
Campillo-Sanchez, P. et al Development of sensor based applications for the Android
platform: an Approach Based on Realistic Simulation

23

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

KEYWORD

 ABSTRACT

Context-aware services
Agent based social simulation
Testing
Mobile Devices
Android

Smart phones are equipped with a wide range of sensors (such as GPS, light,
accelerometer, gyroscope, etc.) and allow users to be connected everywhere.
These characteristics offer a rich information source for creating context-aware
applications. However, testing these applications in the lab, before their de-
ployment, could become a hard task or impossible because of sensors correla-
tion, too wide testing area or an excessive number of people involved. This work
aims to solve these problems carrying out the testing in a simulator, simulating
the world in which the application user is immersed into. Tester controls her
avatar and the avatar has a simulated smart phone that is connected with the
user’s smart phone. Applications under test are installed on the real smart
phone and are compiled with a library that replaces standard services of the
sensors by others that offer data sensor from the simulator (depending on the
simulated smart phone context) instead of real world.

1 Introduction
Mobile applications have experimented a new

revolution in the last years. And such revolution has
been pushed by two related but, in principle, contrary
forces. They are two different operating systems, iOS
and Android. iOS is a closed operating system which
is devoted to the mobile devices manufactured by
Apple. Thus, the possibilities for developing in such
applications are imposed by the Apple policies for
open applications development. Android is the oper-
ating system designed by Google. And it follows a
radically different philosophy of development: open
source and Java based development. Moreover, An-
droid is the second most used operating system for
smartphones, it is more popular than BlackBerry and
iOS, but it is expected that it will overtake to the
number one, the Symbian OS by Nokia [GARTNER,

2010]. So, the mobile software development study is
centered on Android mobile applications because the
most users are benefited and the group follows an
open source philosophy.

Recently, Smart phones are equipped with a set of
sensors, such as GPS sensor, accelerometer senor,
gyroscope sensor, camera, microphone and etc. All
this hardware allows to get context information about
the user is involved into, such as date and time, loca-
tion, activity. This information is used to develop
context-aware applications that offer services to users
depending on their needs. Despite the promising po-
tential of using mobile phones as context source de-
vices to make context-aware applications, some prob-
lems emerge that need to be solved.

One of the central problems on context-aware ap-
plication development is verification and validation
of such applications by testing. Testing software is
the process of executing a program in order to find

Development of Sensor Based Applications
for the Android Platform: an Approach Based
on Realistic Simulation
Pablo Campillo-Sancheza, Juan A. Botíab, Jorge J. Gómez-Sanza

a Software Engineering and Artificial Intelligence, Universidad Complutense de Madrid
b Information Engineering and Communication Department, Universidad de Murcia

Campillo-Sanchez, P. et al Development of sensor based applications for the Android
platform: an Approach Based on Realistic Simulation

24

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

errors in the code [MEIER, R. 2010]. Such errors
must then be debugged. According to the IEEE
Standard Glossary of Software Engineering Termi-
nology [IEEE 1990]: “Validation is the process of
evaluating a system or component during or at the
end of the development process to determine whether
it satisfies specified requirement”.

The main challenge of testing is to generate a set
of values for each sensor, useful and meaningful for
each test. The problem increases with the number of
sensors and their correlation. For example, suppose a
mobile service that offers indoor location information
to others based-location applications like in this work
[CHON, J. et al. 2011]. The service uses the digital
compass to get orientation changes and the accel-
erometer to deduce displacements. To test the service
we could generate several sceneries defined by a
sequence of values, accelerations for accelerometer
and radians for digital compass. Given an initial loca-
tion and the sensor's values, the service estimates a
final location. But it could be easier and more useful
if the values are generated indirectly by moving a
user and his smart phone in a simulated environment.
In this way, the test set could be formed by a list of
rooms a user has to visit. Other way could be to de-
fine an autonomous user behavior that uses a phone
in his natural environment. Anyway, the last two
options to define tests are much more natural, com-
prehensible and realistic than the first one that direct-
ly defines a displacement as a sequence of accelera-
tion and radian values.

