
Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

55

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

KEYWORD

 ABSTRACT

adaptive learning system
user-centered design
game design
game framework
temporal constraint problems
automated reasoning
natural language generation
natural language processing
pedagogy.

TERENCE is an FP7 ICT European project that is developing an adaptive
learning system for supporting poor comprehenders and their educators. Its
learning material are books of stories and games. The games are specialised in-
to smart games, which stimulate inference-making for story comprehension, and
relaxing games, which stimulate visual perception and not story comprehension.
The paper focuses on smart games. It first describes the TERENCE system ar-
chitecture, thus delves into the design of smart games starting from the require-
ments and their automated generation, by highlighting the role of the reasoning
module therein. Finally, it outlines the manual revision of the generated smart
games, and ends with short conclusions about the planned improvements on the
automated generation process.

1 Introduction
Nowadays, circa 10% of young children are esti-

mated to be poor text comprehenders. They are profi-
cient in word decoding and other low-level cognitive
skills, but they show problems in deep text compre-
hension. TERENCE1 is a European ICT multidisci-
plinary project. The project is placed in the area of
Technology Enhanced Learning (TEL) and its main
objective is to develop the first adaptive learning sys-

1 http://www.terenceprojecte.eu

tems (ALS) for improving the reading comprehension
of 8–10 year old poor comprehenders, building upon
effective pencil-and-paper reading strategies, and
framing them into a playful and stimulating peda-
gogy-driven environment. Learners of the system are
primary school poor comprehenders, hearing and
deaf, older than 7. They are the main end users of the
system. Secondary end users of the system are the
learners’ educators, and the experts sitting in the con-
sortium, who design and develop the learning materi-
al or system.

The learning material of TERENCE is made of
stories, collected into books, and games. Games are

Design Smart Games with context, generate
them with a Click, and revise them with a
GUI
Vincenza Cofinia, Fernando De La Prietab, Tania di Mascioc,
Rosella Gennarid, Pierpaolo Vittorinia
a UnivAQ. U. of L'Aquila, 67100 Coppito, L'Aquila, IT, {vicenza.cofini, pierpaolo.vittorini@univaq.it}

b USAL. University of Salamanca. Department of Computer Science and Automation Control. Plaza de la Merced
s/n, 37007, Salamanca (Spain), fer@usal.es

c DIEI, U. of l'Aquila, V.le Gronchi 30, 67100, L'Aquila, IT, tania.dimascio@univaq.it

d KRDB, Free U. of Bozen-Bolzano, Piazza Domenicani 3, 39100, Bolzano, IT, gennari@inf.unibz.it

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

56

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

specialised into smart games, for reasoning about sto-
ries, and into relaxing games, for motivating and re-
laxing the learners after playing with the cognitively
demanding smart games. In a session, the learner is
asked to first read a story and then to play the associ-
ated smart games concerning the events of the story;
at the end, the learner can relax by playing relaxing
games for that story.

Books, stories and games are written in the two
languages of the project, Italian and English, and il-
lustrated. The learning material was designed by fol-
lowing the user centered and evidence based design,
see [Cofini,, V. et al., 2012]. The models for the
learning material and learners of the system are in
[Alrifai, M., et al., 2012a], and the first adaptation
rules are in [Alrifai, M., et al., 2012b], whereas [Al-
rifai, M., et al., 2012c] explains how the models and
learner model, in particular, stem from an extensive
context of use and requirement analysis [Slegers, K.
et Gennari, R., 2012] [Di Mascio, T. et al., 2012a].

This paper focuses on smart games. The first goal
of this paper is to explain how the smart games of
TERENCE are designed on top of an extensive anal-
ysis of the context of use of the system. The second
and main goal of the paper is to explain the automat-
ed procedure that enables the generation of the textu-
al components of smart games. The third goal is to
explain how we assessed what is working and what
needs manual fixes in the automated generation pro-
cedure of textual components of smart games.

The structure of the paper is as follows. First, in
the following section, we explain the overall system
architecture so as to guide the reader through the rel-
evant components of the TERENCE system for gen-

erating smart games, and their roles. Stronger with
such background, then we can delve into the design
and generation of textual components of smart
games. As the design is rooted in the analysis of the
context of use, the analysis of the context of use is re-
capped in Section 3. The design of the smart games
from the context of use analysis starts with the
presentation of the TERENCE game framework in
Section 4. It then continues explaining the data struc-
ture of smart games for the generation process of tex-
tual components of smart games. The generation pro-
cess itself is the focus of Section 5. Section 6
concludes the paper by explaining the manual inter-
ventions required by the generation process. Their
impact on the improvements to the automated genera-
tion process is outlined in the conclusive section.

2 The System Architecture
The generation of smart games is a complex pro-

cess and is divided into a series of steps, the majority
of which are automated. The full process is shown in
the next sections. In this process, many software
components interact, as Figure 1 shows. Each of the-
se components has a specific responsibility in the
process. The communication among them is done
through RESTful web services, following a SOA ap-
proach.

