight2 0 1 
DroidKungFu2A 0 0 
DroidSlasher_1_1.0.1 1 1 
HippoSMS 0 1 
Lovetrap 1 1 
Spitmo 0 2 
Zitmo 0 1 
zj_NinjaChicken_other 1 1 

Table 7: Sum of Elements in the Malicious Q Set 

Malicious Q 
set 

Correct 6/10 
Incorrect 4/10 

Table 8: Accuracy of Metric-Based Approach for the Q Set 

Lastly, we tested the metric-based approach on 
the suspected benign applications in the other Q 
set.  Table 9 compares the sum of the benign, 
Sum(f1-f5), elements with the sum of the 
malicious, Sum(f6-f10), elements. 

Application Sum 
(f1-f5) 

Sum 
(f6-f10) 

Barcode Scanner 0 1 
FxCamera 0 0 
Huffington Post 0 0 
My Currency – Converter 0 0 
Skype 0 0 
To-Do Calendar Planner 1 0 
Viber 1 0 
Virtual Table Tennis 3D 0 1 
WhatsApp 0 0 
YouTube 0 1 

Table 9: Sum of Elements in the Benign Q Set 

In Table 10, we see that the accuracy of the 
metric-based approach is poor in comparison to 
our KLD-Based approach. We received only 
one false-positive warning for the Virtual Table 
Tennis 3D application.  

Benign 
Q set 

Correct 7/10 
Incorrect 3/10 

Table 10: Accuracy of Metric-Based Approach for the Q Set 

Currently, our KLD-based approach is being 
executed as a desktop application. The average 
time to build our P set was a total of 0.146 
seconds. The average time to build our 
malicious Q set was a total of 0.153 seconds. 
The average time to build our benign Q set was 
a total of 0.113 seconds. These average times 
are considered to be fairly efficient since they 
do not require an excessive amount of time to 
analyze the chosen applications and generate the 
CSV file that tracks the occurrence of the 
population elements. This performance would 
change once transitioning from an offline 
desktop application to a running service on a 
mobile device. 
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The offline analysis of scanning Android 
applications does not require an Internet 
connection. However, as malicious activities 
continue to evolve, the P set would require 
updating. Our initial intention for the 
deployment phase was to distribute the 
approach as a running service on the Android 
device. After careful consideration, we realized 
that the large variety of device hardware would 
affect the consistency of implementation and 
efficiency. The added constraint of declining 
battery power and device lifespan would deter 
users from running our service on their devices. 
In our future research, we plan to deploy our 
approach as a service in the cloud environment 
in order to maximize performance. 

5 Conclusion 
In this work, we propose to choose the 
Kullback-Liebler Divergence (KLD) as a 
measurement to differentiate between legitimate 
and malicious application behavior at source 
code level. The methodology builds probability 
distributions from the available source code of 
an application performing a specific 
functionality. We show some highlights of 
choosing possible elements of interest that can 
be useful to differentiate between a benign and 
malicious application behavior. Then, we apply 
the KLD measure to show that the difference 
between a legitimate and malicious application 
is infinite, whereas the difference between two 
legitimate applications is close to zero.   

We believe that the application of KLD is very 
practical and simply deduces the elements of 
population for each functionality type into a 
threshold of values (which can identify a simple 
pass/fail). False positives were also investigated 
to ensure that the range of values is correct for 
both benign and malignant applications. We 
conclude that our application implementation of 
the KLD method accounts for more mitigation 
techniques. By examining the Android Manifest 
file (permission analysis), we can determine the 
intended functionality of each application and 

automatically generate its elements of 
population from a predetermined list. Using that 
information, our static analysis of the source 
code will yield very accurate results by 
checking for obfuscated code. Also, this is being 
done in an isolated environment (sandboxing) 
and the application is not being dynamically 
executed which greatly reduces risk of infection. 

Our future research includes theoretical and 
implementation goals. On the theoretical side, 
our goals are: (i) choosing an appropriate 
smoothing technique to practically compute 
KLD, when one of the elements occurrence 
probability is found to be zero, (ii) finding more 
elements of population to cover more cases, (iii) 
documenting all possible known code patterns 
for performing specific functionality of interests 
that are common in malware applications, and 
(iv) validating our hypothesis using a larger 
collection of sample Android applications 
consisting of both legitimate and malicious 
behaviors. 

On the implementation side, the conditions that 
we used to check the occurrence of population 
elements may not be exhaustive and accurate for 
all types of malware activities. However, we 
plan to create an interface where the end user 
can specify the population elements based on 
the activity. Our future goal includes automating 
the process for decompiling the APK file and 
analyzing the source code. We also plan to 
research the possibilities of deploying the 
application as a service in the cloud 
environment. 
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