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This paper presents a multi-agent framework using Net- Logo to simulate human 
and collective behaviors during emergency evacuations.  Emergency situation 
appears when an unexpected event occurs. In indoor emergency situation, evac- 
uation plans defined by facility manager explain procedure and safety ways to 
follow in an emergency  situation. A critical and public scenario is an airport 
where there is an everyday transit of thousands of people. In this scenario the 
importance  is  related  with  incidents  statistics  regarding  overcrowding  and 
crushing in public buildings. Simulation has the objective of evaluating building 
layouts considering several possible configurations. Agents could be based on 
reactive behavior like avoid danger or follow other agent, or in deliberative be- 
havior based on BDI model. This tool provides decision support in a real emer- 
gency scenario like an airport, analyzing alternative solutions to the evacuation 
process. 
 

   
 

1 Introduction 
 

Emergency situation appears when an unexpected 
event occurs as, for example,  earthquake, flood, ter- 
rorist  attack,  burning  building  or  shopping  center, 
sinking ship or an offshore oil platform, etc. In indoor 
emergency situation, evacuation plans defined by fa- 
cility manager explain procedure and safety ways to 
follow in an emergency situation. One of the key is- 
sues  identified  by  facility  managers  is  safe  egres- 
based on the layout of the public  building and the 
crowds behavior. The importance of this issue is re- 
lated with incidents reported regarding overcrowding 
and  crushing in public buildings (Zhan et al.  2008). 
The definition of safe egress in a public building is an 
unsolved problem (Pan et al. 2007) that could be 
improvement by Information Technologies 
(Filippoupo- litis et al. 2008). 

This paper presents an agent based framework us- 
ing NetLogo to simulate human and collective behav- 
iors during emergency  evacuations. Simulation has 
the objective of evaluating building layouts consider- 

ing  several  possible configurations. Simulation  con- 
sidered heterogeneous agents to include  the human 
factor in the collective behavior with levels of inter- 
action as function of the individual capacities. An ob- 
jective evaluation  function, based on the percentage 
of live people at the end of simulation, is considered. 

 

2 Agent  Based  Simulation 
for Emergency Evacuation 

 
In agent simulation, the model specifies behaviors 

of individuals, in contrast to macro  simulation tech- 
niques that are based on  mathematical models (Da- 
vidsson 2002). The use of agent based simulation for 
modeling  emergency evacuation is related with the 
capacity  to  analyze  collective  behavior.  In  macro 
simulations, the collective is defined by a number of 
variables, whereas in micro simulations the collective 
goes defined by the emergence from the interactions 
among individuals. 

Several approaches in literature model the collec- 
tive  human  behavior using agent  systems.  One  of 



Garcia, A. C. B., et al Multi-agent simulations for emergency situations in an airport scenario 
 

 

 

70 

 

 

Advances in Distributed  

Computing and Artificial  

Intelligence Jornual 

Special Issue #3 

http://adcaj.usal.es 

them are centered in simulate a realistic crowd, where 
the behavior of individuals allow represent different 
collective behavior similar to a real world. One of the 
main approaches in this line is Braun and colleagues 
(Braun  et  al.  2003).  In  this  work,  the  multiagent 
crowd  simulation system has  individualized agents 
with  particular  properties,  such  as  dependence  on 
others and altruism levels, and act according to these 
behaviors. The simulation try to represent the collec- 
tive behavior in a realistic way, for  example, in a 
room exiting task, some agents being faster than oth- 
ers and some going back to help others who needed 
help. The main goal is to generate realistic crowd be- 
havior in a simulation, which can be used in virtual 
reality or movies. 

An application of these simulators is the analysis 
and the design of buildings and evacuation plans. In 
(Pan et al. 2007) a multi-agent simulation framework 
is developed for simulating individual cognitive pro- 
cesses for exploring emergent phenomena such as so- 
cial or collective behaviors. 

