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 In this paper, a design method for optimal cancer chemotherapy schedules via 
genetic algorithm (GA) is presented. The design targets the key objective of 
chemotherapy to minimize the size of cancer tumor after a                         
predefined time with keeping toxic side effects in limit. This is a difficult target to 
achieve using conventional clinical methods due to poor therapeutic indices of 
existing anti-cancer drugs. Moreover, there are clinical limitations in treatment 
administration to maintain continuous treatment. Besides, carefully decided rest 
periods are recommended to for patient’s comfort. Three intermittent drug 
scheduling schemes are presented in this paper where GA is used to optimize the 
dose quantities and timings by satisfying several treatment constraints. All three 
schemes are found to be effective in total elimination of cancer tumor after an 
agreed treatment length. The number of cancer cells is found zero at the end of the 
treatment for all three cases with tolerable toxicity. Finally, two of the schemes, 
“Fixed interval variable dose (FIVD) and “Periodic dose” that are periodic in 
characteristic have been emphasized due to their additional simplicity in 
administration along with friendliness to patients. responses to the designed 
treatment schedules. Therefore the proposed design method is capable of planning 
effective, simple, patient friendly and acceptable chemotherapy schedules.  

   

1 Introduction 
Cancer is a class of diseases characterized by an 
imbalance in the mechanisms of cellular 
proliferation and apoptosis leading to a solid 
mass of cells known as a tumor 
[SLINGERLAND, 1998]. There are four major 
approaches to cancer treatment: surgery and 
radiotherapy as local treatments, chemotherapy 
and the use of biological agents (such as 
hormones, antibodies and growth factors). 
However, death is mostly due to spread of the 
primary tumor to one or more other sites in the 
body (by a process called metastasis), which 
makes surgical intervention impracticable 
[THURSTON, 2006]. Hence, chemotherapy is 
often applied alone, or in combination with the 
above methods, as it is the primary method of 
non-site-specific treatment and distant 

metastases require a systemic treatment 
[CLARE, 2000]. 
Most existing anti-cancer agents act by killing 
cells that divide fast, one of the main properties 
of cancer cells. However, cells of the bone 
marrow, digestive tract and hair follicles also 
divide fast and therefore harmed by these agents 
[THURSTON, 2006]. As a result, a regular 
pattern of side effects is tied to chemotherapy. 
The common side-effects are myelosuppression 
(decreased production of blood cells, hence also 
immunosuppression), mucostisitis 
(inflamemation of the lining of the 
gastrointestinal (GI) tract), and alopecia (hair 
loss). The consistent nature of toxicity limits the 
dosing in practice. Chemotherapy treatment 
schedule, defined as dose amount and frequency 
is needed to be conveniently chosen to lessen 
the number of cancer cells after a number of 
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fixed treatment cycles with 
acceptable/minimum toxic side effects.  
This paper aims in dose designs that take care of 
some clinical limitations in maintaining 
continuous treatment and patient’s comfort. 
Treatment methods like intravenous infusion 
require direct observation of doctors or 
clinicians and must have occurrence accordingly 
to the working schedules of the medical 
professionals. Also if drug administration times 
are irregular they may lead patients to forget to 
take their medication or visiting the hospital for 
treatment [URQUHART et al., 1998]. In 
addition, to keep toxicity in check, there must 
be sufficient resting periods. Discontinuous 
cycles of treatment were suggested by clinicians 
and in literature to allow periods of recovery of 
host bone marrow, GI tract, and immune 
function, expecting that recovery of the tumor 
cell population would be slower than that of the 
damaged normal tissues [KAUFMAN et al., 
2001; HARROLD, 2005]. This approach let 
retreatment with high therapeutic doses as 
frequently as possible.  Here we propose three 
different patterns of dose schedules giving 
emphasis on the discrete nature in dose 
administration times. All three cases are planned 
in such a way that they need to be scheduled 
only on two subsequent days of a week 
(Monday and Tuesday for example) that can be 
selected conveniently. A patient needs to visit 
hospital for two continuous days on their 
scheduled weeks only. Rest periods between 
sessions’ are kept to maintain the toxicity in 
limit. Among the three, the first case is a 
discrete dosing scheme with arbitrary rest 
periods. The next two cases offer improved 
simplicity, regularity and convenience in 
clinical application along with effectiveness.  
 