Such a design of the architectures makes possible
the reutilisation of each individual component, e.g.,
by substituting the natural language module for a lan-
guage with another for another language.

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

57

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

Fig. 1. System architecture Overview

The lowest level layer is the persistence layer
whose storage engine is openRDF. This engine is
based on ontologies that make possible to store struc-
tured information and to modify dynamically the
structure of the data. Within this layer are located the
different repositories of TERENCE (User, History,
Games and Visualisation), each of them supported by
a management component.

The highest level layer is the Graphical User Inter-
face (GUI) which is divided itself into two main
components.
1. A RIA (Rich Internet Application) web applica-

tion developed with the Vaadin Framework
(http://www.vaadincom). It is specifically de-
signed for educators, experts and administrators,
and allows them to manage all the information of
the TERENCE system (books, games, avatars,
etc.) as well as the tracking of the learner pro-
gression.

2. A web application for learners, specially designed
for tablets and based on Flash. This application is
supported in its tasks by the Visualisation module
that preprocesses the data. And finally, as core of
the system, there are three independent modules
that communicate among them through web ser-
vices.

The NPL (Natural Processing Language) modules,
in Italian and in English the Reasoning module work
together to annotate semantically relevant infor-
mation in flat story texts. The Natural Language Gen-
eration (NLG) modules, in English and in Italian, and
again the Reasoning Module work together to gener-

ate automatically textual components for smart
games. Such generation process is described in de-
tails later on in this paper.

The Visualisation module and the Learner GUI
assemble the textual components and the visual com-
ponents for the entire Learner GUI, e.g., for stories,
and display them in the Learner GUI. In the case of
smart games, the Visualisation module takes as input
the textual smart games of the Reasoning module and
retrieves the visual components for the generation of
visual smart games from the visualisation repository.

Finally, the ALS (Adaptive Learning System)
module of the learning system, whose main internal
component is the adaptive engine, is in charge of the
selection of the learning resources per each learner
according with the learner's interaction and progress
with TERENCE.

3 Context of Use
For designing and evaluating the TERENCE sys-

tem, we adopt the user centered design (UCD) meth-
odology [Norman, D., 2012]. The analysis of the con-
text of use is a mandatory first step in UCD, which
means, in TERENCE, analysing and specifying the
following in relation to the TERENCE users.
1. The characteristics of the TERENCE learners and

educators.
2. The learners’ tasks, that is, the learners’ activities

in relation to reading comprehension.

Adaptive
Learning

System
Adaptive
Engine Reasoning + NLG

Modules
Consistency

Enriched
Games generation

NPL Modules
Italian

English

Data (xml)
Educator

GUI

Expert

Educator

Administrator

Visualization
Module

Learner
GUI

4

Now, more in details, the left screenshot in Fig. 2 shows an intermediate state of
a multiple-choice what game: the question posed to the learner is “What happens in
the story?”. The learner has to choose and drag one of the choices as a key, and see
if it opens (or not) the cupboard. The right screenshot in Fig. 2 shows the feedback
concerning the (in)consistency of the choice with the story in the form of a no visual
message. If the resolution is correct, the locker opens and a reward drops. Notice that
the visual metaphor are adapted to the age of the learner, e.g., a locker is used for 9-11
learners whereas a cupboard is used for 7–9 learners.

Fig. 3. Screenshots of a time game prototype.

The left screenshot in Fig. 3 shows the initial state of an ordering time game: the
learner has to establish before, while and after relations with the event displayed in
the centre of the top area. To do so, the learner has to choose and drag events from
the bottom area, and drop them into the appropriate empty container in the top area.
The right screenshot in Fig. 3 shows an explanatory feedback in the top area: correctly
placed relations are shown with yellow greens; the wrongly placed relation is signalled
with a red bulb. Here as well, a different metaphor is used with younger learners, with
water and mill-wheels in place of electricity and light bulbs.

Fig. 4. The smart games activity: instructions and avatar feedback.

Learner

Story
Manager

Story
Repository

Game
Manager

Game
Repository

Visualization
Manager

File
system

Visualization
Repository

User
Manager

User
Repository

System Bus

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

58

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

3. The environment constraints, divided into the
physical environment constraints in which educa-
tors and learners read, and the satisfaction associ-
ated with it (e.g., school, house), the instructional
environment in which educators and learners do
their activities, and the analysis of devices (e.g.,
software) for such activities.

The TERENCE context of use is so articulated
that its analysis required first a comprehensive and
long preparatory study, and then field studies. The
preparatory study involved ICT researchers, cognitive
and educational psychologists of the consortium, and
educational stakeholders. The field studies, per-
formed in Italy and the in the UK from the beginning
of 2011 to May of 2012, involved the experimenters,
learners as users of the system, teachers and parents
as users of the system, and teachers as domain ex-
perts. The adopted methods were:
• for the preparatory studies: brainstorming meet-

ings, the study of the state of the art, and the
study of the bureaucratic documentation;

• for the field studies: diaries, observations and
contextual inquiries.