The paper presents a Multi-Agent Simulation Sys- 
tem  prototype  for  Egress  analysis  (MASSEgress). 
The main focus of this work is modeling frequently 
observed  human  social  behaviors  in  emergencies, 
such as competitive, queuing, and herding behaviors, 
through  simulating the cognitive processes of indi- 
vidual agents and interactions among multiple agents 
in an artificial environment. The  MASSEgress tool 
analyzes these situations on a predefined building de- 
sign, this mean when  and where occur. Then, using 
cludes  the  information  of reachable  and  avoidable 
nodes. The more they see the world, the better there 
chance to perceive an escape node. At any given time 
an agent is in one of the 13 possible situations vary- ing 
from totally free to totally blocked or in imminent 
death. His sight can see more than just its neighbour, 
but for simplicity it was a single neighbour distance 
sight reach. Since they will be  moving in the envi- 
ronment, they need an algorithm to trace a path. The 
shortest path between two nodes is denoted as the dis- 
tance between the two nodes, dist(u,v) whenever v is 
reachable from u by the path. Dijkstras shortest path 
algorithm calculates the distance, according to a path, 
between two nodes reachable. The  time complexity of 
Dijkstras algorithm is in the order of O(m + nlogn) time 
for which m is the number of edges and n is the number 
of vertices of the graph. The world is dynam- ic. 

As time goes by, agents change position, the danger 

spreads meaning the graph connections change. Con- 
sequently, even when agent starts knowing the entire 
world, this knowledge keeps downgrading with time. 
That fact justifies the  helpfulness of exchanging in- 
formation  when  meeting  other  agents  even  when 
agents  know  the  world.  Danger  spots  start  in  cell 
units that can be either randomly allocated, such as in a 
forest fire that we never know the focus points, or pre-
defined, such as in a dam river that we know the weak 
points. In order to run a simulation, it is neces- sary to 
define spread  function. Consequently, at the same time 
agents are moving and making cells tem- porarily   
occupied,   danger   keeps   spreading    out throughout 
the environment cells. Our premise is that once in 
danger, the cell will  stay  in danger forever during the 
simulation and the set of blocked nodes in danger keeps  
increasing according to a pre-defined danger spreading 
function from a triggered cell. We consider a  damaged 
cell  a  world unit  from  which agents should stay away 
from it to stay  alive. The emergency simulation runs in 
continuous time steps. 

Agents resources are mapped to time units of their 
life. Each type action differently  decreases  units of 
agents lifetime. For  instance, depending of the sce- 
nario, moving  from one cell to another may require less 
lifetime resource than exchanging information to other 
agents. The simulation runs  in  two  different modes: 
exhaustive and bounded by time frame. In the first 
scenario, the simulation  runs until either agents escape, 
die or get  locked. In the later scenario, the simulation 
runs for a specified amount of time. 

MASSEgress  tool  and  a  visual  inspection  of  
the simulation,  an  expert  in  the  field  could  
determine which the best building design for 
evacuation  por- poises is. 

Finally, other works are centered in the possibility 
to apply simulation in real time. These tools give de- 
cision support in a real emergence, analyzing alterna- 
tive solutions as the evacuation evolves. (Filippoupo- 
litis   et   al.   2008)   present   a   augmented   reality 
simulation system to operate in an emergency disaster 
to evaluate evacuation strategies in real-time, named 
Building Evacuation Simulator. The system is able to 
evaluate  evacuation policies for a specific building. 
Authors show the effect of individual and  collective 
behaviors  in  an  evacuation   procedure,  including 
grouping behaviors and  the inclusion of the leader- 
ship role. 
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4 Problem formulation 
 

People, represented by agents, move in an indoor 
building defined in a layout. When an emergency oc- 
curs (that is propagate all over the layout, as the fire, 
with  a  speed  and  a  certain  topology),  agents  can 
move to search the exit with a certain speed or warn 
others  about the emergency and about exits. In that 
case, agents will form a kind of a network  quickly 
spreading the warnings over possibly  all agents and 
the whole environment. This will strongly depend on 
the communication range of the agents. 

