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In this paper we present our work in a real-time, context-aware sys-tem, applied 
in a smart classroom domain, which aims to assist its users after rec-ognizing 
any occurring activity. We exploit the advantages of ontologies in order to mod-
el the context and introduce as well a method for extracting information from an 
ontology and using it in a machine learning dataset. This method enables real-
time reasoning on high-level-activities recognition. We describe the overview of 
our system as well as a typical usage scenario to indicate how our system would 
react in this specific situation. An experimental evaluation of our system in a re-
al, publicly available lecture is also presented.  

   

1 Introduction 
In a typical classroom, a lot of time and effort is 
sometimes spent on technical issues, such as lighting, 
projector set-up, photocopy distribution etc. This time 
could be replaced with “teaching time”, if all these is-
sues were solved automatically.  

There are many Smart Classroom systems that try 
to change the behavior of an environment in order to 
improve the conditions of a class. One of them is 
[O’DRISCOLL, 2008] that focuses on making real-
time context decisions in a smart classroom based on 
information collecting from environment sensors, po-
lices and rules. Another context aware system is 
[LEONIDIS, 2010] that supports ubiquitous compu-
ting in a school classroom. 

In this paper, we present a system that assists in-
structors and students in a smart classroom, in order 
to avoid spending time in such minor issues and stay 
focused on the teaching process, by also having more 
studying material at their disposal. To accomplish 
this, we have taken advantage of the benefits that on-
tologies and machine learning offer, unlike other sim-
ilar systems. The main problem that we intend to 
solve is:  

Problem: Assist the users of a smart-classroom in 
real time, by supporting the teaching process. 

 
In order to achieve this goal, there is a set of sub-

problems that need to be solved. The most important 
sub-problem is knowledge representation and specifi-
cally modeling the classroom environment. 

Recognizing the current state of the classroom in 
real time is also a crucial part of the system. Assis-
tance would be impossible if the state of the class, 
and therefore the current problems were unknown, or 
not recognized in time. 

Finally, the assistance of users should be provided 
in such a way that it will not interfere with, or inter-
rupt the teaching process. On the contrary, our goal is 
to solve the problems that interrupt the teaching pro-
cess, hence making it more natural and continuous. 

Ontologies play a pivotal role not only for the se-
mantic web, but also in pervasive computing and next 
generation mobile communication systems. They 
provide formalizations to project real-life entities on-
to machine-understandable data constructs 
[KRUMMENACHER, 2007]. In our system, machine 
learning algorithms use these data constructs to con-
ceive a higher level representation of the classroom 
environment.  
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1.1 Background 

 In this chapter we introduce some useful notions that 
will help the reader throughout this work. Our system 
is built on the notion of context. “Context is any in-
formation that can be used to characterize the situa-
tion of an entity. An entity is a person, place or object 
that is considered relevant to the interaction between 
a user and an application, including the user and the 
application themselves” [DEY, 2001]. 

To model the context we use OWL ontologies. 
According to [GRUBER, 1993] “an ontology is an 
explicit and formal specification of a conceptualiza-
tion”. Typically, ontologies consist of a finite list of 
terms and the relationships between these terms. The 
terms denote important concepts (classes of objects) 
of the domain [ANTONIOU, 2004]. The relation-
ships typically include hierarchies of classes. A hier-
archy specifies a class C to be a subclass of another 
class C΄ if every object in C is also included in C΄. 

OWL (Web Ontology Language)1 is a semantic 
web language, designed to represent ontologies. 
OWL is a computational logic-based language such 
that knowledge expressed in OWL can be reasoned 
with by computer programs either to verify the con-
sistency of that knowledge or to make implicit 
knowledge explicit. 

SWRL (Semantic Web Rule Language)2 includes a 
high-level abstract syntax for Horn-like rules in both 
the OWL DL and OWL Lite sublanguages of OWL. 
A rule in SWRL has the form 

B1, . . . , Bn � A1, . . . , Am 
where the commas denote conjunction on both 

sides of the arrow and A1, . . . , Am,B1, . . . , Bn can be 
of the form C(x), P(x, y), sameAs(x, y), or differ-
entFrom(x, y), where C is an OWL description, P is 
an OWL property, and x, y are variables, OWL indi-
viduals, or OWL data values  [ANTONIOU, 2004]. 

Propositionalization is defined as a representation 
change from a relational representation to a proposi-
tional one [KRAMER, 2000]. Propositionalizations 
can be either complete or partial (heuristic). In the 
former case, no information is lost in the process [DE 
RAEDT, 1998]; in the latter, information is lost and 
the representation change is incomplete. Our ap-

                                                                    
1 http://www.w3.org/TR/owl-features/ 
2 http://www.w3.org/Submission/SWRL   

proach could be considered as partial propositionali-
zation, since we do not cover all the semantics from 
an ontology, but only some specific properties. 

Case Based Reasoning (CBR) [AAMODT, 1994] 
seems to be an efficient approach in reasoning when 
it comes to AmI systems. CBR is typically described 
as a cyclical process comprising the four REs, as il-
lustrated in Figure 1:  
1. REtrieve the most similar case or cases, 
2. REuse the information and knowledge in that 

case to attempt to solve the problem,  
3. REvise the proposed solution if necessary, and  
4. REtain the parts of this experience likely to be 

useful for future problem solving.  