Last two decades, drug scheduling of cancer has 
been approached as both single objective and 
multi-objective optimization problem. 
Evolutionary algorithms have been widely 
engaged to search optimal chemotherapy drug 
schedule. One of the first mathematical attempts 
to optimize cancer chemotherapy was by Swan 
[SWAN, 1986]. Most commonly, logistic 
growth model was considered for macroscopic 
tumor proliferation and chemotherapy effects 
were regarded as bilinear (proportional to drug 
concentration and tumor size). Martin et 

al.studied intravenously applieded drug with 
Gompertzian tumor growth and first–order 
elimination kinetics of dose effect [MARTIN et 
al. 1990]. In contrast to the work by Swan, the 
drug here was considered to be administered 
weekly — a more applicable treatment 
methodology based on conventional clinical 
practice. The single objective was to minimize 
the final tumor volume without violating 
toxicity constraints and the optimal amount of 
drug to administer on a weekly basis over one 
year treatment was searched. This is a area that 
was eventually extended by Martin into a book 
with Teo in [MARTIN et al., 1994]. McCall et 
al. [MCCALL et al., 1999 [MCCALL et al., 
2008] designed chemotherapy drug scheduling 
using GA nd also prolonged their work with 
particle swarm optimization (PSO) [MCCALL 
et al., 2004]. In these works, tumor eradication 
was used as the objective function and other 
important treatment requirements, such as 
maximum drug doses, maximum cumulative 
drug doses, maximum allowable size of the 
tumor and toxic side effects were used as 
constraints for the optimization process that 
result an effective drug scheduling at the end. 
The same authors extended their work in multi-
objective optimization of cancer chemotherapy 
scheduling via multi-objective GA (MOGA) 
[MCCALL et al., 2004]. Algoul et al. applied 
MOGA [ALGOUL et al., 2010; ALGOUL et al. 
2011] and MOPSO [ALAM et al., 2013] in their 
works for dose designing in closed-loop control 
to minimize the conflicting objectives of cell 
killing and toxic side-effect and continuous dose 
schedules were developed. Though multi-
objective evolutionary algorithms balance 
different conflicting treatment objectives, 
single-objective optimization has been also 
providing efficient dose schedules with very 
satisfactory result. [ALAM et al., 2013a] 
presented a work where three drug scheduling 
schemes are proposed where GA is used to 
optimize the doses and schedules by satisfying 
several treatment constraints. Therefore, 
highlighting on clinical relevance and patient’s 
ease, this paper presents a design method of 
optimal cancer chemotherapy schedules where 
genetic algorithm (GA) is used to optimize drug 
doses and intervals by minimizing the treatment 
objective of minimizing cancer cell number and 
without violation of four key constraints: i) 



Alam, N. et al Optimal intermittent dose schedules for chemotherapy using genetic algorithm 
 
 
 
 

 

Special Issue #5 
http://adcaj.usal.es 

 
 
39 

Advances in Distributed Computing  
And Artificial Intelligence Jornual 

	
  
 
 
 

maximum drug concentration, ii) maximum 
toxicity, iii) maximum cumulative drug 
concentration and iv) maximum allowable 
tumor size. Here we worked using the model 
developed by Martin et al. [MARTIN et al., 
1994] that accounts for an intravenously 
administered drug with first–order elimination 
acting on a tumor going through Gompertzian 
proliferation. Apart from the statistical 
modeling of tumour growth, mathematical 
models of tumour growth in tissue [AL-
MAMUN et al., 2012], cellular and sub-cellular 
level [AL-MAMUN et al., 2013; KAZMI et al., 
2012a; KAZMI et al., 2012b] give the idea 
about the tumour dynamics in a comprehensive 
way. In most of cases, the Gompertz model of 
tumour growth has been taken for the drug 
scheduling problem, but in [KAZMI et al., 
2012a] considered the cellular growth model 
drug transport model where hypoxic area has 
been divided into five regions to show the drug 
bindings in the protein networks.      

2 Mathematical model 
Here we are considering a system, originally 
studied by Martin et al. [MARTIN et al., 1994], 
that describes a tumor proliferating in 
Gompertzian fashion and an intravenous 
application of drug. The pharmacokinetics (PK) 
of the drug is illustrated by the DE given below. 
 