4.1 World definition 
The world is a 2D matrix of cell position, in which 

agents act upon, is represented as a directed graph G= 
(V;E; -), for which V is a non-empty set of nodes; E 
is a set of edges, one for each link; and - is a weight 
function from path E reflecting nonzero positive real 
numbers. The number of nodes is denoted by n, and 
the number of the directed edges m. A directed edge 
in E is denoted by an ordered pair of nodes from V. If 
directed edge e = uv 2 E , node v is said to be reacha- 
ble from node u in E. The weight of edge uv is denot- 
ed by '(uv). A path between two nodes v0 and vk is 
nite sequence p = v0; v1:::vk of nodes such that for 
each 0 < i < k; vivi+1 2 E, and the weight of the path 
is -(p) = P 0<i<k; -(vi; vi+1). 

According  to  this  representation  of  the   world, 
agents are always located in a node cell, moving from 
node to node to find an escape route. They may have 
a partial or total view of the world, a sub graph that I 
cludes  the  information  of reachable  and  avoidable 
nodes. The more they see the world, the better there 
chance to perceive an escape node. At any given time 
an agent is in one of the 13 possible situations vary- 
ing from totally free to totally blocked or in imminent 
death. His sight can see more than just its neighbour, 
but for simplicity it was a single neighbour distance 
sight reach. Since they will be  moving in the envi- 
ronment, they need an algorithm to trace a path. The 
shortest path between two nodes is denoted as the dis- 
tance between the two nodes, dist(u,v) whenever v is 
reachable from u by the path. Dijkstras shortest path 
algorithm calculates the distance, according to a path, 
between two nodes reachable. The  time complexity 
of Dijkstras algorithm is in the order of O(m + nlogn) 
time for which m is the number of edges and n is the 

number of vertices of the graph. The world is dynam- 
ic. 

As time goes by, agents change position, the danger 
spreads meaning the graph connections change. Con- 
sequently, even when agent starts knowing the entire 
world, this knowledge keeps downgrading with time. 
That fact justifies the  helpfulness of exchanging in- 
formation  when  meeting  other  agents  even  when 
agents  know  the  world.  Danger  spots  start  in  cell 
units that can be either randomly allocated, such as in 
a forest fire that we never know the focus points, or 
pre-defined, such as in a dam river that we know the 
weak points. In order to run a simulation, it is neces- 
sary to define spread  function. Consequently, at the 
same time agents are moving and making cells tem- 
porarily   occupied,   danger   keeps   spreading    out 
throughout the environment cells. Our premise is that 
once in danger, the cell will  stay  in danger forever 
during the simulation and the set of blocked nodes in 
danger keeps  increasing according to a pre-defined 
danger spreading function from a triggered cell. We 
consider a  damaged cell  a  world unit  from  which 
agents should stay away from it to stay  alive. The 
emergency simulation runs in continuous time steps. 

Agents resources are mapped to time units of their 
life. Each type action differently  decreases  units of 
agents lifetime. For  instance, depending of the sce- 
nario, moving  from one cell to another may require 
less lifetime resource than exchanging information to 
other agents. The simulation runs  in  two  different 
modes: exhaustive and bounded by time frame. In the 
first scenario, the simulation  runs until either agents 
escape, die or get  locked. In the later scenario, the 
simulation runs for a specified amount of time. 

4.2 Emergency Model 
Emergency is represented as a set of events  origi- 

nated by external agents, such as a fire spot, that de- 
stroy world cell units and may damage agents when- 
ever in contact with them. There may be one or more 
source of these  events that spreads into the world 
with time according to some spreading function. The 
emergency changes the status of the cell from availa- 
ble to destroyed. An emergency event (Ev) has a de- 
gree of severity that reflects the degree of damage on 
an  agent  according  to  the  distance  between  them, 
varying from 0 (no damage) to 1(kill agent whenever 
touches it). In order to simulate our crowd evacuation 
scenario,  it is important to define the world density 
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(AD), in terms of number of agents per squared cell 
unit. Additionally, for each agent in play, we have to 
define its characteristics (Agi) including its initial po- 
sition cell (Cs), the time when it started playing (Ts), 
its cognitive skills (Think), such as Reactive, Cogni- 
tive or Follower, for reaching their goal of escaping 
or saving somebody else, their physical skills such as 
its motion (Move), vision (See) and hearing abilities 
(Hear), and its role (Role) in the world such as being 
a civilian, a villain or a hero. Agents initial position 
can  be specifically  defined, such  as  for  a  fireman 
starting at an exit cell, or randomly determined. 