Field studies are standard in the UCD context,
whereas preparatory studies are a need of the
TERENCE project. In fact, the latter studies were
supposed (and demonstrated to be) necessary for
building the knowledge base of the consortium team,
which is highly cross-disciplinary, and hence for
gathering information relevant for the field studies,
like the characteristics of the TERENCE learners
known in the literature and the different administra-
tive, legal and ethical issues in UK and Italy.

The preparatory studies dealt with the learners’
characteristics, the reading comprehension task, and
the organisational environment constraints. The field
studies dealt with the learners’ and the educators'
characteristics, the reading comprehension tasks, and
the physical environment constraints.

Thanks to the preparatory studies and the field
studies we could define the user classes and the re-
quirements for the TERENCE ALS system [Di Mas-
cio, T., 2012a] [Di Mascio, T., 2012b]. In what fol-
lows, we only report the results of the overall studies
performed for the context of use, divided into the
analysis of the characteristics of users, tasks and envi-
ronment constraints for the design of smart games.

3.1 Characteristics of the users
The types of learners in TERENCE are deaf and

hearing learners, distinguished according to their
knowledge in relation to the specific learning goal at
the start of the project. The TERENCE classes of us-
ers refine the types of users on the basis of the results
of the analysis of data for the context of use. Such da-
ta have been gathered via a mix of expert-based
method inquiries (e.g., interviews with primary
school educators) and user-based method inquiries
(e.g., field studies with primary school children by
making them play). The learners involved were about
300 in Italy and about 300 in the UK; the educators
involved were about 50 in Italy and about 30 in the
UK.

Learners are grouped into 5 classes in Italy and 4
classes in UK, see [Di Mascio, T., 2012a] for details.
The most significant features related to the character-
istics of the user across classes are:
a. biographical information such as the level of

reading comprehension (RC), the level of deaf-
ness, and the gender;

b. personality traits such as the management of frus-
tration;

c. usage of technology, like the preference for cer-
tain types of avatars.

All the classes and the features used for deriving
the TERENCE classes were then specified using per-
sonas, which are explained in details in [Di Mascio,
T., 2012a] and outlined in [Alrifai, M., et al., 2012c].
A persona per user class was created and allowed us
to share the information concerning the analysis
among all the members of the TERENCE heteroge-
neous consortium, and pass on the relevant infor-
mation to the designers for the definition of the use
cases of the ALS. Figure 2 is an excerpt of the perso-
na for the deaf female class, Carla. All the other per-
sonas are structured in the same manner.

Cofini, V. et al. Design Smart Games with requirements, generate
them with a click, and revise them with a GUI

59

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

Fig. 2. An example of personas: Carla.

3.2 User Tasks

The evidence-based practice of the experts respon-
sible for the pedagogical plan requires three main
learning tasks in relation to the learning material of the
system: (i) reading stories, (ii) playing for stimulating
inference-making about stories, and (iii) relaxing ac-
tivities for relaxing and motivating the learners.

In particular, (ii) became the source for the design
of smart games, whereas (iii) became the source for
the design of relaxing games.

In particular, the data for relaxing games are popu-
lar causal video-games, such as memo, which the
TERENCE learners are likely to be familiar with. A
casual game is a video-game meant for casual gamers
who come across the game and can get into the game-
play almost immediately. This means that a causal
game has usually simple rules that are easy to master,
and usually it can be played everywhere, anytime and
with any device. The data for smart games are mainly
diverse reading interventions by pedagogy experts

working as therapists with poor comprehenders, by
cognitive psychologists or by educators. More precise-
ly, the main data collected were:
a. paper-and-pencil inference-making question-

answering interventions, with or without picture
aids, by cognitive psychologists working on the
diagnosis of poor comprehension;

b. paper-and-pencil puzzle-like games, much rely-
ing on visual stimuli, by therapy and pedagogy
experts;

c. diverse interventions of educators, divided into
interventions for the analysis of texts in class like
question-answering, and interventions like drama
exercises for stimulating the empathy of the
learners with the characters of the story.

Fig. 3. The pedagogical hermeneutic cycle.

The interventions of the educators can be framed in

the three stages of the hermeneutic cycle explained in
[Valeriani, A., 1986] and outlined in Figure 3. In par-
ticular, the explanatory analysis stage can be broken
down into the following reading interventions, done in
class, mainly using question-answering and drawing:
1. the story is broken down into a sequence of epi-

sodes, if possible referring to the story grammar,
that is, the story setting, the initiating episode, the
culminating episode, the resolving episode, and
the final episode;

2. finally, the time, the space and the characters of
the story episodes are analysed together.