C(t) - D(t)= (t)C    (1) 
 
where the plasma drug concentration, C(t), 
increases with intravenous infusions of the drug, 
D(t), and decreases according to first–order 
elimination kinetics at a rate λ. Equation 1 
represents the increase in drug concentration at 
the tumor site. As a result of intravenous 
delivery of the drug, an immediate mixing of the 
drug with the plasma is assumed. λ is related to 
the half-life of the drug as:  ln(2)/λ. The change 
in the number of cancer cells is described by 
another Equation.  
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According to Equation 2, the cancerous cells 
proliferate in a Gompertzian fashion. As tumor 
size increases, the tumor growth slows and the 
mass approaches a plateau population 
[NORTON, 1988]. This type of growth is 
normally described using the Gompertz 
Equation [MARTIN et al., 1994; HARROLD, 
2005] for tumor growth. The 1st term in the right 
side of Equation 2 is the Gompertzian 
proliferation term, where ρg is the asymptotic 
plateau population, N0 is the initial number of 
tumor cells, and τg is the doubling time of the 
tumor during exponential growth [MARTIN et 
al., 1994]. The therapeutic effect of the drug on 
the tumor is then represented mathematically by 
adding a bilinear kill term to the tumor growth 
Equation which is the 2nd term on right of 
Equation 2. The added nonlinear term is 
proportional to both the current size of the 
tumor, N(t), with constant of proportionality keff 
and the effective drug plasma concentration, 
Ceff(t) [MARTIN et al., 1994]. The parameter keff 
is the proportion of tumor cells killed per unit 
time per unit drug concentration and termed as 
fractional kill term. Ceff(t) is the drug 
concentration above the minimum therapeutic 
concentration, Cth, as given in Equation 3. 
Equation 4 is a Heaviside step function that 
implies drugs may not become effective until a 
therapeutic plasma concentration is reached 
(Cth). Once Cth has been reached, the effective 
drug concentration (Ceff) is that concentration 
above Cth as expressed in Equation 3.  
 

) )H(C(t)-CC(t)=(C(t)-C ththeff   (3) 
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The initial drug concentration and number of 
cancer cells are given by C0 and N0, 
respectively. 
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0)0 =NN(   (6) 
 

Finally, the toxicity is modeled as follows 
[ALGOUL et al., 2010]. 
 

T(t)(t)=C(t)-ηT   (7) 
 

Equation 7 gives the toxicity level in body after 
infusion of drugs where η is a constant. It gives 
the toxicity level for the drug concentration in 
plasma at a time. The parameters considered for 
this case study [MARTIN et al., 1994; 
ALGOUL et al., 2010] are provided in Table 
(1). In next section we are going to discuss our 
design objectives and applied constraints on the 
model considered to achieve optimal treatment 
schedule.  
 

PARAMETER   DESCRIPTION VALUE  UNIT  
τg First doubling time of the tumor during exponential growth 150 Days 
ρg Plateau population of cancer cells without treatment 1012 Cells 
N0 Initial cancer cell population 1010 Cells 
keff Fractional cell kill term for a highly effective drug 2.7×10-2 1/days.[D] 
λ Decrease in concentration of drug per unit time 0.27 1/days 
η Toxicity rate constant 0.4 1/days 
Cth Threshold drug concentration in plasma 10 [D] 
Cmax Maximum tolerable drug concentration 50 [D] 
Ccum Maximum tolerable total drug exposure in plasma 4.1×103 [D].days 
Tmax Maximum tolerable toxicity 100 [D] 
tf Duration of treatment schedule 364 Days 

Table. 1. Parameters Used in the model [MARTIN et al., 1994; ALGOUL et al,. 2010]. Here [D] are the units of drug 
concentration/mass of drug delivered. 

 

3 Design constraints and 
objective 

Here we considered three types of toxicity 
constraints and an efficacy constraint.  

• Maximum Drug Concentration: 
Acute toxicity is reached when the 
drug plasma concentration exceeds 
some maximum, Cmax [MARTIN et al. 
1994; HARROLD, 2005]. This 
constraint is given by  
 

],t[t; CC(t) f0max ∈∀≤  
(8) 

 
• Maximum Toxicity: Along with the 

acute drug concentration, a constraint 
on the measurement of toxicity 
[ALGOUL et al., 2010] is used as 
follows. 
 

],t[t; TT(t) f0max ∈∀≤  
(9) 

 

The toxicity T(t) at any time must not 
exceed  Tmax. 