 
Fig.  1. The four REs of a Case-Based Reasoning cycle. 

 
Some signal segmentation approaches are de-

scribed in details in [TAPIA, 2008]. The one we 
chose is “not overlapping sliding windows”, since 
this implementation is simpler, faster and activities 
occurring in the edge of a time window are rather ra-
re. Especially in a smart classroom, activities usually 
last longer than other domains and their number is 
significantly lower. The length of the time window 
(10 seconds) is chosen based on the nature of the ac-
tivities and experimental results. 

The rest of the paper is structured as follows: In 
Section 2, we present a motivating scenario for a 
smart classroom. Section 3 is about works similar to 
our system. Section 4 describes the design of our sys-
tem in details. In Section 5 we analyze our activity 
recognition approach and in Section 6 we present and 
comment our experimental results. 
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2 Motivating Scenario 
Scenarios in our work express the activities that can 
take place in a classroom e.g. lecture, exam. In order 
to identify these activities, a series of simpler events 
should be applied, in each case. After that, we under-
take to assist the particular activity.  

A typical scenario in a classroom is a student 
presentation. In this scenario, a student is giving a 
project presentation in the Smart Classroom. The au-
dience consists of other students and the teacher.  

Each person in the audience carries an electronic 
device (smart-phone/laptop) with a smart-classroom 
application. This application has access to the profile 
of the users, their personal calendars and to a GPS, if 
available. The calendar of the classroom is checked 
for lecture scheduled at this time and the audience 
members’ personal calendars are checked for partici-
pation in this presentation, in order to know that eve-
ryone is in the right room.  The lights and the projec-
tor are currently on. A student stands near the display 
of presentation. This student’s profile matches the 
“presenter’s” profile in the calendar of the classroom. 
The teacher and the rest of the students are seated and 
the noise level is low, indicating that there is a teach-
ing activity in the classroom. Knowing these simple 
facts, “Student Presentation” activity is identified. 

After the identification of the activity, the presen-
tation is assisted by lowering the lights and adapting 
the projector’s input in students’ and teacher’s devic-
es. The microphone in the presenter’s stand is acti-
vated and the audience microphones are deactivated. 
The audio output of the classroom is connected to the 
microphone and the audio output of the presenter’s 
laptop. The audience has the chance to record the 
whole, or part of this presentation. In case a member 
of the audience has different language preferences 
and a translator is available, the audio output of this 
member’s device is set to be the translator’s output. 
The current slide of the presentation is also provided 
to this member translated. The teacher has the ability 
to take notes and grade the presentation in real time. 

After the presentation, the audience has some 
questions. The lighting of the room is set to normal 
again. A student rises and makes a question. This stu-
dent’s microphone is activated and in case his lan-
guage preferences are different, his question is trans-
lated. When the presentation is over and everyone has 
left, the classroom is set to its default state. 

3 Related Works 
Typically, Smart Classroom systems aim to modify 
the context of the classroom in order to improve the 
conditions of a class. [O’DRISCOLL, 2008] focuses 
on making real-time context decisions in a smart 
classroom based on information collected from envi-
ronment sensors, policies and rules. [LEONIDIS, 
2010] is a context-aware system that supports ubiqui-
tous computing in a school. 

Many systems focus on distance learning for a 
Smart Classroom domain. One of them is [PISHVA, 
2008] that provides an overview of the technologies 
used in a smart classroom for distance education. It 
gives an example of a successful implementation of 
distance education technology that had been used to 
link university campuses in Japan and in USA. In an-
other work [SHI, 2003] multimedia communication 
systems let teachers and students in different location 
participate in the class synchronously. Teachers can 
use multiple natural modalities while interacting re-
motely students in order to achieve the same result as 
a classroom with students physically present.  

Beside the works in the Smart Classroom domain, 
there are several intelligent systems focusing on other 
domains. [CHEN, 2004] presents a smart meeting 
room system that explores the use of multi-agent sys-
tems, Semantic Web ontologies and reasoning. This 
work provides services and information to meeting 
participants based on their current situation needs. 

Apart from the works that focus on improving the 
environment conditions in an intelligent classroom, 
there are many works that describe the context repre-
sentation in ubiquitous environments. [HONG, 2008] 
presents a context-aware management architecture to 
support learning environments. It describes an ontol-
ogy for context representation in an intelligent school 
domain. In [MOHAMMAD, 2007], the authors pro-
pose a context ontology model for a smart meeting 
space. In this work, an upper level context ontology is 
designed, which analyzes in seven major concepts 
that can be reused to build an ontology model for 
smart meeting space environment. There are also 
works that are focused on modeling specific parts of 
the context in intelligent environments. In the work of 
[GOLEMATI, 2007] a general user profile ontology 
is used to model user characteristics in upper level 
classes and it can also be used to describe several 
other domains.  
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4 Architecture for Building 
AmI Systems 

In this section we provide a detailed description of 
the different tasks and components that constitute our 
system. The data flow is illustrated in Figure 2. Our 
system consists of four components: the Classroom, 
the Knowledge Base (KB), which is an OWL ontolo-
gy, the Activity Recognition system and the Class-
room Assistant. The Case Base can be seen as part of 
the Activity Recognition system.  

