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1 Introduction 

In the past few years, human-computer interaction 
has been enriched by the availability of new sensors 
embedded in consumer electronics devices, which of-
fer new and more natural possibilities of interaction 
to users. Gestural interfaces,  for example, enable a 
natural interaction between users and computers 
through the motion of the body, face or hands. These 
movements or "gestures" can be captured using either 
a device equipped with inertial sensors carried by the 
user, such as in the Nintendo's Wii [NINTENDO, 
2012], or from a remote device provided with image 
or depth sensors, such as in the Kinect [KINECT, 
2012]. 

Camera-based gestural interfaces use computer vi-
sion algorithms to identify the gestures and trigger 
the corresponding actions. These techniques have 
been widely studied and used in many applications, 
but they also have some limitations. They usually re-
quire a high computational power, and they are re-
stricted to the limited areas in which the camera sen-
sors are deployed. In addition, they rely on good 
lighting conditions, so they cannot be used in all 
types of environments (for example, it would be very 

difficult to control the TV volume using a camera-
based interface when watching a movie with the 
lights off) [WU, J. et al. 2009]. In contrast, inertial-
based gestural interfaces may run over mobile devic-
es, and thus, are also appropriate for applications that 
require mobility, such as outdoor games or sports. 
Using embedded sensors also has the advantage that 
the cost and power consumption are lower [NIEZEN, 
G. & HANCKE, G.P. 2009] and that they are not de-
pendent on lighting conditions. 

The recent and increasing trend of integrating in-
ertial sensors in mobile devices enables the develop-
ment of new applications based on inertial-based ges-
ture recognition. However, gesture recognition in 
mobile devices also presents some specific challeng-
es, such as the need of real time operation and low 
energy consumption, to be able to run efficiently in 
resource constrained systems. 

Several gesture recognition systems based on iner-
tial sensors have been developed to date. The two 
most popular approaches, taken from the field of 
speech recognition, are to use hidden Markov models 
(HMMs) [PYLVÄNÄINEN, T. 2005], [NIEZEN, G. 
& HANCKE, G.P. 2008], [JOSELLI, M. & CLUA, 
E. 2009], [WESTEYN, T. et al. 2003], [KAUPPILA, 
M. et al. 2007], [KAUPPILA, M. et al. 2008],  
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[HOFMANN, F.G. et al. 1998], [SCHLÖMER, T. et 
al. 2008], [MÄNTYJÄRVI, J. et al. 2004] or Dynam-
ic Time Wrapping (DTW) [NIEZEN, G. & 
HANCKE, G.P. 2008] , [LIU, J. et al. 2009], alt-
hough other methods have also been utilized, such as 
conditional Gaussian models, support vector ma-
chines [WU, J. et al. 2009] and Bayesian networks 
[CHO, S.J. et al. 2004]. However, only a few 
[NIEZEN, G. & HANCKE, G.P. 2008], [JOSELLI, 
M. & CLUA, E. 2009], [NIEZEN, G. & HANCKE, 
G.P. 2009], [LIU, J. et al. 2009] of the techniques 
mentioned above are implemented on a resource-
constrained platform such as a mobile phone. What is 
more, most of these proposals target at user-
dependent gesture recognition, in which an initial 
training is required for each user in order to calibrate 
the performance of the system.  

In this work, however, our goal is to develop a us-
er-independent gesture recognition system which is 
light, real-time, and has low energy consumption. 
Our gesture recognition system was conceived as an 
intuitive user input interface for a variety of applica-
tions in which the user wants to control external de-
vices or equipment using his mobile phone. The re-
quirements of the system are the following: 

• User-independent operation: the gesture 
recognition system should be able to recog-
nize gestures performed by different users 
without the need of training. 

• Lightness: as the system is devised to run 
on resource-constrained devices, it should 
have low computational complexity and 
low energy consumption. 

• Real-time operation: the system should be 
able to operate in real-time without intro-
ducing appreciable delays. 

To this end, we define a dictionary of simple ges-
tures, and develop time-domain algorithms with low 
computational complexity to recognize the individual 
gestures. The proposed gesture recognition algo-
rithms were implemented in a Google Nexus S smart 
phone and evaluated with real user tests, which 
showed a good performance in terms of both recogni-
tion accuracy and processing time. In addition, the 
classical DTW algorithm was implemented and the 
proposed algorithm was compared with it. 

As a concrete application of our gesture recogni-
tion system, we developed a simple gesture-based 
human-robot interaction interface, which allows the 
user to control a wheeled robot by performing ges-

tures with his mobile phone. This kind of interfaces is 
increasingly becoming more and more important for 
non-expert users given the rising popularity of social 
robots.  

To sum up, the main contributions of the work 
are: 1) a light, user-independent and real-time accel-
erometer-based gesture recognition algorithm and 2) 
the implementation of a simple human-robot interac-
tion interface based on the previous algorithm. 

The paper is organized as follows. Section 2 re-
views related work on gesture recognition for mobile 
devices. Section 3 describes the gesture set selected 
for our system. Section 4 describes in detail the sys-
tem architecture and the developed gesture recogni-
tion algorithms. The evaluation results are reported in 
Section 5 and the application to robot control is de-
scribed in section 6. Finally, Section 7 concludes the 
paper and proposes some future research directions. 

2 Related work 

The design of a gesture recognition system can 
follow a user-independent or a user-dependent ap-
proach. The difference lies in whether the user has to 
train the system before she/he actually utilizes it. Us-
er-independent systems are oriented to general users  
and do not need a training phase before being usable; 
conversely, user-dependent systems require the user 
to repeat the gesture movements several times to train 
the system. 