This work is focused on testing of applications or
services for smart phones through a simulator where
the environment and interactions are modeled. Con-
sidering an Android service or application as the
system under test (SUT), some of the errors may be
found by using a Unit approach [OSHEROVE, R.,
2009]. Concretely, UbikSim [UBIKSIM, 2013] is
used as simulator. It has been designed to simulate
environments, devices and people interacting with
real ubiquitous software [CAMPUZANO, F. et al.
2011]. It is already been focused as an ubiquitous
computing environments simulator which tries to
alleviate the particularities of testing services and
applications whose behavior depends on both physi-
cal environment and users. Moreover, UbikSim offers
a world editor that offers an easy way to create envi-
ronments and the agents that interact in it.

Using the simulator, not only a sequence of values
can be simulated, but it is generated indirectly

through defining concrete simulated environments
from the reality. It offers two main advantages: (1)
software testing is not defined by the component
level as a sequence of sensor values, but from stress
concrete situations in the virtual world that are more
natural and realistic. (2) A graphical representation of
the situations means that a set of final users can un-
derstand and, therefore, they can validate the applica-
tion behavior more easily while the testing process is
performed simultaneously. So, since the user is get-
ting involved in early stages, we achieve a user cen-
tering development philosophy in a natural way.

In this paper the contents are exposed as follows.
Section 2 is related with the challenges. At the next
section 3, it is exposed a complex example applica-
tion to test. Section 4 covers SUT testing by simula-
tion. And, finally, the conclusions and future work
are treated.

2 Challenges
The most common Android development tools

[MEIER, R., 2010] are composed by SDK (Software
Development Kit) and ADT plug-in (Android Devel-
opment Tools), both supported by Google and open
source. The SDK includes the Android APIs (Appli-
cation Program Interface), development tools and the
Android Virtual Device Manager and Emulator. ADT
plugin extends the SDK functionalities to an IDE
(Integrated Development Environment).

The Android software stack is composed by sev-
eral layers. The Application Framework Layer is the
most important. It provides the classes used to create
Android applications and a generic abstraction for
hardware access and manages the user interface and
application resources. The following subsections
contain some Android services that are offered by
classes of such layer. They can be used as a source of
context for developing context-aware applications.
Also, it is explained why the existing testing tools are
insufficient to test each application based on such
services, and even more if we want to simultaneously
test an application based on a correlated set of those
services.

2.1 Location-based SUT

Mainly on a smart phone, location services are ob-
tained through CellID or GPS. The second one is the

Campillo-Sanchez, P. et al Development of sensor based applications for the Android
platform: an Approach Based on Realistic Simulation

25

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

preferred method as it is more precise but it only
works outdoor. CellID approximates your location
based on the urban cell you are in, and this could
employ too many meters, but it works indoor also.
Location services on Android are obtained through
the LocationManager class.

An interesting facility on Android is a hook which
allows the programmer to simulate in the emulator,
different locations a user passes through, when de-
bugging the application. In this way, the user is not
moving, but the emulator virtually does. But the test
is not realistic because consists in a file with coordi-
nates and the simulation reproduces constant velocity
and straight line displacements. It could be more
realistic if the coordinates were given by simulated
person displacements in his natural environment.
Furthermore, a based-location service including iner-
tial devices could not be tested by this tool.

2.2 Sensor-based SUT

Sensors on Android are managed in a similar way
that location, through a SensorManager class which
is the one giving access to all the sensors of the
phone. Exists a wide list of the sensor-types currently
available; note that the hardware on the host device
determines which of these sensors are available to the
SUT.

There are third-party tools which help working
with sensors on Android. For example, the Sensor
Simulator [SENSIM, 2013] is a stand-alone applica-
tion of OpenIntents and it lets simulate moving the
mobile and the corresponding sensors by only mov-
ing the mouse.

Another, Samsung Sensor Simulator [SAMSEN-
SIM, 2013] lets simulate the registers of sensors,
obtained by a simulated mobile. It also lets connect to
a real device to log real registers from it. But again,
those tools are complicated either to manage or to
generate the sceneries composed by incompressible
sequences of values.

2.3 Audio and Video-based SUT

Audio and video are another source for context
sensing. They are interesting by means of their pro-
cessing, e.g. image processing to detect objects or
recognize commands by speech. Android offers this
type of services that support data processing through
Camera and AudioRecord classes for video and im-
age processing, respectively.