A simple description of a complete cycle of our 
system is the following, as depicted in Figure 2. 
Nodes represent the different components and arrows 
represent the data flow: 

1. Data from sensors and from services of AmI 
Sandbox [GRAMMENOS, 2009] are stored in the 
Context KB, i.e. an OWL ontology. These ser-
vices provide functionality like localization 
searching, speech recognition, or simply providing 
the sensor data. In our scenario we assume that the 
localization searching service provides data about 
students’ and teacher’s current locations, which 
are stored into our ontology as well as data from 
lights sensors or data from RFID sensors for peo-
ple identification. This step runs continuously, in 
order to avoid missing events/information. 

2. SWRL rules are used for a first level of reasoning, 
to create Simple Events. In the “Student Presenta-
tion” example of Section 2, some Simple Events 
are: “student stands near the display of presenta-
tion”, “teacher sits”, “there is a scheduled lecture 

in the classroom” etc. 
3. The Simple Events that occurred within a 

timeframe are passed to the Activity Recognition 
system periodically. The Activity Recognition 
system parses these Simple Events, to recognize 
the current Activity.  

4. The Activity Recognition system loads the past 
cases from a database with correctly recognized 
activities (Case Base). Using these cases as a ma-
chine learning database, it identifies the most pos-
sible current Activity. 

5. The Activity that is identified in step 4 is written 
in the Case Base as a new Case. In parallel, the 
same result is also passed to the Classroom Assis-
tant system. 

6. Depending on the current Activity, given as input, 
the Classroom Assistant changes the context. In 
our scenario it lowers the lighting, adapts the 
presentation file in students’ and teachers’ devic-
es, activates the presenter’s microphone etc. 

The Classroom in this design can be replaced by 
any other smart-space, which would make Figure 2 
generic for AmI systems. For example, we are cur-
rently using the same design to build another system, 
used in the Ambient Assisted Living domain. Instead 
of a Classroom, we have a Smart-Home and instead 
of a Classroom Assistant, we have a Smart-Home As-
sistant. 

For the rest of this section, we present a brief 
summary for each component of our system. In the 
place of the Classroom, we describe the AmI Sand-
box, which we use to simulate the environment of a 
real classroom. SWRL rules are used for both sensor-
handling and assisting the final users. 

Fig.  2. System design: Sensor data are stored in the ontology (step 1). A first level of reasoning is applied to iden-
tify Simple Events (step 2). Ontology data are parsed from the activity recognition system (step 3) and the current ac-
tivity is recognized, stored and provided to the classroom assistant (steps 4 and 5). The Classroom Assistant possibly 

changes the state of the Classroom (step 6). 
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4.1 Modeling Context 

In this session we propose a context ontology model 
for an intelligent university Classroom that responds 
to students’ and teachers’ needs. Our context ontolo-
gy is divided into two hierarchical parts, upper-level 
ontology and low-level ontologies.  

The Upper Level Ontology or Core Ontology cap-
tures general features of all pervasive computing do-
mains. It is designed in a way that can be reused in 
the modeling of different smart space environments, 
like smart homes or smart meeting spaces. The Core 
ontology’s context model is structured by a set of ab-
stract entities like Computational Entity, Person, Ac-
tivity, Location, Simple Event and Environment 
(Figure 3). All these entities are widely used in con-
text representation through ontologies, except Simple 
Event entity. Simple Event entity aims to capture 
knowledge obtained from reasoning on sensors data. 
More specifically in the class CompEntity and in their 
subclasses we store information that is taking by sen-
sors.   

Those data are representing the current situation 
of the sensor and generally the context. We can have 
information about the situation of a specific device 
e.g. if the projector is turned on or if a specific win-
dow is open. Furthermore we can take information 
about the persons that are located in the smart class-
room through RFID sensors. We can know if a par-
ticular “rfid tag” is enabled and connected to a specif-
ic rfid reader. We apply reasoning to all the 
information that is stored to CompEntity in order to 
have more useful results that we can use to the sce-
narios. After the reasoning part on sensors data the 
results are stored in the Simple Event entity.  

The way that Simple Events are represented is like 
‘Projector’s status is “on”’ or “Teacher is in front of 
the smart board’ or “3 Persons located in Classroom”. 

The Low Level or Domain-Specific Ontologies are 
based on upper level ontology and specified by the 
domain. In our case the domain is an intelligent class-
room in a university campus for that reason the low 
level ontologies are adjusting on it. Some of the do-
main-specific ontologies that we propose are Person, 
Location, Calendar and Lecture ontology.   

The ontology Person can describes human beings 
that have academic nature e.g. professors, Bachelor 
students, Master students etc. We can store all kind of 
information that can describe a user of a smart class-
room. Information about user’s background, educa-
tion, academic experience, also we can store infor-
mation about user’s preferences, interests or personal 
profile. More over in our Person ontology, infor-
mation like hearing or visual impairments that users 
may have can be expressed.  