As pointed out in [LIU, J. et al. 2009] a great deal 
of work targets user-dependent gesture recognition 
only, due to the difficulties in user-independent ges-
ture recognition produced by the great variation be-
tween different users, even for the same predefined 
gesture. The authors of [LIU, J. et al. 2009] report 
that if the collected data are evaluated in a user-
independent way instead of user-dependent, the 
recognition accuracy decreases significantly, from 
98.4% to 75.4%. Moreover, the absence of a standard 
or commonly accepted gesture set – in contrast with 
the case of speaker-independent speech recognition – 
has not facilitated the implementation of practical us-
er-independent gesture recognition systems so far. 
Nevertheless, we aim to develop a user-independent 
recognition method motivated by the convenience 
this could bring to the users. It makes the method fea-
sible to carefully select gestures that are intuitive and 
have common performances among different users. 
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The selection of the gesture set has a great influ-
ence on the recognition accuracy. More complicated 
gestures may lead to higher accuracy because they 
have more features to distinguish. Nevertheless, 
complicated gestures pose a burden on the users: they 
have to remember how to perform the gestures and 
associate them with unrelated functions. Therefore, 
there should not be many complicated gestures to 
build a user-friendly system [LIU, J. et al. 2009].  

Some work makes comparisons between several 
popular algorithms. In [NIEZEN, G. & HANCKE, 
G.P. 2008], gesture recognition techniques including 
Hidden Markov Models (HMMs), artificial neural 
networks and Dynamic Time Warping (DTW) are 
evaluated based on computational efficiency, recog-
nition accuracy and storage efficiency. In [NIEZEN, 
G. & HANCKE, G.P. 2009], the same three algo-
rithms are compared and the authors argue that the 
DTW algorithm runs faster than the other two and 
that there is no need for preprocessing in the DTW 
algorithm, which is necessary for the other two. 
However, since the DTW system has to maintain the 
template to match, as the amount of gestures to be 
recognized increases, the storage space required by 
the DTW algorithm will increase linearly. On the 
other hand, the storage requirement of the other two 
algorithms will remain invariable. In [LIU, J. et al. 
2009], the authors compared HMMs and DTW algo-
rithms. They believe that HMM-based methods re-
quire extensive training data to be effective. Further-

more, to configure the models properly, the 
knowledge of the gesture vocabulary is necessary, 
which may restrict the variation of gesture vocabu-
lary. According to [LIU, J. et al. 2009], the evalua-
tion datasets and testing procedures of the literature 
using HMMs did not consider gesture variation over 
the time. 

 As a summary, Table 1 compares some of the re-
viewed literature about accelerometer-based gesture 
recognition systems. In this table, the term “user de-
pendent” means the training samples are from the 
same subject as the testing sample, while “user inde-
pendent” means the training samples are not or not all 
from the same subject as the testing sample. As it can 
be seen, the recognition accuracy obtained with 
HMMs and DTW algorithms is quite good, but there 
is still work to be done for solving the user-
independent case. Our previous work [WANG, X. et 
al. 2012] explores this question and proposes a time-
domain algorithm for recognizing translation/turn 
gestures based on the accelerometer/gyroscope sig-
nals. A good accuracy and time-efficiency were ob-
tained, but the system was nonflexible, as the transla-
tion gestures had to be performed while holding the 
mobile device in a fixed position. Here we extend and 
improve our previous algorithm by allowing holding 
the device in different positions. We also compare its 
performance with a DTW technique, showing similar 
accuracy results and lower computation times.

 
Table 1: Summary of accelerometer-based gesture recognition systems 

Paper Working mode 
Recognition 

method 
Platform where 

implemented 

Dataset size 
(no. gestures / 

total no. samples) 

Recognition 
accuracy 

[CHAMBERS, G.S. 
et al. 2004] 

User dependent HMM PC 10 / 548 99.2% the best 

[NIEZEN, G. & 
HANCKE, G.P. 2008] 

User dependent DTW Mobile phone 8 / 80 96.25% 

[LIU, J. et al. 2009] User dependent DTW Mobile phone 8 / 4480 98.6% 
[JOSELLI, M. & 
CLUA, E. 2009] 

User dependent HMM Mobile phone 10 /400 89% 

[KAUPPILA, M. et 
al. 2007] 

User dependent HMM PC 9 / unavailable 98.76% 

[WESTEYN, T. et al. 
2003] 

User dependent HMM 
Not on mobile 

phone 
Varies among pro-

jects 
Varies among 

projects 
[PYLVÄNÄINEN, T. 

2005] 
User dependent and 

user independent 
HMM Mobile phone 10 / 1400 99.76% 
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Table 2: Summary of human-robot interaction systems based on gesture recognition 

Paper 
Sensing meth-

od 
Vocabulary 

Recognition 
Method 

Application 

Sketch interface for HRI 
[SHAH, D. et al. 2012] 

Sketch inter-
face, pen tablet, 

mouse, etc. 

9 drawings: box, arrow, 
circle, etc. 

VDHMM 
Search-and-identify mis-

sions 

Gesture recognition based ro-
bot control with LAN [YAN, 

R. et al. 2012] 

Upper body mo-
tion capture sys-

tem 

6 gestures: left, right, 
forward, backward, stop, 

slow, fast 

LAN (localist 
actuator net-

work) 

The recognition system is 
applied to robot control 

Recognition of whole body key 
gestures for HRI [YANG, H.D. 

et al. 2007] 
Stereo camera 

10 whole body gestures: 
walking, running, bend-

ing, jumping, etc. 