• Maximum Cumulative Drug 
Concentration: Total exposure of 
drugs in plasma can be calculated by 
integrating drug plasma concentration 
over the treatment interval and must 
not exceed a value Ccum [MARTIN et 
al., 1994; HARROLD, 2005]. 

cum 

f

C
t

C(t)dt ≤∫
0

 
(10) 

• Efficacy constraint: Since it was 
undesirable for the tumor burden to 
increase, the number of cancer cells 
was not allowed to increase to a 
number larger than the initial 
condition, N0 [HARROLD, 2005]. 
Therefore efficacy constraint can be 
expressed as below. 
 

],t[t; NN(t) f00 ∈∀≤  
(11) 
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The values of Cmax, Tmax and Ccum are included in 
Table (1). Here we have employed the optimal 
control problem considered by Martin et al. 
[MARTIN et al., 1994] to minimize cancer cell 
no. at a final time. It can be stated as:  

 

)-s.t.(

)N(tMIND(t)
111

f

  (12)
 

 
The objective here is to minimize the tumor 
volume at a final time while satisfying the 
dynamic constraints (equation 1-7), toxicity 
constraints (inequalities 8-10), and the efficacy 
constraint (11). In other words, we have to 
design a chemotherapy schedule for 364 days to 
minimize the final number of cancer cell. The 
drug concentration should range between 10 and 
50 and cumulative drug concentration should be 
lower than a value 4.1×103. Finally, the cancer 
cell number should never exceed 1012. 

4 Genetic algorithm 
Genetic algorithm (GA) is a stochastic global 
search procedure that replicates the metaphor of 
natural biological evolution introduced by 
Holland [HOLLAND, 1975]. Fig. 1 shows a 
schematic of GA applied to a single objective 
minimization problem. The element processed 
is a string formed by concatenating sub-strings, 
each of which is a numeric coding of a control 
variable. Each string represents a solution (or an 
individual) in the search space. A set of 
solutions/individuals used in one generation of 
an EA is called a population [DEB, 2008].  
 

 
Fig. 1. A flowchart of genetic algorithm optimization 
 
GA uses three main operators – selection, 
crossover and mutation – on a population of 
solutions at every generation. Performance of 
each solution is assessed through an objective 
function determined by the problem and used in 
selection operation to guide the search towards 
the best solution. New solutions formed by a 
combined effect of crossover and mutation 
operators [DEB, 2008]. Crossover can cause 
interchange of the traits between any two 
solutions (chromosomes) via random decision in 
the mating pool and provides a way to produce 
the desired qualities. Although selection and 
crossover provide most of the power skills, the 
area of the solution remains limited. Mutation 
can operate on a single solution to create a new 
perturbed solution by random alternation of 
digits and thus keeps diversity in population. 
The population generation process is repeated 
for sufficient number of times and the last 
generated population is expected to contain a 
solution that minimizes the objective function. 
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5 Optimal chemotherapy 
schedule using GA 

Here we present three drug scheduling schemes, 
all intended for 364 days and express them in 
terms of decision variable. Then GA is encoded 
and employed to find optimal dose schedules 
according to each of the schemes. 

5.1 Variable interval variable 
dose (VIVD) scheme 

In VIVD scheme, chemotherapy treatment will 
be administered to patients only first two days 
of each week depending on decision variable. 
Fig. 2 shows a schematic of the dose plan. For 
each week, decision variable is encoded with 
one bit; ‘1’ to indicate that a patient will receive 
treatment on that week and ‘0’ to indicate rest 
week, i.e., no drugs will be administered on that 
week. Giving clinical relevance, same drug 
doses are administered to patient treatment for 
first two days of any treatment week and one 
variable is required for each week. So, two 
variables are defined for each week; one for 
dose and one for decision. For a year (364 days 
= 52 weeks) long treatment plan, 52×2=104 
variables are required and GA is used find an 
optimum solution set. 