We develop the ontology Calendar in order to 
store the information about user’s schedule e.g. in 
which class has to participate on Monday from 4pm 
to 6pm. We also can to store information about the 
schedule of the smart classroom in Calendar ontolo-
gy. For example, which lesson is gone take place at 
the classroom on Friday between 2 pm and 5 pm. 
How many will be the participants or what will be the 
subject of the lecture.  

Into ontology Lecture can be stored information 
about the lectures that can take place in the Smart 
Classroom. For each lecture we can have information 
about the subject, the professor that giving the lecture 
and also the learning material that is needed. All of 
the ontologies are expressed in OWL. 

Fig.  3. Core ontology. 
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4.2 Reasoning: SWRL 
In our implementation we try to transform our scenar-
ios for smart classroom into rules. This rule based 
approach is implemented by using Semantic Web 
Rule Language (SWRL). The first step is to capture 
data from sensors and services from Smart Classroom 
and store them into the ontology (e.g. status of devic-
es). Because of the nature of those data (sensors’ da-
ta) SWRL rules are applied on them in order to pro-
duce more useful results for our scenarios.  After the 
reasoning part the results are stored into the Simple 
Event class. SWRL rules are also applied for user as-
sistance part.  After the activity recognition part, the 
aim is to manage to assist the activity that takes place 
into the Smart Classroom in order to be easier for the 
users to participate on the activity.  

4.2.1 Sensor handling 

As discussed in the previous sessions, the data that 
we take from the sensors are in a very basic form. In 
order to draw more useful conclusions we have to 
process them. We manage to do that by using SWRL 
rules. Here, we provide some examples of such 
SWRL rules: 
 
Rule 1: Person:Teacher(?t) ^ Device:SmartBoard(?b) 
^  Core:hasRelativeLocation(?t,?b) ^ 
Core:inFrontOf(?t,?b) ^   
Core: isActivated(Teacher in front of Board, “true”) 
 
Rule 1 computes if the Teacher is in front of the 
Board.  

 
Rule 2: Location:SmartClassroom(?c) ^ 
 Environment(SmartClassroomEnv) ^ 
Core:hasEnvironment(?c,SmartClassroomEnv) ^ 
Core:noiseLevel(SmartClassroomEnv,?noise) ^ 
swrlb:greaterThan(?noise,80)  
Core:isActivated(High Level Noise, “true”) 
 
Rule 2 draws a conclusion about the noise level by 
taking as input the sensor data about the noise.  

 
Rule3: Lights(ClassroomLights) ^ 
Core:status(ClassroomLights, "on") ^  
lightsLevel(ClassroomLights, "high")     
isActivated(Classroom_Lights_High_Level, true) 

 
Rule 3 draws a conclusion about the level of the 
lights in the Classroom. Taking as input data from the 
lights sensor, it activates the particular Simple Event, 
in this case “Classroom_Lights_High_Level”. 
 
Rule 4: SmartClassroom(SmartClassroom1) ^ 
hasCalendar(SmartClassroom1, ?c) ^   
Calendar:hasCalendarEvent(?c, ?evnt) ^ 
 hasStartTime(?evnt, ?st) ^  hasEndTime(?evnt, ?et) ^ 
swrlb:equal(?st, CurrentTime) ^   
Calendar:description(?evnt, "Lecture Slides")    
 isActivated (ClassCalEvent_LectureSlides, true) 
 
Rule 4 does not take as input data from sensors. In-
stead, it uses data that are stored in the Calendar on-
tology and it deduces if the event that is taking place 
in the classroom is a lecture with slides.  
 
Rule 5: Projector(Projector1) ^ 
Core:status(Projector1, "on")    
 isActivated(Projector_is_On, true) 
 
In Rule 5, one of the simplest SWRL rules, data from 
projector1 are considered in order to represent as a 
Simple Event if proector1 is currently on. 

4.2.2 Assistance 

The point of the work that we described in the 
previous sessions is to manage to assist the Activities 
that can take place in a Smart Classroom. The kind of 
assistance that we can provide is based on the con-
text. The adaptation of the context to humans needs. 
The general purpose of all the cognitive systems is to 
be able to change the environment conditions based 
on the current conditions that are given as input.  That 
happens in order to make it easier for the users to fo-
cus on the main activity e.g. Presentation and not to 
be disturbed by changing the environment by them-
selves. More specifically, if the lights in the Smart 
Classroom are off and the lighting level from the out-
side environment is also low, the Smart Classroom 
Assistant will turn the lights on. Also if the tempera-
ture in the classroom is higher or lower than the nor-
mal it will adjust the temperature by operating the air 
conditioning.   

In our particular domain, apart from the environ-
mental conditions that can be adapted, we can also 
assist the activities by using information that are 



Efthymiou, V. et al Real-Time Activity Recognition and Assistance in Smart Classrooms 
 
 

 
 

15 
 

Advances in Distributed  
Computing and Artificial  

Intelligence Jornual 
Special Issue #1 
http://adcaj.usal.es 

stored in the ontology and are related to the particular 
activity. For example, if the activity that takes place 
in the Smart Classroom is a lecture presentation we 
can find all the information that describes this partic-
ular lecture in the Lecture ontology. After that, we 
can assist each particular user by providing the file of 
the presentation or other additional notes related to 
the subject of presentation. The assistance will be dif-
ferent for each user according to his profile. If some-
one has a low level background on the presentation’s 
subject, the Smart Classroom Assistant will provide 
him also with additional material tutorials, or basic 
notes about the subject.  