HMM, with 
cluster index as 

observation 

The recognition approach 
has been integrated into a 

mobile robot 

Pointing behavior recognition 
for HRI [SATO, E. et al. 2007] 

Cameras Pointing 
Fuzzy associa-
tive memory 

(FAM) 

Manipulating the robot, 
path set, parking instruc-

tion 
Body gesture recognition with 
depth camera [GONZALEZ-
SANCHEZ, T. & PUIG, D. 

2011] 

Depth camera 13 body gestures Gaussian HMM Tele-operate a robot 

Proximate HRI using mobile 
phone accelerometer 

[SERAFIMOV, K. et al. 2012] 
Accelerometer 

9 gestures: left, right, up, 
etc. 

HMM Soccer robot control 

 
Gesture recognition techniques have been recently 

used to develop several human-robot interaction sys-
tems with a natural and intelligent interface. Some of 
these systems, [SHAH, D. et al. 2012], [YANG, H.D. 
et al. 2007], [GONZALEZ-SANCHEZ, T. & PUIG, 
D. 2011], [SERAFIMOV, K. et al. 2012] use HMM 
or its variations, although some other recognition 
techniques have also been used, such as localist actu-
ator network (LAN) [YAN, R. et al. 2012] and fuzzy 
associative memory (FAM) [SATO, E. et al. 2007]. 
Table 2 summarizes some of the characteristics of 
several human-robot interaction systems based on 
gesture recognition. All of these systems run gesture 
recognition algorithm on a computer except for 
[SERAFIMOV, K. et al. 2012], which, similar to 
ours, uses a mobile phone to interact.  

3 Gesture set selection 

The first aspect that has to be decided when de-
signing a gesture recognition system is the vocabu-
lary of gestures that the system is going to use. This 
decision will influence both the performance of the 
system (recognition accuracy, processing time, com-
putational complexity, etc.) and its usability. On one 

hand, in order to maximize the accuracy of gesture 
recognition, it is convenient to design a vocabulary of 
gestures which produce inertial sensor responses as 
different as possible. On the other hand, it is appro-
priate to use simple gestures, which are easier to per-
form and remember by users, and also yield lower 
computational complexity. Therefore, we can select a 
collection of simple gestures which are supposed to 
produce distinct inertial stimuli, such as accelerations 
in different axes. But, how many gestures should be 
included in the dictionary? According to 
[PYLVÄNÄINEN, T. 2005], a large dictionary is not 
practical, as users need to remember how to perform 
the different gestures and their meaning. Previous 
gesture recognition systems typically consider from 8 
to 10 gestures, to reach a compromise between the 
possible set of actions that can be triggered by the 
system and the amount of gestures to remember. In 
this work, we have considered a collection of 10 sim-
ple gestures, which are described in Figure 1. This se-
lection of gestures is inspired by the user studies re-
ported in [KELA, J. et al. 2006]. The meaning of 
each gesture will depend on the application. We de-
fine the user coordinate system as the one with the 
origin of coordinates in the user's hand, the Z axis 
perpendicular to the ground and pointing up, the X 
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axis parallel to the ground and pointing to the user, 
and the Y axis parallel to the ground and pointing to 
the right of the user. In this system, all the gestures 
are performed in the Y-Z plane, except Forward and 
Backward, which are performed along the X axis. 

 

 
Figure 1: Gesture vocabulary 

The defined gestures should be performed main-
taining the device in the initial orientation (approxi-
mately). However, the user can choose between six 
possible initial orientations, which are pictured in 
Figure 2. These orientations are defined according to 
the axis of the device pointing to the ground: 

• Vertical Up/Down: -Y/Y axis pointing to 
the ground 

• Horizontal Up/Down: -Z/Z axis pointing to 
the ground 

• Lateral Left/Right: -X/X axis pointing to 
the ground 
 

 
Figure 2: Possible initial orientations of the device. 

The user may perform the gestures defined in Fig-
ure 1 holding the device in any of these initial orienta-
tions. Note that there is still a degree of liberty de-
fined by a rotation around the axis pointing to the 
ground. For example, when the device is held in a 
Vertical Up orientation, the user may be looking at 
the screen, or at the back of the device (or at any in-

termediate point). A forward movement in the first 
case is indeed indistinguishable from a backward 
movement in the second case, as the accelerations 
suffered by the device are the same in the two cases. 
To avoid this degree of freedom, the user is supposed 
to hold the device in the most usual manner, that is, 
looking at the screen, for vertical and lateral orienta-
tions, and looking at the device in a reading position 
for horizontal orientations. 

4 Gesture recognition system 
architecture 

The current gesture recognition system architec-
ture consists of three different layers- a sensor layer, 
a processing layer and a communications layer. The 
sensor layer acquires the information provided by the 
inertial sensors embedded in the device. The pro-
cessing layer includes the recognition algorithms to 
recognize the gestures and the transformation of the 
recognition result into a specific action. Finally, the 
communications layer transmits this information 
through a wireless connection to the external devices 
that are being controlled. The mobile phone can also 
receive feedback from the device through this con-
nection. 

In the following we describe in detail the pro-
posed gesture recognition algorithm, which is the 
core of our system. Our method based on the analysis 
of the acceleration signal and the extraction of its fea-
tures. The input of the algorithm is a time series pro-
vided by a three-axis accelerometer embedded in the 
device, and the output is the estimated gesture.  

4.1 Analysis of the accelerome-
ter signals 

In practice, the signal returned by the accelerome-
ter is quite noisy. The velocity and displacement in-
formation integrated from this acceleration signal de-
viates a lot from the real values. For this reason, in 
our system, the acceleration signal is processed di-
rectly.  