The emulator allows using a microphone and a
webcam to test applications that use those resources.
But, it is not considered a tool to feed the SUT with
artificial images and sounds that defines scenery for
testing.

3 A hard to test SUT example
In this section is studied a type of application

which is complex to test. It uses an indoor location-
based service (ILBS) to develop an augmented reality
(AR). It is conceived to make museum tours more
attractive and educational by locating POIs (Point Of
Interesting). AR applications need to know the loca-
tion and orientation of the phone in order to show the
POIs on the screen. There are no problems outdoor
because the GPS give us the location, but it is not as
easy at indoor. In fact, a lot of techniques which try
solving this problem are based on different technolo-
gies (WiFi, Bluetooth, ultrasound, inertial sensors) or
a mix.

There exist different variants of AR, this paper de-
fines it as a term for a live indirect view (through
mobile screen) of a physical real-world environment
whose elements are augmented by virtual phone-
generated POI icons - creating a mixed reality. The
augmentation is in real-time and in semantic context
with environmental elements.

In order to show the POI icons, each one has a co-
ordinate location and the smart phone gets its own
location and orientation from indoor location system.
A practical positioning and tracking solution for users
in indoor environments relies on both an accelerome-
ter and a digital compass. When a user starts to move,
classification data acquired from both sensors are
used to approximate the user’s location. But the
mechanism is needed to get an initial position and to
solve accumulated sensor errors. So, several QR
(Quick Response) codes, with location information,
are distributed in the museum.

The AR application is developed for the Museo
Arquelógico de Murcia (MAM) [MAM, 2013]. The
museum visitors download it and they can browsing
through MAM identifying POI, e.g. archeological
pieces, next exhibition hall, toilets, etc. So, a user can
identify POIs around him with his smart phone and
gets information about them pushing on each POI
icon or reaches them physically.

Campillo-Sanchez, P. et al Development of sensor based applications for the Android
platform: an Approach Based on Realistic Simulation

26

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

Usually, testing stages are divided in several tasks
depending on modular functionality of the SUTs. For
this example: (1) friendly graphic user interface
(GUI), (2) read QR codes with smart phone camera,
(3) the correct QR codes content depending their
location, (4) the right location of the POIs and their
content, (5) the error of the predictions of the indoor
location system based on both an accelerometer and a
digital compass and (6) the location of the QR codes
depending the error of the predictions. Given these
tasks, the fifth is the harder to test. Due to the correla-
tion of sensor values, accelerations and angles. And
this type of tests is hard to generate and manage with
the actual tools available, as we have seen.

To test indoor AR applications it is used a pilot
test that is formed a set test in a real environment, a
museum in this case. But it is expensive due to it
requires to deploy the infrastructure (QR codes, in-
ternet access), probably at least an exhibition hall
must be closed, time and money to manage and coor-
dinate people. By its cost, a pilot test is usually per-
formed at the end of the development process. At the
same time, it implies more costs because the detected
errors are more expensive to resolve in this stage than
in early ones.

4 SUT testing by simulation
Context-aware SUTs are harder to test in a lab as

the use of sensor values are more correlated. A simu-
lation-based testing is proposed where environment
and its elements related (people and devices included)
with the SUT are modeled and simulated. So, first a
model of the world and the related elements have to
be created in order to the SUT could be tested using a
smart phone and the simulator.

4.1 Modeling Elements

In this stage, the simulated world, where the SUT
of smart phone will be involved, is modeled. It in-
cludes: environment, people and devices. The world
is modeled using an UbikSim editor. ¡Error! No se
encuentra el origen de la referencia. shows the
editor and a model of an exhibition hall of the MAM.
This tool offers an easy way to create environments
by dragging elements from the catalog (panel located
at top-left) to the panel of edition. It already has some
elements but we can create new ones quickly. In ad-

dition, a 3D view of the model is available on the
bottom panel.

Fig. 1 MAM Exhibition hall modeled with UbikSim.

Each world model represents a test configuration.
So, first a basic environment is created (e.g., com-
posed by exhibition hall, furniture and pieces of art)
and then, others more complex to test specific func-
tionalities. For instance, to test the indoor location
system, it is shown the predicted tracking on screen
to check if the error gotten is acceptable. Other scen-
eries could be composed by different locations of the
QR tags.