In order to accomplish the adaptation of the envi-
ronment for the users’ needs, we apply reasoning 
once more to all the data that are stored into our on-
tologies. After this part, we configure the devices of 
the Smart Classroom with specific values, for exam-
ple by setting the value “on” on the projector through 
the projector service.  

4.3 Activity Recognition 

For this part of our system, we used (an adjustment 
of) an activity recognition system [EFTHYMIOU, 
2012], based on machine learning, described briefly 
in Section 5. After the SWRL rules trigger, the result-
ing Simple Events that occurred within a time frame 
are sent to the Activity Recognition system, building 
an unsolved case. One or no activity is then recog-
nized and the solved case is added to the case base. 

Based on a given set of activities that are to be 
recognized, a case base is initially created and classi-
fied manually. It is essential for this dataset to be a 
product of real observations and not just random cas-
es. Instead of implementing the machine learning al-
gorithms, we use WEKA [WITTEN, 2011] with de-
fault parameters, so our dataset is stored as an arff 
file.  

In our domains each case represents a time-frame 
typically lasting 10 seconds, but generally depending 
on the specific domain. This means that for an hour 
of reasoning we need about 360 cases/lines and for a 
day of reasoning we need around 8640 cases/lines in 
our case base/arff file. Soon it becomes obvious why 
it is important to have some data reduction algo-
rithms. WEKA’s Resample filter can perform this 
task and return a new arff file as a result. 

4.4 AmI Sandbox 

The Institute of Computer Science of the Founda-
tion of Research and Technology – Hellas (FORTH - 
ICS) has initiated a long RTD AmI program 
[STEFANIDIS, 2008] aiming to develop pioneering 
human-centric AmI technologies and Smart Envi-
ronments, capable of “understanding” and fulfilling 
individual human needs. Under this program it creat-
ed a laboratory space of about 100m² comprising six 
rooms, aiming to provide researchers the opportunity 
to bring along and share their know-how and re-
sources in order to obtain hands-on experience and 
experiment in a highly flexible setting. In this space, 
various AmI technologies and applications are in-
stalled, integrated and demonstrated, and multiple 
ideas and solutions are cooperatively developed, stud-
ied and tested [GRAMMENOS, 2009]. 

For our system’s needs we are going to use the 
Smart Office prototype environment. In this envi-
ronment there are a smart office, a smart board, as 
well as a set of sensors of many kinds. Using this en-
vironment for the implementation of the scenarios in 
real time we will be able to draw conclusions about 
the efficiency and the accuracy of the system.  

AmI services are defined through a tool called 
Idlematic which creates and keeps service interfaces. 
All services communicate through FAMINE middle-
ware, responsible for creating, connecting and con-
suming these services. It is CORBA-based and pro-
vides support for C++, Java, .NET, Python, and 
Flash/ActionScript languages. 

Sensor data are handled like mouse/keyboard 
events in Java. Some (already implemented) services 
can be used to catch the sensor signals and inform the 
user about the type of signal and what it means (by 
defining an event). In the AmI Sandbox there are sen-
sors for sound, image, lighting, interaction, “smart” 
devices and more, including cameras, RFID readers, 
IRIS scanner, door-chair controllers, touch screens, 
projectors, PDAs, speakers and workstations. When 
an event occurs then it can be caught using event 
handlers. These event handlers are used to store the 
sensor data in the respective ontology. 

Apart from the event handlers, Idlematic and 
Famine also provide the ability to change the context, 
by calling some methods. These are methods that in-
teract with the environment (such as the ability to 
close a door, turn a device on etc.)  
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5 Activity Recognition in the 
Presence of Ontologies 
Since ontologies offer ways of expressing concepts 
and relationships between them, we found it interest-
ing to exploit such expressiveness and assist machine 
learning, in order to recognize the current activity of 
the users of a smart space. 

When it comes to real-time activity recognition, 
there is a need for accuracy as well as speed. Our ap-
proach aims to take advantage of the rich expressive-
ness that ontologies can offer and provide solid an-
swers, using machine learning algorithms, like 
Support Vector Machines (SVMs) or Bayesian net-
works. The key factor that led to the design of a new 
system, using machine learning, is the lack of speed 
observed in the already existing systems that use al-
gorithms such as kNN. Apart from that, the robust-
ness and accuracy of Bayesian networks led to a sys-
tem faster and more accurate than other systems that 
we are aware of. Coping with sensors usually means 
missing data and SVMs – our initial choice - lack in 
this field. In [JAYASURYA, 2010] it is claimed that 
- for a specific biological domain – BNs outperform 
SVMs when data are missing and perform almost the 
same, when all data are available. Even if we have 
not tested our system with missing data, this is a typi-
cal phenomenon when dealing with sensors and we 
wanted to be prepared.  

5.1 Similar CBR tools 

In this paragraph we describe some of the most 
similar Case Based Reasoning (CBR) tools that we 
found in the literature. Not all of them focus on activ-
ity recognition, but we found them very useful for the 
design of our system. 