Let us analyze first the expected shape of the ac-
celeration system for the considered gestures. In the 
following, we use the device coordinate system 
shown in Figure 2 and suppose the orientation of the 
device is Vertical Up. We will not take into account 
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the acceleration of gravity at this point. On the one 
hand, straight movements can be modeled as two 
parts with constant accelerations 𝑎! and 𝑎!, where 𝑎! 
and 𝑎! have opposite sign. Figure 3 shows an exam-
ple of this straight movement model. 

 

 
Figure 3: Ideal straight movement model, with 𝒂𝟏 = 𝟏, 
𝒂𝟐 = −𝟏. 

Note that this straight movement model applies to 
all X, Y or Z dimension. Without considering the 
gravity, the initial and final accelerations of the 
movement are zero. On the other hand, a circle ges-
ture can be ideally modeled as a uniform circular mo-
tion in the X-Y plane. Then the acceleration along X 
and Y axis can be expressed as: 
𝑎! 𝑡 = −𝑚 cos 𝜃! = −𝑚 cos 𝜔𝑡 + 𝜃!  (1) 
𝑎! 𝑡 = −𝑚 sin 𝜃! = −𝑚 sin 𝜔𝑡 + 𝜃!  (2) 
where 𝑚 is the module of the acceleration vector, 𝜃! 
is the phase at time 𝑡, 𝜔 is the angular velocity, and 
𝜃! the initial angle (with respect to the positive X-
axis). Figure 4 shows an example of the acceleration 
signal for this kind of gesture. 
 

 
Figure 4: Acceleration signal along x and y axis for the ideal 
circle movement, with initial phase 𝜽𝟎 = 𝟎. Here 
𝒎 = 𝟏𝒎/𝒔𝟐, 𝝎 = 𝟏  𝒓𝒂𝒏𝒅/𝒔. 

4.2 Preprocessing 

In practice, accelerations signals are not as simple 
as the ones shown above, being more complicated 
and distorted by noise. It is not possible that the users 
move the mobile phone exactly along one axis and 
that they complete the 2𝜋 circle trajectory exactly. 
The ideal movement models, however, still provide 
an abstraction of the real movements and help explain 
the experimental signals. 

The measurements collected from the accelerome-
ter include gravity acceleration no matter what the ac-
tual acceleration of the mobile phone is. If we the us-
er holds the mobile phone in the Vertical Up 
orientation of Figure 2 when he/she moves it, the 
component due to the gravity acceleration will be on 
the Y axis. However, in practice, when the user per-
forms the gestures, there is an inevitable tilt of the 
mobile phone, which will introduce acceleration on Z 
or X axis, and affect the accuracy of gesture recogni-
tion. On the other hand, the signals sensed by the ac-
celerometer are distorted by noise. So, before running 
the gesture recognition algorithm, we should first rec-
tify the tilt and reduce the effect of noise. 

 
A. Tilt Compensation 
In this work, the tilt is compensated with the nor-

malizing method mentioned in [PYLVÄNÄINEN, T. 
2005] by estimating the direction of the actual gravi-
tational pull and calculating the rotation matrix. In 
order to apply this method, the tilt should be small. 
Therefore, prior to applying the tilt compensation, we 
first estimate the axis which is more affected by the 
gravity and change the coordinate system so that the 
final signal has the strongest gravity component in 
the Y axis (corresponding to a Vertical Up orientation 
with some small tilt). 

After tilt compensation, the gravity acceleration is 
subtracted from the Y axis. 

 
B. Noise removing and signal smoothing 
In order to reduce the effect of noise, we include a 

Butterworth low pass filter. The cutoff frequency and 
the order of the filter were set to 0.3 (normalized, 1 
corresponds to the Nyquist frequency) and 2 respec-
tively. These values were determined empirically (too 
little smoothing will not eliminate enough noise, too 
much smoothing will blur the features we are inter-
ested in).  
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After passing through the low pass filter, the sig-
nal is further smoothed with a moving average meth-
od with un-weighted mean. A sliding window with 
length 𝑤 is used to calculate the moving average. In 
our case, 𝑤 was set to 11. The element in the center 
of the window is updated with the average of the 
samples inside the sliding window. Suppose 𝒂 𝑛

 with 1 ≤ 𝑛 ≤ 𝑁 is a vector with length 𝑁, then the 
smoothed signal 𝒂! is calculated by: 

𝑎! 𝑖 = ! !!! !! !!!!! !⋯!! ! !⋯!! !!!
!

 (3) 
where 𝑟 < 𝑖 < 𝑁 − 𝑟 + 1, 𝑟 = 𝑤 − 1 2, and 𝑤 

is supposed to be odd.  
The first and last 𝑟 elements of vector  𝑎! are arbi-

trarily set to 0.  
 
C. Preprocessed signal 
Figure 5 shows the raw original data and the pre-

processed signal after tilt compensation, gravity sub-
traction, Butterworth filtering and smoothing for a 
“left” gesture. 
 

 
Figure 5: Original signal of a “left” gesture (upper) and cor-
responding preprocessed signal (bottom). 

It can be observed that straight movements happen 
in practice not only along one dimension (as in the 

ideal case represented in Figure 3). Furthermore, the 
module of the acceleration is far from constant.  

For the case of the “circle” gestures, it was ob-
served that the movement was not restraint to the X-
Y plane, as in the ideal case. From the collected da-
taset we also observed that the users tend to move the 
mobile phone more than 2𝜋 radians in the circle 
movements.  