Each agent occupies exactly one unit. Each unit has 
exactly one agent at a time, except when and agent is 
carrying another. We are interested in studying indi- 
vidual behavior for  individual as well as population 
survival in  emergency scenarios. As for the popula- 
tion, we will look at averages and standard deviations 
of duration to escape. For individual analysis, we will 
be looking at: time to escape (Te), starting point (Cs), 
stating time (Ts) and chosen exit (Exit). As measure- 
ments, or outputs, of the experiments we defined the 
following observables: 

Ndi: number of deaths, per agent type. 
Tei: average time survivors took to  escape the 
environment, per agent type. 
T0: number of iterations completed until no more 
agents in the environment 

We also record, for each experiment, the location of 
the fire breakout so that we can latter correlate its lo- 
cation  with  the  escape  results.  For  instance,  fire 
breakouts near an  exit are prone to produce much 
worse results  than most of the other breakout loca- 
tions. 

 4.3 Agents Architecture 
We are simulating crowd behavior in emergency sce- 
nario using two different approaches. In the first ap- 
proach,  we  model  individual  agents  varying  their 
cognitive skills as the building block unit to create the 
society. In the second approach, we model the crowd 
as a compact unit based on swarm theory. 
In order to model each individual agent in the world 
scenario, it is necessary to describe the way they per- 
ceive and perform on the environment as well as their 
reasoning abilities.  Our agents present the following 
skills: 
1. Agents initial position: reflect its coordinates in the 
world graph; 

2. Agents resources: reflect the available resource to 
perform the actions to  achieve  its  goals. Different 
types of resources can be mapped to a single one. In 
our case we are mapping to time units of life. 
3. Agents interaction abilities: reflect its  abilities to 
perceive and act on the environment. 
(a) Perception skills include: 
i. Sight range defines from its current  location  the 
depth of the subgraph of the world it is able to see. 
ii. Hearing range defines from how far the agent can 
listen to messages. Similarly to sight range, it defines 
the maximum distance to  others an agent can be in 
order  to  transfer  information  (communicate)  about 
the world. 
(b) Acting skills include: 
i. Speed to move defines how fast the agent can move 
in the environment meaning how many cells per unit 
of time simulation the agent can move. 
ii. Communication to others defines the ability agent 
has to transmit and receive information  in a shared 
communication language. 
4. Agents learning skills: reflect the amount of infor- 
mation the agent can incorporate in its memory. 
5. Agents reasoning ability defines the way they de- 
cide its next action. 
Agents vary in their reasoning skills from no reason 
to full alternative generation and evaluation. No mat- 
ter the reasoning process,  agents act perceiving the 
environment  though  their  sensors,  such  as  hearing 
and sight sensors, choosing what to do next and act- 
ing in the environment though their actuators, such as 
moving, communicating or planning what to do next. 
We are considering three main types of agents inhab 
iting the environment: purely reactive agents, follow- 
ers and cognitive agents. 

Reactive agents: Purely reactive agents  randomly 
choose their next action, just avoiding the immediate 
danger. There is neither memory from the past nor a 
rational decision making process associated with their 
next move. Their inference algorithm is similar to a 
blind search with no memory of previous states as de- 
scribed in Algorithm 1. 
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Follower agents: Followers are agents that react dif- 
ferently. Their systematic behavior consists in follow- 
ing the others strategy. They have a glint of reasoning 
when needed. They follow the group with more fol- 
lowers. Whenever there is no one to follow, they be- 
have just  as  the purely reactive agents. They  also 
have no memory of previous history. 
Their  inference  algorithm  is  mostly  blind   search 
based, with a cheap reasoning when  meeting others, 
as described in Algorithm 2. 
Cognitive agents: Cognitive agents are the ones that 
follow a rational decision making process to choose 
their next action. They also learn as they act upon the 
environment. They have  memory and consider their 
history of interactions to choose the best move con- 
sidering  what  they  have  already  learnt   from  the 
world. There are many approaches to rational agents. 
Here, we take a practical reasoning approach to rep 
resent cognitive agents considering they  reason  to- 
wards actions (Bratman and Intentions ) . Agents will 
act according to plans they create plans to fulfill In- 
tentions to  accomplish Desires considering a set of 
Beliefs about the environment and their own 
abilities, i.e.  cognitive  agents  will  be   represented  
as  BDI agents (Rao, Georgeff,  and others 1995). 
Cognitive agents reason to  decide the behavior for 
achieving adequate performance when deliberation is 
subject to resource bounds (Kinny and George 1991) 
. The be- liefs keep updating as times goes by.  While 
beliefs remain, agents keep following  their plans. 

