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This paper introduces an innovative approach to predicting bus 
ridership andanalysing transportation scenarios through a fusion 
of machine learning (ML) techniques and multi-agent simulations. 
Utilising a comprehensive dataset from an urban bus system, 
we employ ML models to accurately forecast passenger flows, 
factoring in diverse variables such as weather conditions. The 
novelty of our method lies in the application of these predictions 
to generate detailed simulation scenarios, which are meticulously 
executed to evaluate the efficacy of public transportation services. 
Our research uniquely demonstrates the synergy between ML 
predictions and agent-based simulations, offering a robust 
tool for optimising urban mobility. The results reveal critical 
insights into resource allocation, service efficiency, and potential 
improvements in public transport systems. This study significantly 
advances the field by providing a practical framework for 
transportation providers to optimise services and address long-
term challenges in urban mobility
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1. Introduction
Public transportation is a crucial necessity globally. According to statistics1, in the United States,

12 % of the population relies on public transport daily, while countries such as South Korea have 
reached 40 %. Accurately predicting bus occupancy levels is key to optimising routes, enhancing reli-
ability, and reducing waiting times. Historical data allows to proactively identify issues such as bottle-
necks, rush hour shortages, and resource wastage. Modifying route planning and resource allocation 
based on these insights can prevent problems and improve public transportation systems.

This paper aims to establish a benchmark for public transportation systems, to analyse their perfor-
mance across various environments and identify long-term challenges through experimental simula-
tion. The main contribution of this work is the creation of an initial passenger demand with a specific 
environmental setup, its load to a fleet simulator, and the analysis of the simulations themselves. To 
achieve this, traditional and machine learning (ML) techniques were employed to develop models that 
accurately predict bus occupancy levels, whereas multi-agent simulation was used to validate the pre-
dictions. Our approach’s performance was evaluated using a real-world bus system dataset.

Bus passenger flow optimisation has been a widely discussed topic in recent years. Studies by 
(Baghbani et al., 2023) and (Nagaraj et al., 2022) achieve a real-time passenger prediction task using 
a final Long Short-Term Memory (LSTM) model layer (Schmidhuber and Hochreiter, 1997). Such a 
technique can not be directly applied to the current work since the simulation requires an atemporal 
prediction, but it may be useful for our study to use a modification. Similarly, the study by (Liyanage 
et al., 2022) employed a bidirectional LSTM model for atemporal prediction, obtaining satisfactory 
results. Nevertheless, the technique is unsuitable for our purpose, as in a real-scenario application of 
a simulation, future data would not be available, thus sticking to the unidirectional part of the model.

Moreover, research by (Ming et al., 2014) used a combination of ARIMA-SVM models, where the 
first one captured the linearity of the data, while the other, the non-linearity. Lastly, (Zhang et al., 2017) 
used a Grey Prediction Model (GM) (Julong et al., 1989). GM models are widely used in passenger 
prediction since they capture two types of patterns: normal trends (from day to day) and cyclic trends 
(between the same weekday at different weeks). More traditional ML techniques can also be adequate 
for the passenger prediction task. Thus, techniques such as Random Forest (RF), Support Vector Machine 
for Regression (SVR), and Neural Network (NN) can produce good results depending on the context.

Recently, passenger ridership prediction has been used in transportation optimisation research to 
help decision- making for mass-transportation operators. The study by (Santanam et al., 2024) focuses 
on post-event (sports, concerts, etc.) ridership prediction combined. Their approach combines ML 
with historical trends to forecast the passenger flow curve at stations near the event, finally estimating 
transport frequencies to serve as many customers as possible. Similarly, the study of (AlKhereibi et al., 
2023), approaches the same issue but adds the urban land use information and the built environment 
around the stations to enrich their prediction. Most recent studies use a variety of ML and traditional 
statistical techniques, such as the work by (Nair et al., 2023), thus maximising their optimisation 
options. RF and linear regression models provide, in general, good results in this area. However, more 
modern hybrid predictors may overcome traditional models for specific issues, as demonstrated by the 
experimentation of (Lv et al., 2024). Finally, it is worth mentioning that ridership prediction is often 
combined with anomaly detection, as exemplified by (He et al., 2022), better exploiting data to create 
more useful solutions.

1 https://www.statista.com/chart/25129/gcs-hoW-the-world-commutes/
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In the specific context of bus passenger demand prediction, there are primarily two simulation 
methodologies that stand out for their effectiveness and applicability. The first is agent-based modelling 
(Hajinasab et al., 2016), which is an intricate approach where each bus and passenger is represented 
as an individual agent. These agents interact within a simulated environment, mirroring real-world 
dynamics. This method excels in capturing the complex behaviours and interactions among buses, 
passengers, and their surroundings. However, the detailed nature of agent-based models often makes 
them computationally intensive and reliant on extensive data inputs and careful parameter tuning.

The second notable methodology is discrete event simulation (Gunawan et al., 2014). This approach 
views the bus system’s operations as a series of discrete, time-stamped events. Each event represents 
a significant change within the system, such as a bus arriving at a stop or passengers boarding and 
alighting. Discrete event simulation is particularly adept at handling large-scale systems, offering a 
more streamlined and efficient way to model processes compared to agent-based models. However, its 
main limitation lies in potentially not capturing the full dynamic behaviour of bus systems, especially 
the nuanced interactions between the different elements of the system.