The spiral movements could be treated as a circle 
movement plus a straight movement, but the intensity 
of the straight movement component is not strong 
enough compared with the intensity of the accelera-
tion in the circle movement. Therefore, in practice, 
the spiral movement seems like two or more repeti-
tions of circle movements. 

4.3 Classification 

Intuitively, comparing the plots of straight, circle 
and spiral movements performed by several users, we 
found one main difference between them: the number 
of “peaks” and “valleys”, which are the extrema of 
the curves, in the X and Y dimensions. The proposed 
method tries to count the number of peaks and val-
leys, according to which it classifies the input signal 
into one of three groups: straight movements, circle 
movements and spiral movements. Then, other fea-
tures of the classified signal are extracted and the fi-
nal recognition results are further determined. The 
data flow is sketched in Figure 6. 

 

 
Figure 6: Data flow of the gesture recognition system 

We need to detect extrema points to count the 
peaks and valleys. Consider a one dimensional signal 
𝑠 𝑡 , where 0 ≤ 𝑡 ≤ 𝑁. Then a sample point 𝑠 𝑖

 marks a peak if 𝑖 − 1 < 𝑠 𝑖   &  𝑠 𝑖 + 1 < 𝑠 𝑖
 

, 
and a valley if 𝑠 𝑖 − 1 > 𝑠 𝑖   &  𝑠 𝑖 + 1 > 𝑠 𝑖 , 
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where the operator & means logical “and”. According 
to this definition, many extrema points are usually de-
tected in the preprocessed signal due to the residual 
noise. Figure 7 shows an example.  

 
Figure 7: Preprocessed signal corresponding to a “counter-
clockwise circle” gesture and extracted extrema points 
(marked with black stars). 

We need to refine the extracted extrema points so 
that the ones due to small fluctuations are removed. 
The algorithm to refine extrema points is detailed in 
the following, assuming that the original signal is 
𝑠 ! , which is along X or Y axis: 

1. Calculate the extrema: 𝑠 ! = 𝑒𝑥𝑡 𝑠 ! . The 
first and last extrema will not be removed in the 
whole algorithm. 

2. Remove from 𝑠 !  peak extrema that have nega-
tive values and valley extrema that have positive val-
ues. The remaining sampling points constitute  𝑠 ! . 

3. 𝑠 ! = 𝑒𝑥𝑡 𝑠 !   
4. If the length of 𝑠 !  equals to the length of 𝑠 ! , 

stop. Otherwise, 𝑠 ! = 𝑠 ! , return to step 2. 
The function 𝑒𝑥𝑡 𝑠  extracts extrema points from 

signal 𝑠 and also ensures that the absolute difference 
between any two adjacent extrema points is above a 
threshold, which is set as 2 in our algorithm. 

The refined extraction of extrema for Figure 7 is 
shown in Figure 8.  

 

 
Figure 8: Performance of the extrema refinement algorithm. 

Finally, we count the extracted refined extrema in 
the X and Y dimensions to categorize the input signal 
into one of the three groups. The conditions were set 
according to the observations from our dataset: 

- If  𝑠𝑢𝑚 ≤ 3|| 𝑛𝑥 = 2  &  𝑛𝑦 = 2 , the ges-
ture is straight movement 

- If 𝑠𝑢𝑚 > 8 , the gesture is spiral movement 
- The rest are circle movements 

Here, 𝑛𝑥 and 𝑛𝑦 are the number of refined extrema 
points (excluding the first and the last one), along X 
and Y axis respectively. 

Depending on the result of this classification, a 
different recognition algorithm is further applied, as 
explained in the following.  

4.4 Recognition of straight 
movements 

In the straight movements, the curve in the axis 
along the movement direction looks like a sinusoid of 
one period, as the one shown in Figure 5. We treat the 
sinusoid-like curve as a pattern defined by four key 
points: the starting point, the ending point, the peak 
and the valley. At first, the peak and valley are se-
lected as the maximum and minimum point; the start-
ing and ending points are the two extrema adjacent to 
the peak and valley points. Note that the extrema 
used here are the original ones instead of the refined 
ones in the classification stage. Then, given the noisy 
acceleration measurement and that this method is 
sensitive to fluctuations of the signal, an adjustment 
of the key points is employed: we look forward or 
backward several extrema points from the initial four 
pattern points and check whether there are higher ex-
trema (for the peak) or lower extrema (for the valley). 
In this way, the method is robust to small fluctua-
tions. 

0 1 2 3 4 5 6

x 109

-15

-10

-5

0

5

10

15

time(nanosecond)

ac
ce

le
ra

tio
ns

(m
/s

2 )

smoothed acceleration signal

 

 
x
y
z

0 1 2 3 4 5 6

x 109

-15

-10

-5

0

5

10

15

time(nanosecond)

ac
ce

le
ra

tio
ns

(m
/s

2 )

smoothed acceleration signal

 

 
x
y
z



Wang, X. et al User-independent accelerometer-based gesture recognition 
 

 
 

19 
 

Special Issue #3 
http://adcaj.usal.es 

Advances in Distributed  
Computing and Artificial  

Intelligence Jornual 

 
Figure 9: Illustration of adjustment of key points of the pat-
tern 

In Figure 9, we try to extract pattern key points 
along Z-axis. The end point is set as 𝐷, which is the 
right adjacent extremum of the valley point 𝐶. Then, 
because 𝐷 is also a peak (but small), we look forward 
within certain range to see whether there is other ex-
trema which have larger values than the ending point. 
Finally we find point 𝐸 as the adjustment of ending 
point.  