Constraints of the project triggered a first prioriti-
sation of the requirements. This first sieve left out, for
instance, drama exercises or other interventions
meant at stimulating the empathy of the learners with
the story characters. The remaining interventions re-
fer to the explanatory analysis stage of the hermeneu-
tic cycle, with visual aids. They were selected mainly

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

60

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

for their expected efficacy for the pedagogy plan, ac-
cording to the available empirical evidence: they
should guide the child to better recall and correlate
the information, acquired by reading the story, via
adequate visual representations. More precisely, the
TERENCE smart games should:

1. propose to reason about the characters and
their participation in the stories;

2. other types of game should propose to reason
about time, namely, temporal relations be-
tween events;

3. more demanding games should propose to
reason about causality and, more precisely,
causal-temporal relations between events.

3.3 Environment

Considering the environments in TERENCE
means taking into consideration: the physical envi-
ronment, the instructional environment, and devices.
Among the environment constraints, those that most-
ly affect the design of the smart games are the organi-
sational constraints set by the stimulation plan of
TERENCE, which makes the smart games the main
means for stimulating the learners' reasoning about
stories. Environment constraints of TERENCE are all
described in details in [Di Mascio, T. et al., 2012]
and mainly derive from the suggestions given by
teachers both in the first and in the second field stud-
ies as well as the expertise of the stimulation plan ex-
perts. Of relevance for this paper are the OC3 and
OC4 constraints, reported as follows.
OC3. During the field studies, both schools’ princi-
pals and experts asked us to stay in one classroom for
no more than 45 minutes/1 hour, so to preserve the
normal lesson’s flow, and ensure a proper level of at-
tention (that decreases after that period of time),
therefore the duration of all the TERENCE smart
games cannot last more than 45 minutes/1 hour.
OC4. School principals suggested to adequately
weight the number of interventions, so to preserve the
regularity of the standard school program. Thus, the
intervention should be though as an external activity
(as an extra-school lab) of varying difficulty.

4 Design of the TERENCE
Framework

The effective interventions, relevant for the
TERENCE smart games according to the context of
use analysis, were hierarchically organised in levels
according to their main pedagogical goal and the ex-
pected difficulty for the TERENCE classes of learn-
ers. The levels, from the easiest to the most difficult,
are as follows:
• characters: games concerning characters, namely,

who the agent of a story event is (who), what
events a character in the story participates in
(what);

• time: games for reasoning about temporal rela-
tions between events of the story, purely sequen-
tial (before-after) or not;

• causality: games concerning causal-temporal re-
lations between events of the story, namely, the
cause of a given event (cause), the effect (effect),
or the cause-effect relations between two events
(cause-effect).

According to the game design guidelines present-
ed in [Alrifai, M. et Genari, R., 2012], the gameplay
should detail the following data: the instructions and
the overall goal of the game, the initial state of the
game, the termination state, the legal actions of the
players, and the maximal duration time per action, if
foreseen. For specifying the gameplay of the
TERENCE games we also analysed the organisation-
al constraints resulting from the context of use analy-
sis. Then we abstracted the common characteristics of
the TERENCE smart games in the TERENCE game
framework presented in Table 1 and described below.
The framework serves to specify, in a structured
manner, the above data for the gameplay of the
TERENCE smart games, essentially, through a timed
transition system, with states of the system, and tran-
sitions labelled by the player’s actions and time con-
straints.

In the following, we first present the framework
specialised for a specific level of games, namely, be-
fore-after time game concerning the sequencing of
three events in time. Then, in the next section, we
sketch how this framework is used for designing and
populating the data structures of TERENCE before-
after game instances.

Cofini, V. et al. Design Smart Games with requirements, generate
them with a click, and revise them with a GUI

61

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

Identifier Identifier of the game
Goal A textual message specific to the game:

“You can win N points if you resolve
this game. To solve the game, look at
the central event in the circuit. Which
of the below events comes before the
central event? Which comes after?”.

Choices Available choices: events available for
resolving the game
Fixed choice: fixed event

Solutions Which available event occurs before
the fixed event, which comes after and
which comes neither after nor before
the fixed event

Feedback Consistency feedback: a yes message if
the learner choose the correct before
and after solutions; a no message oth-
erwise
Explanatory feedback for wrong solu-
tions
Interaction feedback for how to interact
with the game

Points N points of the before-after game as a
function of the performance of the
learner in previous sessions with be-
fore-after games
Table 1. Before-After Game

Given its aim, the TERENCE framework is less

general than other frameworks like [EMAPPS, 2012]
and, clearly, less general purpose than game patterns
like [Kelle, S. et al. 2011]. Therefore it better lends
itself to the implementation of pedagogy-driven sin-
gle-player casual and puzzle games, where the organ-
isational constraints of the pedagogy plan set re-
straints on the gameplay. Table 1 presents the fields
of the framework for before-after games that are rele-
vant for this paper, e.g., we do not discuss the rules of
the game that are instead outlined in [De la Prieta, F.,
et al., 2012]. The fields of the framework are self-
explicative except for the fields labeled “Choices”
and “Solutions” that deserve some comments. In who
games, a fixed choice correspond to a story's event of
which the learner has to find the agent, e.g., the sub-
ject; the available choices are then characters of the
story; a correct solution is then a character that is an
agent of the story's event, else it is a wrong solution.
In all the other games, like in before-after games, a

fixed choice is an event that occurs in the story;
available choices are other events that, in case of be-
fore-after games, are correct solutions if they happen
before or after the fixed event, else they are wrong
solutions.