4.2 Testing process

In this stage, a user or developer tests the SUT in-
stalled in a smart phone (or emulator) in a simulated
world where the user interacts using a keyboard and a
mouse. UbikSim is used as simulator and it has sev-
eral main features [GARCIA-VALVERDE, T. et al.
2009]. UbikSim offers basic models for physical
environments (e.g. offices building floors), for hu-
mans (e.g. professors in universities) and for sensors
(e.g. presence, pressure and open door sensors) that
are already developed and validated.

Fig. 2 shows the main schema of the elements and
their interactions needed to test the SUT. At left side,
it is the simulator and it includes simulated smart
phone (SSP) and simulated user (SU). SU carries SSP
and it has simulated sensors that register context in-
formation from simulated environment (e.g. simulat-
ed temperature sensor registers ambient temperature)
and SU actions (e.g. simulated accelerometer regis-
ters user displacements). At the right side, we find the
real elements. A real user (RU) tests the SUT in-
stalled in a real smart phone (RSP) that receives sen-

Campillo-Sanchez, P. et al Development of sensor based applications for the Android
platform: an Approach Based on Realistic Simulation

27

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

sor values from the simulated environment through
SSP like it comes from the real world. RU interacts
with the simulated environment with the keyboard
and mouse like a computer game such as Counter
Strike [COUNTER, 2013].

The example exposed in section 3 will be used in
order to illustrate how to test an application. It sup-
posed that the simulator represents the predicted loca-
tion by RSP and the SUT is completely developed.
So, the SUT is installed on the RSP. Also, complete
scenery is already created and available to be simu-
lated.

Once the simulator is started with the scenery and
the SUT is installed on the RSP, the test can be begun
by the RU. To start, RU could to move his SU until a
QR tag using the keyboard, then RU activates the QR
reader from his RSP to decode the tag. In order to
perform this task, the SUT needs to get images from
the camera, instead it receives images (containing the
QR tag if it is focused) that are displayed on the PC
screen by simulator. The tag is identified and pro-
cessed to get the location information, after this, it is
displayed in the simulator. By this way, the user tests
easily if the QR tag contains a correct location.

Once the SUT gets its position, the RU can acti-
vate the AR from the RSP to identify POIs. RU sees
them on RSP screen and can test how the POI icons
change by rotating his SU using keyboard. Therefore,
RU can check if POI icons are correctly displayed in
our RSP screen and also, RU can review the content
of a POI pushing its icon.

Finally, by moving SU and consequently its at-
tached SSP that sends simulated acceleration and
orientation changes to the RSP. RSP tries to predict
the SSP location from those simulated values and, at
the same time, RU checks how varies the predictions
on the screen. In addition, RU can check if it affects
to AR too much depending on if the POIs are located
more or less correctly on the RSP screen.

As we have seen, UbikSim contributes to test by
means of the displays. The simulation displays are
very useful to observe that the application behavior is
appropriate. UbikSim works on MASON [MASON,
2013] and can use its features as, for example, inspec-
tors. They are a means to graphically visualize the
evolution of variables of interest for the simulation. A
large number of inspectors for various simulation
variables can be used and monitored dynamically as
the simulation evolves. They can be used to check

that such variables take always reasonable values,
such as estimated locations.

Fig. 2 Proposal of interactions within a mobile applications
testing scenario based on simulation.

5 Conclusions
Currently, existing tools are insufficient to test

context-aware applications that make extensive use of
their sensors whose values have a correlation. This
paper proposes an approach to test this kind of appli-
cations using simulation. The approach simulates the
whole environment where the application will be
deployed, such as physical space, people or sensors.
In contrast, both the SUT and the smart phone where
the SUT is installed are real. Therefore, the user in-
teraction with the SUT is realistic, giving a real expe-
rience that is fundamental for validation.