With this pattern extraction and adjustment, we 
get the four key points for X, Y and Z dimensions. A 
symmetry condition is set to avoid unwanted noise. If 
we denote the acceleration values of the four key 
points - the starting, the peak (or valley), the valley 
(or peak) and the ending point - as 𝑎!, 𝑎!"!, 𝑎!"! and 
𝑎! respectively, we then define two ratios: 

𝑟! = 𝑚𝑖𝑛 !!!!!"!
!
!
!!"!!!!"!

,
!
!
!!"!!!!"!
!!!!!"!

  (4) 

𝑟! = 𝑚𝑖𝑛 !!!!!"!
!
!
!!"!!!!"!

,
!
!
!!"!!!!"!
!!!!!"!

  (5) 

We refine the extracted pattern by omitting those 
which have 𝑟! and 𝑟! values below a predefined 
threshold, which is tuned as 0.4. Then, we select the 
axis that has the greatest difference between peak and 
valley and that agrees with our symmetry require-
ment, as the dimension where the movement oc-
curred. The appearance order of peak and valley fur-
ther determines the direction of the movement along 
this dimension. For example, the plot in Figure 9 rep-
resents “Backward” movement. 

4.5 Recognition of circle and 
spiral movements 

Suppose that we already know the input signal is a 
circle or spiral movement, we need to further deter-

mine the direction of the movement. To this end, we 
use the phase information of the signal, both for cir-
cle and spiral movements.  

It is found that in practice, the phase relationship 
between X and Y signal of circle movements is simi-
lar to the ideal case. As explained before, the spiral 
movement can be treated as several circle movements 
because the straight movement along X dimension is 
very weak. What is more, the direction of the spiral is 
determined by how the user moves the mobile phone, 
clock wisely or counter clock wisely. Using the re-
fined extrema extraction obtained in the classification 
step, we detect the monotonicity of 𝑎! at the point of 
the first refined extremum of 𝑎!; if it is increasing, 
then the extremum in 𝑎! following the first refined 
extremum in 𝑎! is a peak; otherwise it is a valley. 
Then, according to the following table the direction 
of circle or spiral movements are determined. The 
peak and valley are represented by the signs of their 
acceleration value.  

 
Table 3: Judging table for the direction of circles and spirals. 
CCW refers to counterclockwise circle and CW to clock-
wise circle. 

First refined 
extremum in x 

+ + - - 

The extremum 
followed in y 

+ - + - 

Type of circles CCW CW CW CCW 
Type of spirals Left Right Right Left 

5 Evaluation 

In this section we describe the results of a collec-
tion of experiments that were defined to evaluate the 
system with respect to its recognition accuracy and its 
processing time characteristics. The performance of 
the proposed system is compared against the classical 
DTW algorithm, which works in a user-dependent 
manner. Since this algorithm is mature and reliable, it 
can provide a state-of-the-art recognition perfor-
mance, to which the proposed kinematic feature 
based method can be compared and evaluated.  

In order to carry out these experiments, the system 
described above was implemented in a Google Nexus 
S smart phone, running Android operating system.  
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5.1 Description of the dataset 
and running environment 

To test the gesture recognition methods, a dataset 
was collected with 14 subjects (10 males and 4 fe-
males), who repeated 10 times each gesture using a 
Google Nexus S smartphone. So we gathered 
14x10x10 testing samples. Each user completed the 
data collection in the same day he/she started. The 
starting and ending timestamps for each gesture were 
marked by pressing a virtual button of a mobile ap-
plication prepared to gather gesture logs in the 
smartphone. The data communication was done by 
event notifications and the approximate sampling rate 
of the accelerometer was 0.02 seconds per measure-
ment. The snapshot of the application is shown in 
Figure 10. Before collecting the gesture data, the us-
ers were given a brief introduction about how to per-
form each gesture. They were told to hold the mobile 
phone vertically facing the screen. 

Both algorithms (proposed and DTW) were tested 
on Matlab over the collected dataset, on a desktop 
with Intel 2 Quad CPU (2.5 GHz, 2.5GHz) and 4GB 
memory. The proposed method was also implement-
ed and tested on the Google Nexus S smartphone. 

 

 
Figure 10: Snapshot of the mobile application for gathering 
gesture logs 

5.2 Performance of the pro-
posed kinematic feature based 
method 

As this method does not require training, each 
single gesture sample is processed directly by this 
recognition method. Then, the recognition accuracy 

for a given gesture is calculated as the number of cor-
rectly detected samples of this gesture divided by the 
total number of samples of this gesture. The average 
recognition accuracy is then the mean of the recogni-
tion accuracies for all gestures.  

Table 4 shows the final recognition results for the 
proposed method expressed by a confusion matrix. 
Each row shows the recognition results for a certain 
gesture. For example, the second row lists the result 
of the recognition of the “Backward” gesture. There 
are 93.57% “Backward” movement samples recog-
nized as “Backward” correctly. No samples are rec-
ognized as “Clockwise circle” movement. And 2.14% 
samples are detected as “Counter clockwise circle”, 
and so on. An average recognition accuracy of 
94.14% is achieved. 

As mentioned before, the proposed kinematic fea-
ture based algorithm has also been implemented on a 
smartphone running an Android platform. This im-
plementation runs in real-time and was tested with 17 
subjects, each of which repeated ten times each of the 
ten gestures, holding the device with different orien-
tations. In this real-time experiment we obtained an 
average recognition accuracy of about 89.07%. 