To better understand the intended semantics of
such fields, see Figure 6, which is an instance of a
visual before-after game. In this game, the learner is
asked to focus his or her attention on the central
event, which is both illustrated and described with a
simple sentence; this is the fixed event of the before-
after framework. Then the learner is asked to choose
2 out of the 3 events, depicted and described with a
simple sentence, that are in the bottom part of the
visual before-after game; these are the available
choices in the before-after framework. One of the 2
events should be placed to the left of the fixed central
event, if it happens before the fixed event in the story,
and the other should be to the right of the fixed event,
if it happens after the fixed event in the story. These
are the correct “before” and “after” solutions in the
before-after framework.

The data of before-after game instances are struc-
tured according to the before-after game framework,
as explained in the following section.

5 From the TERENCE
Framework to Smart Games,
Automatically

One of the main technological advances of
TERENCE is that the TERENCE system enables the
generation of smart games starting from the
TERENCE stories in an automated manner. To this
end, all the smart games are similarly structured in
XML and, independently of their level, share the
same persistence schema. The data structures are de-
signed on top of the TERENCE framework. Section
5.1 explains the generation process for populating the
related smart game XML data structure, and Section
5.2 elaborates on the performances of the automated
generation.

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

62

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

5.1 From the game framework
to the data structure

Figure 4 shows an overview of the entire textual
smart games generation process.
Phase A. Firstly, from a story text contained in the
story repository, an NLP module generates a story
annotated with a variant of the TimeML language
that was extended in [Moens, S., 2012] with tags for
information that is relevant for the TERENCE smart
games, e.g., the ENTITY and CLINK tags, that aim,
respectively, to represent the entity related to an
event, and the causal-temporal relations between two

events. The annotated story is then stored in the same
repository.
Phase B. Then the Reasoner module maps the tem-
poral relations into Allen-like temporal relations, giv-
ing them a semantics over the real line. Thanks to
such a semantics, the Reasoner detects the eventual
temporal inconsistencies in the temporal relations
and, in case none is present, enriches the annotations
by adding deduced temporal relations as further
TLINK tags. This new consistent and enriched story
is also stored in the story repository.

.

Fig.4. Data and processes for the automated generation of smart games.

Phase C. Afterwards, starting from the enriched sto-
ry, the Reasoner module and two NLG modules, one
for Italian and the other for English, generate auto-
matically instances of smart games that are stored in
the game repository. In particular, the fixed event,
choices and solutions (see Table 1) are produced by
the Reasoner module via dedicated algorithms that
query the enriched stories returned in Part B. Instead,
human readable description of events and choices are
populated by the NLG modules that generate who
questions for the fixed choice of who games and sim-
ple sentences for the choices of all the other smart
games. See [Gennari, R., 2012].
Phase D. Finally, a manual revision of the generated
smart game instances takes place, where the related
visuals (e.g. background illustrations, buttons) are al-
so illustrated. All such components, textual and visu-
al, are then assembled by the visualisation module
and the learner GUI.

In the following, we delve into phase C of the
process and in the work of the Reasoner module.
Starting from a story s, annotated and then enriched

as explained above, the smart games generation goes
as in Algorithm 1

Algorithm 1 initially iterates among all events,
tagged with the EVENT tag in story s. Iteratively, an
event e is selected as the fixed event for the genera-
tion process. Then, the algorithm generates instances
of smart games with e and other events (lines 1–3).
For example, let us consider a time before-after
game, shown in Figure 6. The fixed event is dis-
played as the central even in the figure. Then the al-
gorithm, using specific heuristics, finds an event that
happens before the fixed event, and one that happens
after the fixed event, and a further event that does not
happen before or after the fixed event in the story s or
in the story s0.

Algorithm 1: generate smart game instances, with a
fixed event, for a story s
Require: story s, number of events n, number of
games k
1: foreach event e in s do
2: generate all types of games with e as fixed event

Cofini, V. et al. Design Smart Games with requirements, generate
them with a click, and revise them with a GUI

63

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

3: od
4: sort events
5: keep the games for the first n events
6: reduce the total number of games to k
7: generates the texts.