The plan will be executed consuming agents lifetime 
according to the cost  involved to execute each action 
of the plan. See Figure 1.  
Each action consumes a certain amount of agents life- 
time resource that should be configured to better re- 
flect the world being modeled. We  have considered 
all actions as consuming 1 unit of resource, except for 
the communication action.  
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In this last case, we assume the effort is a function of 
the amount to be communicated. The agent assumes 
the other agent has the same amount of information to 
communicate too.  Consequently, the communicative 
act will take  from both agents the number of nodes 
they know together multiplied by an adjustment factor 
since communicate should be much faster  than move. 
Agents create a plan based on the meansends analysis 
(Newell and Simon 1961)  planning proce- dure 
described below in Figure 2. 
The MEA technique (Newell and Simon 1972) is a 
strategy to control search in problem-solving. Given a 
current state and a  goal state,  an action is chosen 
which will  reduce the difference between the two. 
The  action is performed on the current state to  pro- 
duce a new state, and the process is  recursively 
applied to this new state and the goal state. 
We consider simple cognitive agents planning as fol- 
lowing   the   means-ends   analysis   problem-solving 
technique (MEA) (Newell and Simon 1972). Problem 
solving with MEA  requires agents to represent the 
states the world assumes at each iteration time. Given 
a current and a goal state, an action is chosen which 
will reduce the difference between the  two. The ac- 
tion is performed on the current  state to produce a 
new state, and the process  is recursively applied to 
this new state and the goal state. The MEA table, 
illustrated in Figure 2 , represents the reasoning 
strate- gy for  the cognitive agents acting in the 
emergency world. Column in blue represents the  
difference  be- tween current and goal states to be 
removed. The line in orange means the  operators 
capable of removing differences and, finally, the line 
in yellow represents the set of pre-conditions for 
applying a specific oper- ator, as illustrated in Figure 
2. Duplicate lines reflect there is more than one way 
to remove a  difference. More than one X in the same 
line means more than one operator must be applied. 
We use Andersons algorithm (Anderson and  Moore 
1985) to execute MEA as described below: 
 
Apply the operator that will make the most important 
difference to the current state. In selecting the opera- 
tor to apply, match the conditions of the operator to 
the current state to identify the most important differ- 
ence. In this  paper, we consider the following deci- 
sion-making strategy in case of conflict. In  any cir- 
cumstances,  survival  is  the  most   important  goal, 
consequently head away from  the danger will take 

over.  Rational  agents  always  prefer  to  head to  an 
available exit whenever they know a route towards it, 
except when a fire is close to the exit. Otherwise they 
need to decide upon the alternative actions:  explore 
the world in a rational way (following  a previously 
generated route), verge heading to another agent, ex- 
change information about the world with others and 
generate a route. 
Whenever agent knowledge is insufficient to rational- 
ly create a route, it can randomly choose between two 
options: head to any local  exit or verge heading to 
another agent. As the agent gains knowledge it makes 
sense to plan  its  own route trying to find an exit. 
Since we  are  neither considering agents reputation 
nor  information truthfulness, communication is  the 
preferred operation whenever meeting  other agents, 
whenever the expected gain of information is greater 
than the expected gain of  information exploring the 
world. 
Agents expectation about others agents knowledge of 
the world is directly proportional of their own current 
knowledge. 
 