5.3 Performance of the DTW 
method 

The DTW algorithm is a dynamic programming 
based time-normalization algorithm, popular in spo-
ken word recognition field. It was introduced in 
[SAKOE, H. & CHIBA, S. 1978] to deal with the 
highly complicated nonlinear fluctuations in the 
speech pattern time axis. The recognition problem is 
treated as an optimization problem which tries to 
minimize the time-normalized distance between two 
pattern series. So given a limited set of known tem-
plates of patterns, an unknown testing pattern can be 
recognized by calculating the time-normalized dis-
tances between it and each of the known templates 
and selecting the template which is “nearest” to the 
testing pattern as the recognition result. 

In the problem of gesture recognition, there also 
exist nonlinear fluctuations in the time axis. For ex-
ample, the speed of the performance of the same ges-
ture varies from one user to another. Therefore, it 
makes sense to transplant the DTW algorithm to 
solve gesture recognition problem.  
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Table 4: Confusion matrix for the ten gestures with kinematic feature based method (%), run with Matlab. 
 Backw. Cw c. Ccw c. Down Forw. Left Right S. left S.right Up 

Backw. 93.57 0 2.14 1.43 0.71 2.14 0 0 0 0 
Cw c. 0 94.29 0.71 0 0 0 0 0 4.29 0.71 
Ccw c. 0 2.14 92.14 0 0.71 2.86 0 2.14 0 0 
Down 0 2.86 1.43 92.86 2.14 0.71 0 0 0 0 
Forw. 2.14 1.43 1.43 0 94.29 0 0.71 0 0 0 
Left 0.71 0.71 0 0 0 98.57 0 0 0 0 

Right 0 1.43 0.71 0 0 0 97.86 0 0 0 
S. left 0 0.71 2.86 0 0 0 0 90.71 5.71 0 
S.right 0 2.86 0 0 0 0 0 0 97.14 0 

Up 3.57 3.57 2.14 0 0.71 0 0 0 0 90.00 
 

The DTW method is classical and reliable, and 
provides a performance benchmark for other newly 
developed methods, as ours. In this work, we imple-
mented a DTW method based on the methods intro-
duced in [SAKOE, H. & CHIBA, S. 1978] and 
[MYERS, C. et al. 1980]. 

Before running the DTW algorithm, the input sig-
nal is down sampled with a Butterworth filter to en-
hance the computational efficiency. After down sam-
pling, the length of the signal is normalized to 
enhance the performance. The method is the same as 
mentioned in [MYERS, C. et al. 1980]. 

We tested this DTW method over the collected 
dataset described in section 5.1. The DTW method 
recognizes gestures by comparing the testing sample 
with known templates and selecting the template 
which has the smallest mapping cost as the detected 
result. The template should be “standard” enough, as 
the template selection has great influence on the 
recognition accuracy. The evaluation method used 
here is the leave-one-out method. The idea is to use a 
single observation from the original samples as the 
testing data and the remaining observations as the 
training set. This is repeated so that every original 
sample in the dataset is utilized as testing data. In our 
test, we tested the dataset user by user. For a certain 
user and a certain gesture type, we selected one tem-
plate from the 9 training samples (there are 10 data 
samples per gesture per user) with the minimum se-
lection method mentioned in [KO, M.H. et al. 2008].  

In the evaluation, we took into consideration the 
constraints mentioned in [SAKOE, H. & CHIBA, S.  

 
 
 
 

1978] and [MYERS, C. et al. 1980], and we especial-
ly examined the effect of the local continuity con-
straints [MYERS, C. et al. 1980], the window length 
in adjustment window [SAKOE, H. & CHIBA, S. 
1978], the form of weighting coefficient [SAKOE, H. 
& CHIBA, S. 1978] and the different types of dis-
tance definitions (including cosine correlation coeffi-
cient, Euclidean distance and Chebyshev distance). 
We found that small values of the window length lead 
to higher recognition accuracy and less computing 
time. The two different forms (symmetric and asym-
metric) of the weighting coefficient have similar per-
formance in terms of recognition accuracy and com-
putational efficiency. The Type I local continuity 
constraint in [MYERS, C. et al. 1980] results in high-
er recognition accuracy than the Type II constraint. 
On the other hand, the Euclidean distance measure 
has lower computing time than the distance measure 
with cosine correlation coefficient. The combination 
of Type I local continuity constraint and cosine corre-
lation coefficient distance measurement attains the 
highest recognition accuracy. 

If we select the Type I local continuity constraint 
and the cosine correlation coefficient distance meas-
urement, the recognition accuracy is 94.04% and the 
average computing time for each DTW matching of 
two data samples is 5.8ms. The down sampling step 
takes 0.157ms for each data sample on average. 
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5.4 Comparison of the two 
recognition methods 

¡Error! La autoreferencia al marcador no es 
válida. shows a comparison of the two recognition 
methods in terms of different parameters. 

 
Table 5: Comparison of the two recognition methods 

 
Kinematic fea-

ture based 
DTW 

Accuracy 94.14% 
As high as 

94.04% 
Time efficiency 

(ms) 
4.8 (0.157+5.8)*10 

Efficiency 
(memory) 

O n                  O N!  

Working mode 
User  

independent 
User dependent 

Ease of develop-
ment 

A little difficult Easy 

Knowledge about 
vocabulary 

Requires a lot Not much 

Flexibility Small Large 
 
For this dataset, the kinematic feature based meth-

od has a little higher recognition accuracy. However, 
the recognition result of this method is based on the 
fact that the parameters are tuned according to the da-
taset, which means that the 94.14% accuracy is al-
most the best one for this method. On the other hand, 
no sample-specific parameters are needed in the 
DTW method, except for the down sampling rate, so 
its recognition result has less dependency on dataset.  