Algorithm 2 shows how all possible before-after
games are generated for a fixed event e. In brief, the
algorithm selects all couple of temporal links t1, t2,
so that t1 has e as target and t2 has e as source, and
produces a temporal game with:
• e as fixed event;
• the source event of t1 as the right before choice;
• the target event of t2 as the right after choice;
• a random event taken from another story as

wrong choice.

Algorithm 2: generate a before-after game instance
for the fixed event e of story s and not s0
Require: event e, story s, story s0 is different than s
1: foreach TLINK t1 in s, so that t1 has e as target do
2: foreach TLINK t2 in s, so that has e as source do
3: select a random event w from s0;
4: create a before-after game so that

e is the fixed event
the source of t1 is the correct before choice
the target ef t2 is the correct after choice
w is the wrong choice

5: end foreach
6:end foreach

After all possible games are generated, Algorithm 1
produces an ordered list of fixed events (line 4) ac-
cording to the following heuristic. Given two fixed
events e1 and e2, in order to decide if e1 > e2 , we
compare the related number of generated games,
weighting these according to their difficulty level, es-
tablished by the stimulation plan. In other words, e1 >
e2 if the number of causality games for e1 is higher
than for e2. If equal, we compare the number of time
games, and so on.
After the ordering, two types of filtering take place.
• The first keeps only the games for the first n fixed

events (line 5) in the ordered list;
• The second filter is concerned with the total

number of smart game instances per level, re-
duced to a fixed number k. For each game level,
the algorithm selects k game instances with dif-
ferent reasoning complexity, e.g., before-after
games with both “deduced” events, implicit in the

text, as well as who-games and what-games with
both “protagonist” and “secondary” characters as
participants (line 6).

For further details on how games are removed from
the list, please refer to [Gennari, R., 2012].
Finally, for all games, the instructions and texts of
each choice are generated by using the NLG modules
(line 7).
Figure 5 is a snapshot of the XML data of a before-
after game instance, and is used to sketch the data
structure of smart games generated as above, that
comply with the games framework described in Sec-
tion 4.

Fig. 5. A snapshot of the data structure of a before-after

game instance. In green, the fixed event and the field of in-
structions. In orange, an available event that is also a correct

after solution.

Fig. 6. A before-after game instance. In green, the fixed

event. In orange, all the available events. In blue, the correct
before and after solutions.

As can be noticed, the portion on XML code en-
closed in the green box contains:
• the fixed event (selected as Algorithm 1, in the

extended TimeML language [Moens, S., 2012]);

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

64

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

• the instructions acting as description of the fixed
event (generated by the NLG module).

Furthermore, the piece of XML code in the orange
box refers to a choice, and contains:
• the related event (selected as of Algorithm 2);
• its correctness as “AFTER” event (in blue),
• the text acting as explanation of the event (gener-

ated by the NLG module).
Figure 6 illustrates how the data structure of a be-

fore-after game instance is used in the corresponding
visual smart game instance, when illustrations are
paired to all textual events.

5.2 Performances

Table 2 summarises the average performances in
generating the smart games, divided by activity and
language.

Differences are remarkable with respect to the dif-
ferent activities.

The generation of sentences is faster in English
language than for Italian language. However, the
comparison is almost uninteresting, since we use a
web service in the Italian case, and a local library for
the English case.

Language Activity Time (msec)
IT Game generation 2.09

 Filtering 0.53
 Simple sentence gen-

eration
20981.1

EN Game generation 24.08
 Filtering 26.5
 Simple sentence gen-

eration
297.22

Table 2. Performances

More interesting is the comparison of the other

two activities, i.e., smart game generation by the Rea-
soning module and filtering, that are faster for Italian
language. The reason for these differences is that the
number of generated games, satisfying the constraints
of the Reasoner's algorithms, is higher for English
that for Italian (86 vs. 62 on average). The explana-
tion for this is summarised in Table 3, which reports
the number of ENTITIES, EVENTS and T-LINKS,
deduced or not, and if the difference is statistically
significant or not. As can be noticed, the Italian NLP
module performs better for entity recognition, while

the English service recognises more EVENTS and
TLINKs, these being increased to 35% more after de-
duction.

Type N S.D.

EN IT
ENTITIES 14.1 28.2 *
EVENTS 67.6 56.6 *
T-LINKS 66.6 53.5 *
Deduced T-LINKS 2274.5 335.6 *

Table 3. Summary of annotated files

6 Manual Revision
The automated generation of games explained in

Section 5 may be affected by errors that are intro-
duced during the annotation, e.g.,
• a TLINK between two events is uncorrectly rec-

ognised, and thus the automatically generated
BEFORE-AFTER game contains by mistake a
wrong event as correct solution;

• co-references are not properly resolved and the
actor of an event is wrongly recognised, thus the
corresponding WHO game asking for the actor of
the event contains a wrong character as correct
solution.