5.1.1 Encoding GA 
To optimize dose schedule in VIVD scheme, the 
GA optimization process begins with a 
randomly generated population of size 50 × 676 

where 50 is the number of individuals  and 
676(=(52×12)+(52×1)) is the length of the 
solution string for 104 control variables. First 52 
parameters are encoded as 12 bits binary strings 
which will define drug doses for each week 
while the remaining 52 parameters are encoded 
as 1 bit to define decision variables, i.e., 
whether treatment will be given to a patient. 
First 52 binary strings are converted into real 
numbers within a range of 10 to 50. Using each 
individual (solution), a chemotherapy drug 
schedule is designed for one year as discussed 
earlier and used as input D(t) to the tumor 
model stated in Section 2. The model is 
simulated and several important output 
parameters: number of cells, drug concentration 
and toxicity are measured. The number of tumor 
cells at the end of treatment is used as objective 
function in GA optimization process. 
Before calculating objective function, each 
solution is checked for constraints. If any of the 
constraint is not satisfied, that solution is 
penalized by adding a big penalty value so that 
it will have less chance to be selected for

Fig. 3. Convergence of GA for VIVD scheme 

Fig. 2. A schematic of variable interval variable dose (VIVD) scheme. 
 
following generations. Once solutions are 
evaluated, fit solutions are selected through 
selection process to form the mating pool. 
Crossover and mutation are applied to obtain the 

off-spring population. The crossover rate and 
mutation rate are set as 0.8 and 0.01 
respectively. The maximum number of 
generations is set to 100. It is noted that, binary-
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coded GA is preferred and used in this 
optimization/design procedure because half of 
the control variable (=52) are binary-type 
decision variables represented by a single bit. 
GA with said parameters is run several times on 

the model. Fig. 3 shows algorithm convergence 
in five runs. Table. 2 gives a summary of the 
performance measures of the dose schedules 
decided by five different runs. 

 
Run Drug Dose Drug Concentration Toxicity No. Cell 

at  end 
Cell 
Reduction Max Avg Max Avg Max Avg 

1 32 10.73 49.45 11.23 83.41 27.77 1×10-12≈ 0 ≈ 100% 
2 32 10.56 49.98 11.14 83.35 27.84 4×10-14≈ 0 ≈ 100% 
3 32 10.67 49.58 11.22 81.37 27.94 4×10-10≈ 0 ≈ 100% 
4 32 10.71 49.81 11.22 84.72 27.76 1×10-13≈ 0 ≈ 100% 
5 32 10.73 49.91 11.23 82.29 27.79 6×10-12≈ 0 ≈ 100% 

Table. 2. Performance measures for dose schedules obtained by five GA runs with VIVD scheme 
 

5.1.2 Performance 
The numbers of cancer cell at the end of the 
treatment (objective function), in response to the 
dose schedules by all five runs are zero 
(practically the number of cancer cell cannot be 
fraction) as can be seen in Table. 2.  Moreover, 
the maximum and average values of delivered 
drug dose, plasma drug concentration and 
toxicity for the determined drug schedules in all 
the five runs, presented in Table. 2 are also very 
close to one another. All these imply 

repeatability and consistency of GA 
optimization process as well as the whole design 
procedure. Since all five dose schedules more or 
less show same levels of effectiveness and 
safety, we here discuss the one decided in case 
of run-1 only. The optimal treatment schedule 
for one year in VIVD scheme obtained by GA 
run-1 is shown in Fig. 4. The tumor cell no., 
drug concentration and toxicity values in 
response to the treatment are shown respectively 
in Fig. 5, Fig.6 and Fig.7. 

 
Fig. 4. An optimal treatment schedule for one year (52 weeks) in VIVD scheme 

 

 
Fig. 5. Tumor cell no. in response to treatment schedule in VIVD scheme 
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Fig. 6. Drug concentration in response to treatment schedule in VIVD scheme  

 

 
Fig. 7. Toxicity in response to treatment schedule in VIVD scheme 

 
In Fig. 5, the dose level in a particular day is 
given by the bar height and each bar starting at 
beginning of a week is continuous for two 
consecutive steps (1 step = 1 day) indicating 
that same level of dose is applied for two 
consecutive days. It is a random scheme where 
the scheduled weeks are determined by the 
optimal solutions of 52 decision parameters. It 
can be easily seen from Fig. 4, weeks to be 
dosed determined by the decision parameters 
are week no. 0, 2, 20, 21, 22, 23, 24, 28, 29, 37, 
45, 47, 48 and 49. For these weeks the value of 
decision parameters are ‘1’. And for other 
weeks, the schedule suggests dosing to be 
skipped and the corresponding decision 
parameters are ‘0’. The dose is applied to 1st 2 
days of each arbitrarily decided week according 
to the corresponding solution of dose level 
parameter. The tumor population decreases 
from the 1st day of treatment and reduces to 
approximately zero as suggested by Fig. 5 
which is a logarithmic plot of number of tumor 
cell during the treatment period. Fig. 6 and Fig. 
7 show drug concentration and toxicity due to 
dosing which are maintained in limit. The rest 
periods between sessions help to keep the 
toxicity in control. 