The most popular Case Based Reasoning (CBR) 
tool that supports ontologies is JCOLIBRI [RECIO-
GARCIA, 2007, 2008]. As most of the CBR tools do, 
JCOLIBRI uses the k Nearest Neighbours (kNN) al-
gorithm to classify a new case, so it bares the prob-
lems of kNN.  

Another promising tool, CREEK [AAMODT, 
1991] - later renamed as AmICREEK – is not public-
ly available, although some case-evaluation studies 
have been published [KOFOD-PETERSEN, 2009].   

The most recent and similar tool that we found is 
SituRes [KNOX, 2010], a case-based approach to 
recognizing user activity in a smart-home environ-
ment. Even if this approach improves learning, how-
ever there is a great weakness; the accuracy of the 
system is poor, as admitted also by the authors. Si-
tuRes is based on one of the publicly available da-
tasets that use PlaceLab [INTILLE, 2005].  

PlaceLab is a 1000-square-foot sensor-rich home 
environment, built by MIT as a shared research facili-
ty. Unfortunately, the PlaceLab ontology is not in a 
form that our system can exploit. However, it is our 
intention to expand our system and make it capable of 
processing a wider range of ontologies. 

COSAR [RIBONI, 2011] is a hybrid reasoning 
system that uses ontologies and ontological reasoning 
combined with statistical inferencing. In this paper a 
historical variant is introduced, which considers the 
past few cases when deciding on the current case, 
taking advantage of the fact that persons tend to per-
form the same activity for a certain lapse of time be-
fore changing activity. COSAR is an offline reasoner, 
meaning that it does not run in real-time. 

5.2 Exploiting the semantics of 
ontologies 

The input of the complete system is an ontolo-
gy with instances, from which the user has to de-
fine the terms (classes) that describe the attrib-
utes, the term that describes the solution and the 
term where the cases are stored. For example, 
consider a simple ontology, where Case, Activity, 
Location, Time, Winter, Summer, Autumn, Spring, 
Indoors, Outdoors, FirstFloor and SecondFloor 
are classes. As expected, Winter, Summer, Autumn 
and Spring are subclasses of Time. Indoors and 
Outdoors are subclasses of Location and 
FirstFloor and SecondFloor are subclasses of In-
doors. In this ontology there should be some Case 
instances like the following: 

 
<Case rdf:ID="Case74"> 
    <has-Activity rdf:resource="#Cooking"/> 
    <has-Time rdf:resource="#July"/> 
    <has-Location rdf:resource="#Kitchen"/> 
</Case> 
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where July is an instance of Summer and Kitchen is 
an instance of FirstFloor. The user should define that 
terms Time and Location describe the attributes of the 
problem, term Activity is used to describe the solution 
and each case is stored as an instance of term Case. 
The suggested solution to the problem of grasping the 
hierarchy information of an ontology and storing it as 
attributes, is keeping the whole path of each instance 
in Boolean values. For example Case74 of the exam-
ple above, would be stored as: 
Cooking, July,0,0,0,1,Kitchen,1,0,1,0 

The Boolean values following Kitchen mean that 
it belongs to FirstFloor and Indoors and not Second-
Floor or Outdoors. In other words, after an attribute 
value, we store one Boolean number for each of its 
subclasses, representing that the subclass belongs or 
not to the path that leads to the instance value, ac-
cordind to the following formula: 

 
∀𝑆 ∈ 𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐶     

𝑣𝑎𝑙𝑢𝑒 𝑆 =    1, 𝑖𝑓  𝑆 ∈ 𝑠𝑢𝑝𝑒𝑟𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑎0, 𝑒𝑙𝑠𝑒 , where  

𝐶 ∈ 𝑟𝑎𝑛𝑔𝑒 𝑃 , 𝑃 ∈ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 and 
  𝑎 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐶 . 

 
In our first version of the activity recognition sys-

tem, applied in the smart classroom domain, we used 
ontologies as described above and the results were 
satisfying. For facilitating the evaluation process we 
developed a simpler but quicker version without us-
ing ontologies. In this version, events occurring with-
in a timeframe are sent as plain text (and not within 
an ontology) to the activity recognition system, and 
added as a case to the case-base. The accuracy of the 
simpler version was close to the first version, but 
time performance was better, as expected.  

5.3 Reducing the dataset 

One of the four challenges in CBR [KOFOD-
PETERSEN, 2006] is coping with the vast number of 
cases, namely removing some cases occasionally to 
limit memory needs. We used WEKA’s Resample fil-
ter, which reduces the dataset to a percent (we have 
set this percent to be 50%) of its initial size, with zero 
bias, by removing random cases. The crucial part of 
this filter is that it keeps the same ratio for the distri-
bution of cases, depending on their class attribute. 

Reducing the dataset is not necessarily limited to 
reducing the cases. We noticed that with our “full-

path” approach to exploiting the semantics of an on-
tology, we also gather some redundant information 
for each case; values that are always the same, given 
some other values. For example if a student can only 
be described as undergraduate, or postgraduate and 
we know that a certain student is not an undergradu-
ate, we can safely conclude that he is a postgraduate 
student. In this approach we take as granted that only 
“leaf” classes can have instances, which means that if 
a class has subclasses, then direct instances of this 
class are not taken into consideration. To model this 
attribute reduction, we use the following rule: 

 
for each subclass S of a given property’s range class 

if S only has one father F, and F is marked  
 add S to the attributes 
else  

mark F 
 

This removes only one, the firstly-found subclass 
of each “level”. By the term “level” we mean the sib-
lings of the same father (only its direct subclasses). 