 This heuristic is  based on  the idea that  all  
agents think they are alike. Consequently they 
believe eve- rybody is acquiring information at the 
same rate. This is a reasonable assumption with 
homogeneous agents, since the size of the  explored 
world tends to be the same  from  each  of  them.  
Notice  that,  when  the amount  of knowledge the 
agent has about the envi- ronment is very large, the 
expected gain in exchang- ing information with other 
agents  decreases. At this point, agent falls naturally 
into planning its own route stopping communication. 
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5 Experiments 

 
A set of experiments was prepared to  assess the 

behaviour of agents with different  capabilities under 
the proposed model. The general approach was to use 
populations with  different compositions in the num- 
ber of agents of each type. Results are analysed in or- 
der to identify to what extent we can draw  conclu 
sions from the model. In this set of experiments  we 
considered fire as the cause of emergency. Depending 
on the exposition of the agents to fire they can be in- 
jured and they can die. Injuries are represented by a 
decrease of  health points from the maximum corre- 
sponding to perfect health that agents start with. 

An agent moves about in a closed  environment, 
representing a building floor,  until it detects a fire 
breakout in its vicinity. In that situation it tries to es- 
cape the environment, with its characteristic strategy. 
That happens when the agent exits through one of the 
doors that allow a passage between the closed envi- 
ronment and the external world. Each run may com- 
plete when one of the  two  following conditions is 
met: all agents  have either escaped or died; a limit 
number of iterations is completed. 

5.1 Dependent and Independent 
Variables 

The number of variables is quite large and there- 
fore we fixed most of the parameters to keep the ex- 
periments in a reasonable size. We varied the compo- 
sition of the population from  100% of each type of 
agent to identical  percentages for all types.We also 
varied the fire breakout locations, from a concentra- 
tion in one single room to random breakouts, over a 
set of three types of environment configurations. 

Three types of environments were defined. One in 
the form of a regular lattice of square rooms, in which 

one has communication doors  between all adjacent 
rooms (Scenario Tradicional) and the other has only 
doors  between rooms and corridor (Scenario Corri- 
dor). The other environment characterizes configura- 
tions where rooms are not uniformly distributed. The 
rooms form a kind of a U configuration (Scenario U). 

In one set of experiments the fire breakout was on 
a fixed room, in a corner of the environment to test 
for the sensitivity of the  model to the random posi- 
tioning of agents,  in  a  situation  in  which  the  fire 
could take more time to percolate through the whole 
environment. A subsequent set of experiments  con- 
sidered four fire breakouts in and around  that same 
corner, to analyze the influence of small variations in 
fire  breakout  position.  All  other  simulations  used 
random positioning of  one fire breakout. The initial 
density  of  agents  was  constant  with  the  value  of 
7.5/room, over all the experiments. 

Since one of the main goals of this work  is to 
study the influence of the population composition 
inthe escaping results, we varied the initial percentage 
of different types of agents according to Figure . 

 

 

5.2 Results 
For  each  parameter  configuration,  30  runs   were 
made, with random initial agent  positions, to obtain 
statistically significant  results. Result of computing 
mean and standard deviation (   ;    ) are presented for 
each scenario . See Figure 4, 5, 6. 
 Following are the results of computing data acquired 
by the simulation. Graphics resulting  of computing 
13 different configurations let us conclude about the 
influence of the population composition in each type 
of scenario. We take into account the confidence in- 
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terval drawn by the graphics. See Figures: 7, 8, 9. In 
an Airport scenario with “Tradicional” configuration,   
cognitive agents has a better performance,  followed 
by reactive agents. There are less  agents deads, so 
when there is the case of  this  kind of scenario, it 
would be good to  invest on training people for this 
kind of situations. On the other hand, we can appreci- 
ate that for Scenario Corridor, reactive agents end the 
simulation with less deaths, and it can  be explained 
by the distribution of the scenario. And for Scenario 
U, followers have a better disengagement. 
 

 

 
 

 

 
 
6 Conclusions 

 
The simulation results help us to establish the di- 

rect relation between population of the  crowd and 
type of scenarios. It also provides us with an estimate 
for an Airport scenario of where we should put the ef- 
fort depending on the  number of people for every 
scenario considered. Experiments and graphics result- 
ing  of computing 13 different configurations let  us 
conclude about the influence of the population com- 
position in each type of scenario. It allows us to de- 
cide where to put the efforts, i.e: investing money and 
time  training  people for these emergency situations; 
or putting effort choosing an adequate  scenario  for 
the specific domain of application. 
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