This work is a contribution to the engineering pro-
cess of smart phone application in general and AmI
systems in particular. It has three main advantages.
(1) The software testing is not defined by the compo-
nent level as a sequence of sensor values, but from
stress concrete situations in the virtual world that are
more natural and realistic. (2) A graphical representa-
tion of the situations means that a set of final users
can understand and, therefore, they can validate the
application behavior more easily while the testing
process is performed simultaneously. (3) Some tests
can be performed in early stage of software develop-
ment process because a pilot test is not needed as it
was needed before. When an error is detected early, it
is easier and cheaper to fix. (4) Developers neither
need to learn any new application programming inter-
face (API) nor change source code of the application.

Future works include a deep study about defining
a graphical modeling language that allows users to
specify how a system (included smart phone) should
react against defined situations. The language will be
defined for a specific domain, Parkinson Disease.
Doctors, caregivers and relatives have to be able to
use the notation. Therefore, it will have to be simple

Campillo-Sanchez, P. et al Development of sensor based applications for the Android
platform: an Approach Based on Realistic Simulation

28

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #4
http://adcaj.usal.es

enough. Finally, these models will be translated au-
tomatically in a simulation in order to users can vali-
date the model defined themselves.

6 Acknowledgment
This work has been supported by the Spanish

Ministry of Science and Innovation in the scope of

the Research Projects TIN2011-28335-C02-01 and
TIN2011-28335-C02-02. Facultad de Informática,
Campus Universitario de Espinardo, 30100 Murcia,
Spain.

7 References
[BADGETT, T. et al. 2004] BADGETT, T., MYERS, G.J., SANDLER, C., and THOMAS, T.M. The art of Soft-

ware Testing. Wiley, 2nd edition, 2004.
[CAMPUZANO, F. et al.
2011]

CAMPUZANO, F., GARCIA-VALVERDE, T., GARCIA-SOLA, A., and BOTIA, J.
Flexible simulation of ubiquitous computing environments. In Ambient Intelligence –
Software and Applications, volume 92 of Advantages in Intelligent and Soft Compu-
ting, Springer, 2011, Berlin / Heidelberg, pp. 189-196.

[CHON, J. et al. 2011]

CHON, J., and CHA, H Lifemap: A smartphone-based context provider for location-
based services. IEEE Pervasive Computing, volume 10, 2011, pp. 58-67.

[COUNTER, 2013] Counter Strike website: http://www.counter-strike.net, last accessed March 1, 2013.
[GARCIA-VALVERDE,
T. et al. 2009]

GARCIA-VALVERDE, T., SERRANO, E., BOTIA, J., GOMEZ-SKARMETA, A.,
CADENAS, J.M. Artificial societies immersed in an ambient intelligence environ-
ment, in: Workshop W31 Social Simulation of the 21st International Joint Confer-
ence on Artificial Intelligence, Pasadena, California, 2009.

[GARTNER, 2010] GARTNER Corporation. Gartner says worldwide mobile phone sales grew
35 percent in third quarter 2010; smartphone sales increased 96 percent.
http://www.gartner.com/it/page.jsp?id=1466313, Nov 2010.

[IEEE, 1990] I.O Electrical and E. E. IEEE 90: IEEE standard glossary of software engineering
terminology, 1990,
Artificial Intelligence and Application, J&J Editors, 2012. Spain

[MAM, 2013] MAM website: http://www.murciaturistica.es/museos/museos.inicio?museo=museo-
arqueol\%F3gico-de-murcia-(mam)\&id=1, last accessed March 1, 2013.

[MASON, 2013] MASON website: http://cs.gmu.edu/~eclab/projects/mason/, last accessed March 1,
2013.

[MEIER, R., 2010] MEIER, R. Professional Android 2 Application Development. Wrox Press Ltd., Bir-
mingham, UK, 1st edition, 2010.

[OSHEROVE, R., 2009] OSHEROVE, R. The art of Unit Testing: With Examples in .Net. Manning Publica-
tions Co., Greenwich, CT, USA, 1st edition, 2009.

[SAMSENSIM, 2013] SAMSUNG Sensor Simulator website: http://developer.samsung.com/android/tools-
sdks/Samsung-Sensor-Simulator, last accessed March 1, 2013.

[SENSIM, 2013] SENSORSIMULATOR website:
http://code.google.com/p/openintents/wiki/SensorSimulator, last accessed March 1,
2013.

[UBIKSIM, 2013] UbikSim website: http://ubiksim.sourceforge.net, last accessed March 1, 2013.