5.4 Limitations 

The main limitations of the activity recognition 
system are the inability to recognize more than one 
activity at a time, or the activities of more than one 
person.   

Every case in our scenarios has only one solution. 
This means that no parallelism is achieved when it 
comes to activities. For example, a teacher might be 
answering questions and giving a lecture at the same 
time. Our system would (ideally) return only one of 
these activities as a result for a given timeframe.  

Similarly, the returned activity is only referring to 
one individual. In an environment with more than one 
individuals, like a smart classroom, the activity can 
be described as a “team” or “general” activity, like 
slide presentation, lecture etc. This means that we 
have not found a way to return one activity for each 
of the individuals present. 

Another deficiency of the presented work is the 
lack of a higher-level reasoning based on the returned 
results. This could include different level of details, 
when it comes to results, conclusions on the results 
(e.g. the user is acting strangely, in confusion etc). 
However, we found it impractical to perform such 
kind of reasoning on a real-time system. 



Efthymiou, V. et al Real-Time Activity Recognition and Assistance in Smart Classrooms 
 

  
 

 
 

18 
 

Advances in Distributed  
Computing and Artificial  

Intelligence Jornual 
Special Issue #1 
http://adcaj.usal.es 

6 Experimental Evaluation 
In the absence of a real dataset for a smart class-

room, we decided to create one, in order to evaluate 
our system. The precision of our system is mostly 
based on the activity recognition’s precision, since 
everything else is rule based. Therefore we present 
here the evaluation results for a dataset that we built 
based on our observations on a publicly available 
video from a lecture3.  

Our observations – which act as sensor data – in-
clude the position of the lecturer, the lighting, the 
persons that speak etc. In this video the activities ob-
served are four: lecture with slides, lecture with 
whiteboard, question and conversation. A 10 fold 
cross validation based on this dataset is illustrated in 
Tables 1 and 2.  

 
Total Number of Instances       326      
Correctly Classified Instances    313          96.0123 % 
Incorrectly Classified Instances    13           3.9877 % 
 
TP 
Rate 

FP 
Rate 

Precision Recall Activity 
 

0.995 0.077 0.959 0.995 lecture_slides 
0.955 0.008 0.977 0.955 lecture_wb 
0.955 0.007 0.913 0.955 question 
0 0 0 0 conversation 

Table. 1.  Detailed accuracy by class 

 
classified 
as  

lecture 
slides 

lecture 
whiteb 

ques-
tion 

conver-
sation 

lecture 
slides 208 1 0 0 

lecture 
whiteb 4 84 0 0 

question 1 0 21 0 

conver-
sation 4 1 2 0 

Table. 2. Confusion matrix 

Table 2 can be read as “y activity was actually classi-
fied as x activity”. It would ideally contain zeros only 
in the non-diagonal positions. So it appears that no 

                                                                    
3http://videolectures.net/mlss08au_hutter_isml. Part 2   

“conversation” was classified correctly. Further eval-
uation experiments of the activity recognition system 
have been presented in [EFTHYMIOU, 2012]. 

The time performance of our system is based on 
the performance of SWRL reasoning time plus the 
performance of the activity recognition system. As 
stated in §4.3, we have set a typical reasoning cycle 
(case) of 10 seconds. This means that for a typical ac-
tivity recognition dataset we would need around 
43000 cases, which correspond to 5 (working) days 
of data, namely a week. We have reproduced the 
same 326 cases acquired from the video to create a 
43000-case-large dataset, just to simulate the time 
performance of our system, ignoring accuracy. The 
average time performance of the activity recognition 
system is 0.757401 seconds in a rather outdated ma-
chine4. Similarly, the average time performance of 
SWRL rules is 0.686215 seconds. Summing these 
numbers, we get an average cycle processing time of 
1.443616 seconds. 

6.1 Demo 
In order to run a real-world demonstration of our 

system, we have used the AmI Sandbox, described in 
Subsection 4.4. The data are real, and they were not 
based on assumptions. Of course, the ideal evaluation 
of this system would require its use in a real class-
room with people that will be its final users, but this 
demo is the closest that we could get. To be more ac-
curate, the data are based on the physical presence of 
a human in the AmI Sandbox, who acts according to 
a scenario. This scenario is designed based on an ini-
tial, manually created dataset. Another way to create 
a dataset would be to record the data of a user’s arbi-
trary actions and then label each “timeframe” with an 
activity. We preferred the manually created dataset, 
for time’s and human effort’s sake. 