5.1.3 Remarks 
The treatment plan discussed above is irregular, 
therefore lacks clinical and logical acceptability 

in dose administration. As it was able to meet 
the constraints, we can term the solution as 
mathematically optimal. But the plan involves 
too much information to record. Also since the 
dosing is at random weeks, a patient may forget 
to visit clinic/hospital for administration and 
miss a scheduled session. Our next step towards 
clinical relevance is to propose a regular 
schedule with lesser parameters and optimize 
those parameters as before. 

5.2 Fixed interval variable 
dose (FIVD) scheme 

In FIVD, interval between two successive 
sessions is fixed during the course of the whole 
treatment period. Drugs are administered to 
patients on first two days of every 4th week (e.g. 
weeks 4, 8, 16 etc.) following a rest period of 26 
days. For any treatment week, same doses are 
administered on first two days. So, only one 
control variable is required to define the dose 
level of any treatment week.  Fig. 8 indicates 
that treatments are given only in 52/4=13 weeks 
and so 13 variables (each representing dose 
level for a week) are required in designing this 
dose pattern. Targeting clinical relevance and to 
achieve treatment efficacy, a high dose, called 
bowl (fixed dose level of 50[D]) is administered 
at the start of the treatment. 
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Fig. 8.  A schematic of fixed interval variable dose (FIVD) scheme. 

 

5.2.1 Encoding GA 
The GA encoding is similar to the one for the 
VIVD pattern. Only difference is the number of 
control variables is 13 as the dose plan needs. 
The dose input D(t) is modified accordingly 
with  13 parameters. In this case the maximum 
generation is taken to be 50 and the values of 
other GA parameters are also kept unchanged. 
GA optimization process is run 3 times on the 
model for this case. The convergence curves for 
all runs are shown in Fig. 9. Again each run 
generates a dose schedule for 364 days 

according to the pattern that fulfills the declared 
constraints. Table. 3 gives some performance 
measures for all three runs. 
 

 
Fig.9. Convergence of GA for FIVD scheme 

 
Run Drug Dose Drug Concentration Toxicity No. Cell 

at  end 
Cell 
Reduction Max Avg Max Avg Max Avg 

1 50 32 49.5674 8.6573 69.9071 21.3205 9×10-6≈ 0 ≈ 100% 
2 50 32.5926 49.5674 8.8161 69.9071 21.7071 3×10-6≈ 0 ≈ 100% 
3 50 31.4074 49.4778 8.4914 69.525 20.8953 3×10-5≈ 0 ≈ 100% 

Table. 3. Performance measures for dose schedules obtained by three GA runs with FIVD scheme 
 

5.2.2 Performance 
Like the previous scheme, the final numbers of 
cancer cell for all GA runs with FIVD scheme 
are zero (see Table. 3). All the average values 
were taken per day considering the whole 
treatment period as before except the average 
drug dose. For calculating the average dose 
delivered per day, we only considered the 
scheduled dose days (13×2+1=27 days in this 
case) in place of the total treatment period (364 

days). The average values of toxicity and drug 
concentration are lower than those in previous 
case (which is desired). Alike the previous case, 
performance measures for FIVD, recorded and 
presented in Table. 3, are also very close to one 
another. Therefore, the optimal treatment 
schedule for one year in FIVD scheme attained 
by GA run-2 is displayed in Fig. 10. The tumor 
cell no., drug concentration and toxicity values 
in response to the treatment are displayed 
respectively in Fig. 11, Fig.12 and Fig.13.
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Fig. 10. An optimal treatment schedule for one year (52 weeks) in FIVD scheme 

 

 
Fig. 11. Tumor cell no. in response to treatment schedule in VIVD scheme 

 

 
Fig. 12. Drug concentration in response to treatment schedule in VIVD scheme 

 

 
Fig. 13. Toxicity in response to treatment schedule in VIVD scheme 

 
On the starting week (week 0 on Fig. 10), only 
the 1st day is decided with a constant dose of 
50[D] in order to fulfill efficacy constraint. For 
the 4th weeks (denoted by week 3, 7, 11, 15..., 
51), the weekly levels are found after solving 13 
parameters with GA optimization fulfilling the 
given constraints. This dose scheme looks 
almost periodic after week 3 as the 4th weekly 
levels are almost same. Fig. 11 shows how the 

tumor cell no. reduces gradually to a value ≈ 0. 
Drug concentration and toxicity changes as 
displayed in Fig. 12 and Fig. 13 show a rough 
periodicity according to the dose plan and their 
limiting values (Cmax and Tmax) are not exceeded. 