The kinematic feature based method needs 4.8ms 
to process one data sample, including preprocessing 
and recognition. For the DTW, the down sampling 
spends 0.157ms and each mapping cost calculation 
needs 5.8ms. The DTW method determines the final 
recognition result after comparing the matching costs 
with the 10 templates. Then, to recognize one input 
data sample, the DTW method needs 0.157 + 5.8 ∗
10𝑚𝑠 = 59.57𝑚𝑠, more than 12 times the one of the 
proposed method.  

With respect to the memory requirements, we de-
note the length of acceleration signal as 𝑛 and the 
normalized length as 𝑁. For this test, 𝑛 is 304 and 𝑁 

is 20, so the DTW method requires a little more 
memory. For longer signals, the proposed method 
would be more efficient.  

One important advantage of the kinematic feature 
based method is that it does not need a training step, 
while the DTW method has to select template in the 
training phase first to then do the test. The user-
independent method is preferred because the user can 
enjoy the human-device interaction technique directly 
without the boring training step.  

However, in general, it is more difficult to devel-
op a user-independent gesture recognition method 
than a user-dependent one, due to the great variation 
of gesture performance between different users for 
the same gesture. A uniform standard rule may not 
always be found to distinguish gestures.  

The proposed method also requires an exhaustive 
knowledge of the gesture vocabulary to select proper 
features, thresholds and rules to distinguish the dif-
ferent gestures, while DTW provides a general pro-
cedure to differentiate gestures without a detailed 
knowledge of gesture vocabulary.  

Flexibility here refers to how the methods can be 
applied on different users and on a different gesture 
vocabulary. The proposed method relies heavily on 
the threshold tuning and on the concrete form of the 
movements. So it can only be applied on a certain 
group of users with the specified gesture vocabulary. 
However, the DTW method, due to its user-
dependent manner, applies to everybody and, since it 
works by matching testing sample with templates 
which are not restricted within a fixed gesture vocab-
ulary, it can be applied to a different gesture vocabu-
lary. 

6 Robot control application 

In order to define meaningful gestures for the ex-
perimental tests, we decided to configure the system 
for controlling the actions of a wheeled robot in an 
indoor space. The mobile robot used in the work is 
P3-DX by MOBILEROBOTS Inc. There is an 
onboard computer which bears a 1.79 GHz Intel Pen-
tium M processor, 476M RAM, and the operating 
system is Debian lenny with Linux kernel version 
2.6.26-2-686. The robot has an antenna which works 
as an access point. When the robot is moving, it can 
be connected by a laptop or mobile phone with wire-
less connection through the SSH protocol. The wire-
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less network driver is MadWifi. This robot is also 
provided with sonar and laser sensors, which are used 
to build 2D maps of areas of interest. We also at-
tached to the robot a camera sensor (Logitech 
Webcam C600, supported by a Linux UVC driver) 
that allows taking photos of the area surrounding the 
robot. 

We used the implementation of the kinematic fea-
ture based method on the Android mobile phone to 
construct a human-robot interaction system via set-
ting up a wireless connection between the mobile 
phone and the robot. The objective was to control the 
robot with gestures made with the mobile phone.  

When the user performs one of the predefined 
gestures, the recognition system running on the mo-
bile phone recognizes the gesture type and sends it to 
the robot through the wireless connection. The robot 
then performs an action corresponding to that gesture 
type. The gestures and the corresponding actions im-
plemented in this work are listed in Table 6.  

 
Table 6: Gestures and corresponding commands to control 
the robot. 

Gesture Command 
Right Take a photo 

Spiral to the right 360-degree sonar measurement 
Forward Move to a given position 
Down Stop 
Left Pause 
Up Continue 

 
Three actions were implemented in this work, in-

cluding simple navigation (moving to a given posi-
tion), taking a photo with the web camera mounted 
on the robot, and taking 360-degree sonar measure-
ment with the sonar disk array in the front of the ro-
bot. After completing the action, the robot sends 
feedback to the mobile phone through the wireless 
connection. This feedback includes the task status, 
and in the two last cases, the collected information 
(photo or sonar measurement). The other three com-
mands- stop, pause and continue- are employed to 
control the progress of the moving action.  

The complete system was tested with several ex-
periments, which showed good user friendliness and 
satisfactory interaction, with fast recognition times 

and good correspondence between the expected and 
the final robot action. 

7 Conclusions 

In this paper, a kinematic feature based gesture 
recognition method has been proposed and compared 
with the classical DTW algorithm in various aspects. 
For the offline evaluation, its recognition accuracy 
was similar to the one achieved by the DTW algo-
rithm, and for the online test the accuracy was also 
appropriate, with about 89.07%. The advantage of 
our method is that it is light-weighted, has higher 
computational and storage efficiency than the DTW 
algorithm, and works in user-independent mode, so 
that it is suitable for resource-restricted platforms and 
real-time applications, and helps to enhance user ex-
perience. However, the cost to obtain these gains is 
that it is vocabulary-specific, resulting in limited flex-
ibility because it cannot recognize gestures outside 
the vocabulary.  

We also developed a human-robot interaction sys-
tem based on the proposed method that enables con-
trolling a wheeled robot through gestures performed 
with a mobile phone. This experiment shows the fea-
sibility of using the proposed technique as an intui-
tive user input interface for applications in which the 
user wants to control external devices or equipment 
using his mobile phone.  

We are planning to examine in a systematic way 
the performance of the human-robot interaction sys-
tem in terms of interaction intuition, response delay 
and error tolerance. With respect to the gesture 
recognition system, a natural extension would be rec-
ognizing sequences of gestures, which would allow 
users to send series of commands and may be also 
used to generate new commands with the combina-
tion of the predefined individual gestures.  
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