This demo is based on the ontology presented in 
Subsection 4.1, in which Activities are recognized 
based on SimpleEvents. The available resources (that 
could be useful for us) in the AmI Sandbox at the 
time of the demo were: 
• a hospital bed, capable to recognize whether 

someone is on it or not 
• four televisions, capable of returning and setting 

their state (on/off, volume, channel, etc) 
                                                                    

4 Intel Pentium 4, 3.40GHz, 2GB RAM, with Microsoft 
Windows XP Professional SP3, using NetBeans IDE 7.0.1. 
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• window blinds, capable of returning and setting 
their state (open/closed) 

• two projectors, capable of returning and setting 
their state (on/off) 

• lights, capable of returning and setting their in-
tensity 

• RFID readers, capable of returning and (identi-
fying) if an RFID tag is close 

 
Unfortunately, we had to build our demonstration 

using only these resources, so the activities presented 
are limited and not all related to our motivating sce-
nario. However, our intention is to show that real-
time activity recognition with our AmI architecture is 
feasible. The activities that take place in the demon-
stration are: 
• sleeping 
• watchingTV 
• presentation 
• talkingOnPhone 

 
The sensor data are stored in the ontology and 

then periodically parsed for activity recognition. The 
only non-obvious activity is “talkingOnPhone”, based 
on the above sensors. In order to recognize whether 
the phone is on/off we used the RFID readers; an an-
tenna (RFID reader) was stuck under a desk and a 
magnetic sticker (RFID tag) to the earpiece of a 
phone. The phone was placed on top of this desk, just 

above the reader. This way, when the earpiece was 
picked, the RFID tag on it was away from the reader 
and we could assume that the phone was on. 

The demo is recorded with the help of two videos, 
a screenshot of which is depicted in Figure 4. The 
first video shows a person in the AmI Sandbox doing 
some activities, following a scenario. Initially she en-
ters the room and (after a very tiring day at work) de-
cides to rest for a while. Therefore she lowers the 
window blinds and lies on bed. But after so much 
tension she cannot sleep and decides to stand up, turn 
the lights and the TV on. She watches a music show 
for a while, but then the phone rings. She turns the 
TV off, and picks the phone up. It’s her boss, asking 
her to review the presentation that she will have to-
morrow! She decreases the lights’ level and walks in-
to the main room. There, she turns the projector on 
and reviews her slides presentation.  

The second video is a recording of the Graphical 
User Interface (GUI) controller that appears on the 
screen of the laptop that this person holds. In this 
controller there are three toggle buttons for turning on 
and off the TV, the projector and the window blinds. 
There is also a slider for setting the lights’ intensity. 
In the bottom of this GUI there is a text area in which 
the current activity and its likelihood are printed, as 
well as the last activities. This is a GUI that is only 
created for the needs of the demo, and it is not a part 

Fig.  4. A screenshot from the demo. On the lower right corner is the GUI available 
to the user for the needs of this demo. The current activity – along with the likelihood 

that it is actually happening - is the last shown in the text area of the GUI. 
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of the system. When the likelihood is below a thresh-
old (70% for this demo), no activity is returned and 
the text area reads “No activity recognized”. This oc-
curs usually in the transition between two activities.  

The second video starts when the person entering 
the room starts recording the screen, but the system 
was initialized before that. That explains why the text 
area is not initially blank, but contains some “No ac-
tivity recognized” cases. Figure 4 shows a screenshot 
of the video, some seconds after the phone is picked 
up.  

 
Start Time(sec) End Time(sec) Activity 
0 21 no activity 
21 39 sleeping 
39 57 no activity 
57 75 watchingTV 
75 78 no activity 
78 90 talkingOnPhone 
90 140 presentation 

 
Table. 3.  Activities occurring in the demonstration of 

the activity recognition system 
 
The video5 lasts 140 seconds and the first activity 

(sleeping) occurs on the 23rd second. The timeframes 
for this demo last 3 seconds. The results of the demo 
were really satisfying, since all activities were recog-
nized correctly and instantly. There is only one case 
which is recognized falsely and that is when the 
phone is off, the suggested activity is still “talk-
ingOnPhone”. This is due to the sensor signal that 
lags for almost 1 second. Therefore, if we start meas-
uring the accuracy from the 21rst second (the start of 
the first timeframe in which an activity occurs) until 
the 138th and divide the time into 3-second 
timeframes, we have a total of 39 timeframes (the 
recognition result for the 40th timeframe does not ap-
pear in the video, since it stops at the 140th second, 
one second before the 40th timeframe ends). Since 38 
of them are correctly recognized activities (including 
the recognition of no activity), the accuracy of the 
system is 38/39 = 97.44%. Table 3 summarizes the 
demo, illustrating the activities that occurred and at 
which timeframe. 

                                                                    
5http://www.ics.forth.gr/isl/_videos/Real_time_activity_

recognition_in_AmI.avi 

7 Conclusions and Future 
Work 
In this paper, we have introduced the use of a real-
time AmI system in a smart classroom. We have pre-
sented how an ontology can be used to model the 
context in a smart environment and how we can take 
advantage of this modeling to assist activity recogni-
tion. 

With a simple scenario, we have illustrated how 
such a system could assist its users and we have also 
provided experimental results on the performance. 
Although the first results are promising, we still have 
some work to do in order to test our system in a real 
smart classroom environment.  

Apart from that, we have already started to work 
on the Ambient Assisted Living domain and particu-
larly on the assistance of the elderly. We also plan to 
extend our Activity Recognition system, in order to 
grasp more of the information that ontologies can of-
fer, reduce the case-base’s size efficiently and finally 
verify which activities were recognized correctly.  
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