Furthermore, some of the heuristics for selecting
the wrong choices can select events that are not plau-
sible, the learner could easily find them as wrong so-
lutions, thus affecting the overall quality of the game.
Finally, the sentences generated by the NLG modules
are not always grammatically correct and thus they
must be revised both in their grammar and to improve
their clarity.

Therefore, in order to have the games tidied up for
being played by learners, a manual revision is manda-
tory. Such a manual revision was conducted by a
team of trained operators. The revision was divided
into 3 steps:
1. Formal review: Correction of grammatical and

syntactic errors in the text; correction of punctua-
tion; check of the verb (present tense, active
form); correction of referential expressions, e.g.,
substitute "Ernesta" for "the little girl scout";
check of sentence length and structure; check of
game identification number (ID).

2. Substantial revision: Correction of the automati-
cally generated questions with the aim to identify
unambiguously the event in the text story; correc-

Cofini, V. et al. Design Smart Games with requirements, generate
them with a click, and revise them with a GUI

65

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

tion of the solutions keeping fixed the main
event; choice of new fixed events for solutions

3. Construction of cause/effect games: Text pro-
posal; check out of proposals; loading of games.

Game n %
BEFORE/AFTER 70 31.96
BEFORE/WHILE 33 15.07
BEFORE/WHILE/AFTER 29 13.24
WHAT 32 14.61
WHILE/AFTER 33 15.07
WHO 22 10.05
Total 219 100.00

Table 4. Details about the revised games

Each operator studied the text of the story and re-

viewed all the games associated with it. For the crea-
tion of cause-effect game, the work was submitted to
internal validation by a working group leader and an
external blinded validation with the help of an expert
who knows neither TERENCE nor the revision work
of smart games.

In summary, 219 games have been revised for 22
stories, according to the distribution in Table 4.

Each operator had the task of filling in a diary in
excel format composed of 33 fields where they had to
record all changes made game by game and depend-
ing on the levels of games.

A quantitative analysis of the revision shows a
good quality of the automated game generation: in
only 5 cases it was necessary to change the fixed
event that was automatically generated.

Most of the wrong solutions were changed (70
changes). The main effort has been in the revision of
the text automatically generated for the games by the
NLG modules, which were in alpha version at the
time in which the revision process took place: the
simple sentences generated were incomplete or in-
consistent with the criteria set for the revision of the
first version of the story, so it was necessary to con-
tinue to work on accents, the verb tenses and sentence
length.

Fig.7: Part of the expert GUI supporting the games manual revision process

Figure 7 shows a portion of the expert GUI that

supports the manual revision of the textual smart
games. The expert can read the story and revise the
textual components of the associated smart games.
The expert decides whether it is necessary to correct
the text of who-questions or sentences that describe
events of the story, or the solutions. In the example,
the expert can change to correct the question “Who
leaves?” because it is ambiguous and can opt for the
following question “Who leaves right after packing?”

The expert can decide for a new "who game" and
choose, for example the following question “Who is
curious?”, with the help of the interface. Then the ex-
pert works on the solutions. For all kind of solutions
(correct, wrong, wrong) he or she can correct the text
or search a new proposal by menu.

In this example, a typical “who game”, solutions
have been changed according to the following crite-
ria:

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

66

Special Issue #3
http://adcaj.usal.es

Advances in Distributed
Computing and Artificial

Intelligence Jornual

• always work on subjects (preferably looking for
the proper names), distributed over the text with a
certain distance,

• with particular attention to gender so as not to
guide the reader to the correct choice.

7 Conclusions
TERENCE is a complexy adaptive learning sys-

tem with several software components that allows its
learners to read through books of stories and reason
about them with smart games, as prescribed by the
TERENCE pedagogy plan. The design of the system
is UCD based, starting from the context of use analy-
sis moving to the design of the system, which is then
evaluated and iteratively refined. This paper focused
on the design of the TERENCE smart games starting
from the analysis of the context of use, via the
TERENCE game framework. It then delves into the
description of how the framework was used to design
the data structures of the TERENCE smart games,
and how the data structures are populated by the
TERENCE system starting from the TERENCE sto-
ries, automatically. Such an automated process re-
quires manual revisions, which are explained in the
end of this paper.

To the best of our knowledge, it is the first time
that games are design and generated in such a man-
ner, through a collaborative work that sees together
NLP, automated reasoning and NLG technologies.
The manual revision process, moreover, helped to
highlight the areas that require improvements, and
how these can be carried out. For instance, the revi-
sion process purport that the heuristics chosen for fil-
tering game events and selecting the central fixed
event seem to work well. The generation process of
textual components requires optimisation, and is the
focus of the work for the last year of the TERENCE
project.