Alam, N. et al Optimal intermittent dose schedules for chemotherapy using genetic algorithm 
 
 
 
 

 

Special Issue #5 
http://adcaj.usal.es 

 
 
47 

Advances in Distributed Computing  
And Artificial Intelligence Jornual 

	
  
 
 
 

5.2.3 Remarks 
This dose plan leads more towards clinical 
applicability. Decrease in number of parameters, 
regularity in treatment schedule, decrease in 
toxicity and efficacy constraint assurance are its 
features. Though it is not precisely periodic, 
from the 4th week a near periodicity is visible. If 
we consider solution of any of the runs, the 
weekly dose levels vary from 30 to 32. So if it is 
desired the scheme can be easily modified to a 
periodic one.  

5.3 Periodic dose scheme 
In this scheme, scheduled days and intervals are 
same as FIVD. However, in any treatment 
week, different valued drug doses are used on 

first two days. Having two separate levels is just 
an additional variation to get a better treatment 
response. Same doses are periodically 
administered in subsequent treatment weeks. 
Fig. 14 shows a schematic of the dose plan.  As 
a result only two control variables are required 
to design treatment schedules for a year. 

5.3.1 Encoding GA 
The dose input D(t) in this case requires 2 
parameters this time which are two dose levels 
repeated every 4th week. GA parameters are also 
kept same. GA process with 50 generation is 
run3 times on the model. The convergence 
curves for all runs are shown in Fig. 15. Table. 4 
presents some performance measures. 

 

 
Fig.14. A schematic of periodic dose scheme. 

 
Run Drug Dose Drug Concentration Toxicity No. Cell 

at  end 
Cell 
Reduction Max Avg Max Avg Max Avg 

1 50 34.5926 49.3403 9.3646 74.3991 23.0717 3.7×10-8≈ 0 ≈ 100% 
2 50 34.5926 49.3403 9.3646 74.3991 23.0717 3.7×10-8≈ 0 ≈ 100% 
3 50 34.5926 49.9624 9.3631 74.3703 23.0654 4.1×10-8≈ 0 ≈ 100% 

Table. 4. Performance measures for dose schedules obtained by three GA runs with periodic dose scheme 
 

5.3.2 Performance 
Likewise the previous cases, final tumor cell 
numbers are once again ≈ 0. Averages are 
calculated similarly as last case. In this case, the 
average drug doses for all runs are same 
34.5926[D]. It may be also mentioned that both 
run-1 and run-2 generate exactly same optimal 

dose schedule (same parameters values). Also 
performance of the schedule obtained by run-3 
is very close them. The optimal treatment 
schedule in periodic dose scheme decided by 
GA run-1/run-2 is displayed in Fig. 15. The 
tumor cell no., drug concentration and toxicity 
values in response to the treatment are displayed 
respectively in Fig. 16, Fig.17 and Fig.18.  
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 Fig. 15. An optimal treatment schedule for one year (52 weeks) in FIVD scheme 
 

 
Fig. 16. Tumor cell no. in response to treatment schedule in FIVD scheme 

l 

 
Fig. 17. Drug concentration in response to treatment schedule in FIVD scheme 

 

 
Fig. 18. Toxicity in response to treatment schedule in FIVD scheme 

 
Fig. 15 shows an optimal dose schedule starting 
with a pre-decided constant dose 
concentration/mass of 50[D] applied to 
guarantee efficacy constraint. For every 4th 
week the dosing can be clearly seen to be 
periodic. Each 4th week is dosed with 50[D] on 
the 1st day followed by 18[D] on the 2nd day. 
The remaining days of a week are kept as rest 
period for the patient to recover from toxic side 
effects, if occur or tend to occur. Like previous 
cases, drug concentration and toxicity levels 

have not surpassed their limiting values (Cmax 
and Tmax).  