Acknowledgment
This work was supported by the TERENCE pro-

ject, funded by the EC through FP7 for RTD, ICT-
2009.4.2. The contents of the article reflects only the
authors’ view and the EC is not liable for it. Gennari
work was also funded through the CRESCO and
DARE projects, financed by LUB and the Province of
Bozen-Bolzano. The authors thank MOME for pro-

ducing the images of events in snapshots of games.
Then the authors wish to thank all the school stake-
holders, in particular, Saverio Baldasciono, masters,
teachers, children and their parents from Italy and
UK, experts and volunteers that worked on this pro-
ject across Europe and USA, in particular, Marc Mar-
schark whose insight, support and contributions go
well beyond what can written in a few lines. As usu-
al, we thank our children for being the primary inspi-
ration for our work and for putting up with our ab-
sences.

Cofini, V. et al. Design Smart Games with requirements, generate
them with a Click, and revise them with a GUI

67

Advances in Distributed
Computing and Artificial

Intelligence Jornual
Special Issue #3
http://adcaj.usal.es

4 References
[Alrifai, M., et al., 2012a] Alrifai, M., Gennari, R., Tifrea, O. and Vittorini, P. The Domain and User Mo-

dels of the TERENCE Adaptive Learning System. In: International Workshop
on evidenced-based Technology Enhanced Learning. AISC, Vol. 152. Sprin-
ger. 2012. pp. 83-90

[Alrifai, M., et al., 2012b] Alrifai, M., Gennari, R. and Vittorini, P.: Adapting with Evidence: the Adaptive
Model and the Stimulation Plan of TERENCE. In: International Workshop on
evidenced-based Technology Enhanced Learning. AISC, Vol. 152. Springer.
2012. Pp. 75-82

[Alrifai, M., et al., 2012c] Alrifai, M., De la Prieta, F., Di Mascio, T., Gennari, R., Melonio, A. and Vitto-
rini, P.: The Learners’ User Classes in the TERENCE Adaptive Learning Sys-
tem. In: IEEE 12th International Conference on Advanced Learning Technolo-
gies (ICALT), 2012. IEEE Press. 2012. pp. 572-576

[Alrifai, M., et Genari, R., 2012] Alrifai, M. and Gennari, R.: Game Design. Deliverable 2.3. Technical Report.
TERENCE project (2012)

[Cofini,, V. et al., 2012] Cofini, V., Di Giacomo, D., Di Mascio, T., Necozione, S. and Vittorini, P.:
Evaluation plan of terence: when the user-centred design meets the evidence-
based approach. In: International Workshop on evidenced-based Technology
Enhanced Learning. AISC, Vol. 152. Springer. 2012. pp. 11-18

[De la Prieta, F., et al., 2012] De la Prieta, F., Di Mascio, T., Gennari, R., Marenzi, I. and Vittorini, P.: Play-
ing for Improving the Reading Comprehension Skills of Primary School Poor
Comprehenders. In: Proceedings of the 1st International Workshop on Peda-
gogically-driven Serious Games. CEUR-WS. Vol-898. 2012. Pp. 41-50

[Di Mascio, T. et al., 2012] Di Mascio, T., Gennari, R., Melonio, A. and Vittorini, P.: The user classes
building process in a tel project. In: International Workshop on evidenced-
based Technology Enhanced Learning. AISC, Vol. 152. Springer. 2012. pp.
107-114

[Di Mascio, T., 2012a] Di Mascio, T.: First User Classification, User Identification, User Needs, and
Usability goals, Deliverable D1.2.1. Tech. rep., TERENCE project (2012)

[Di Mascio, T., 2012b] Di Mascio, T.: Revised user classification, user identification, user needs and
usability goals, Deliverable D1.2.2. Tech. rep., TERENCE project (2012)

[EMAPPS, 2012] EMAPPS consortium: EMAPPS Game Framework. Retrieved January 2012
from http://emapps.info/eng/Games-Toolkit/Teachers-Toolkit/Games-
reation/Framework-for-Game-Design

[Gennari, R., 2012] Gennari, R.: Second release of Automated Reasoning Module. Deliverable
D4.2.2: Tech. Rep. D4.2, TERENCE project. 2012

[Kelle, S. et al. 2011] Kelle, S., Klemke, R. and Specht, M.: Design Patterns for Learning Games.
Journal of Technology Enhanced Learning. 2011. 555–569

[Moens, S., 2012] Moens, S.: State of the Art and Design of Novel Annotation Languages and
Technologies. Deliverable D3.1. Technical Report, TERENCE project. 2012

[Norman, D., 2012] Norman, D.: The design of everyday things. Doubleday, NewYork (1998)
[Slegers, K. et Gennari, R., 2012] Slegers, K. and Gennari, R.: Deliverable 1.1: State of the Art of Methods for the

User Analysis and Description of Context of Use. Tech. Rep. D1.1, TERENCE
project. (2012)

[Valeriani, A., 1986] Valeriani, A.: Ermeneutica retorica ed estetica nell’insegnamento verso
l’oriente del testo. Andromeda (1986)