5.3.3 Remarks 
This dose plan can be referred as a strictly 
periodic one from 4th week in terms of repeated 
discrete levels of doses with constant 
periodicity. Periodicity is encouraged for 
clinical implementation. Moreover, it is highly 
simplified, patient friendly but still effective.  
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The optimal solutions in all three dose schemes 
have led to 100% elimination of cancer tumors. 
Furthermore, maximum toxicity levels during 
the whole period of treatment remain lower than 
the maximum allowable value as indicated 
earlier and suggested by other researchers 
[MARTIN et al., 1994; HARROLD, 2005; 
ALGOUL et al., 2010].  Also both maximum 
and cumulative drug concentration are managed 
in limit. The fulfillment of these three 
constraints of toxicity is ensured by intermittent 
treatment. Such treatments are clinically 
encouraged [HARROLD, 2005; KAUFMAN et 
al., 2001; ADAMS et al., 2011] for preserving 
the quality of life of patients along with the cure 
of disease. Also the resting period must be 
carefully chosen based on the therapeutic index 
(ratio of effectiveness and toxicity) 
[THURSTON, 2006] of the applied drug. It 
must not be too large to face deterioration of 
cancer condition and must be small enough for 
recovery from toxic side effects [KAUFMAN et 
al. 2001]. To provide this, for both FIVD and 
periodic dose schemes, a fixed interval of 26 
days has been decided. This approach has also 
let retreatment with high therapeutic doses on 
scheduled days as suggested by Kaufman et al. 
[KAUFMAN et al., 2001]. Moreover, this kind 
of schedule offers to be more time effective and 
well manageable for medical professionals as 
compared to  continuous treatments with lower 
doses as in [ALGOUL et al., 2010; ALGOUL et 
al. 2011]. 
 
Among those three dose patterns presented in 
this work, the first one was planned with 
flexibility with dosing occurrence. After 
applying GA optimization, it resulted in an 
intermittent dosing scheme with variable resting 
period and named variable interval variable 
dose (VIVD) scheme. However, the resulted 
schedules seemed problematic in for both 
patient’s side and clinician’s side due to its 
randomness. Therefore, in next two cases, dose 
days were decided with optimum fixed-valued 
interval. These two schemes are more feasible 
in times when the dose taking must be 
completely monitored by clinicians/hospital 
staffs [HARROLD, 2005]. When FIVD is 
formulated, periodicity has not been imposed 
rather near periodicity is achieved from the 4th 
week in the optimal result (negligible variation 

of dose levels). So for more simplification and 
clinical relevance, in our final step we have 
approached periodicity and proposed periodic 
dose pattern.  
 
In real case scenario, majority of the model 
parameters are related to physiological 
conditions of patients, internal drug 
absorption/metabolism, drugs to be used in 
treatments, state/position of tumor when it was 
detected etc. The model parameters can vary in 
every case and also these vary in-vivo or in-
silico experiments conducted under 
environment but at different instances. So to 
develop more accurate/realistic models for 
specific cancer, existing/commonly used 
parameters are modified/adjusted with empirical 
data or new parameters are added to existing 
model. 

6 Conclusion and Discussion  
Chemotherapy schedules recommended by 
oncologists/clinicians are obtained from 
experiential verification with preclinical and 
clinical trials [HARROLD, 2005] as well as 
theoretical considerations. Engineers have dealt 
with the problem as a process to control and 
tried to offer more and more optimal drug 
schedules. Yet, there is gap between 
engineering tactics and clinical implementation. 
In this investigation, a design method of optimal 
cancer chemotherapy schedules using GA is 
portrayed that focuses to bridge this gap.  

The work emphasizes more on clinical 
relevance and patient’s compared to 
mathematical optimality. The discontinuity in 
schedules offer treatment holidays to patient’s 
to heal the damages due to chemotherapy. FIVD 
and periodic dose schemes are highlighted in 
this work. Their preference, when direct 
observation of hospital staffs is obligatory, is 
also projected. However, to truly make an 
impact, all of the designing work discussed 
above will require clinical testing in 
collaboration with oncologists and efforts are 
underway with that incentive.  

This kind of discontinuous and periodic 
treatment scheme can be incorporated with 
periodic evaluation of treatment responses (e.g. 
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tumor size, toxicity etc.) and modification of the 
current schedule accordingly in a closed loop 
environment. Furthermore, the same design 
method can be extended in planning multi-drug 
or combination chemotherapy regimen.  
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