In our research, we have chosen to utilise agent-based simulation. This decision is grounded in the 
method’s superior ability to replicate the intricate dynamics of urban bus systems. By leveraging agent-
based models combined with advanced machine learning techniques, we are able to generate realistic 
and detailed simulations of passenger demand and bus system operations. These simulations are cru-
cial in analysing and understanding the performance and efficiency of the transportation service. Our 
application of agent-based simulation to a real-world urban bus service has provided valuable insights, 
demonstrating the model’s efficacy in informing decision-making processes for transportation provid-
ers and aiding in the development of optimised transportation services.

Our current research contributes to the development of practical applications for the analysis and 
enhancement of transportation services. On the one hand, the developed ML prediction models allow us 
to realistically generalise demand data for the studied transportation system. On the other hand, the pre-
dicted demand can be used to create realistic simulation scenarios that reproduce the transportation ser-
vice in motion. The analysis of such simulations permits the discovery of trends in the performance of the 
transportation service. Our experimentation on a real-world urban bus service and the subsequent result 
analysis proves the usefulness of our approach when it comes to guiding the decision-making process 
of transportation providers, helping the configuration of an optimised service. This paper significantly 
extends the work presented by (Ibáñez et al., 2023) and builds on the earlier ideas set out in that work.

The rest of the paper is organised as follows: Section 2 describes the data and its treatment. Section 
3 presents the training of the demand prediction models. The simulation data generation is described, 
alongside experimental results, in Section 4. Then, Section 5 goes over the contribution of the paper 
and the limitations of the chosen techniques. Lastly, Section 6 presents the conclusions and the future 
line of work.

2. Data
Over the past years, significant endeavours have been made to enhance public transportation sys-

tems. These endeavours often involve collecting and analysingvarious data sources to uncover pat-
terns, trends, and valuable insights to support decision-making. This section describes the data fed to 
the ML techniques and the transformations applied to it for proper learning. A dataset provided by the 
Ames Transit Agency in Ames, Iowa, has been chosen, as it offers the most comprehensive information 
available on bus transportation in urban areas.

https://adcaij.usal.es
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2.1 Data Sourcing
The bus occupancy data utilised in this study was obtained from multiple routes operated by the 

Ames Transit Agency in the metropolitan area of Ames, Iowa, spanning from October 2021 to June 
2022 (Wilbur, 2022). In total, the dataset comprises 4,577,930 records. The data was collected using 
automatic passenger counters (APCs), ensuring that each entry in the database corresponds to the 
number of passengers boarding and alighting at each bus stop.

In addition to passenger counts, each record includes information about the route, scheduled and 
actual arrival and departure times, and the vehicle’s capacity. The bus routes consist of nine circular 
routes, three linear routes (with separate routes for outward and inward journeys), and one hybrid 
route (linear during the school year and circular during summer). Among these routes, four exhibit 
operational inconsistencies: one undergoes changes in its itinerary on weekdays and weekends, one 
has limited service resulting in periods of missing data, and two do not operate or have altered routes 
during the summer season. Therefore, in this study, we only considered nine routes that have consistent 
data, two of them being round-trip routes, so we will finally refer to the following eleven routes: 1E, 
1W, 2E, 2W, 3, 5, 7, 9, 11, 14, and 23.

The dataset covers five different bus types, categorised according to passenger capacity. These 
types, ranked by usage frequency, are as follows: 60 passengers (70.02 %), 65 passengers (23.16 %), 
90 passengers (4.84 %), 40 passengers (1.63 %), and 20 passengers (0.35 %).

2.2 Pre-Processing
Several steps were taken to unify the dataset for training. Firstly, routes displaying inconsistencies 

were excluded, preserving two linear (round-trip) routes and seven circular routes, as commented 
before. Also, during the data collection period, the stops of some routes were modified. To adapt the 
dataset, stops that no longer existed were removed, while new stops were disregarded. Finally, some 
routes had multiple patterns, as temporary alterations occurred during certain events. However, due to 
the time-sensitive nature of these cases, they were omitted from the dataset.

Since the aim of prediction is to estimate the number of passengers requiring bus services within 
a specific time range and area, the data, presented as individual records, needed to be aggregated into 
flows. This involved defining sections by grouping stops and establishing time ranges. Each route 
was divided using Ames neighbourhoods as a reference and then subdivided considering changes in 
the surroundings of a bus stop, such as transitioning from residential to commercial zones. The black 
rectangles in Figure 1 provide a visual representation of the section divisions.

Regarding time zones, the schedule of Iowa State University2 served as the basis for creating 7 time 
periods to account for fluctuations in passenger occupancy. Table 1, under «Time period division», 
describes each period. The night periods from the previous and current day were aggregated into a 
single period.

As the occupancy rate in public transportation follows weekly trends (Liu et al., 2019), two addi-
tional variables were created to keep that context: «ons_yesterday» and «ons_last_week». «ons_ 
yesterday» stores the total onboardings during the previous day at the same route, section and hour 
range, whereas «ons_last_week» does the same but for the previous week, on the same weekday. With 
this, both a general trend and a particular trend for each weekday were procured. Variables for off-
boarding were also created analogously.

2 https://www.event.iastate.edu/?sy=2023&sm=01&sd=26&featured=1&s=d
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Figure 1. Public bus routes in Ames, labelled by number and colour. Rectangular sections of the area 
represent divisions by groups of stops

Table 1. Columns under «Time period division» describe the chosen time periods for passenger 
flow. Columns under «Precipitation» describe weighted windows for previous and current day 

precipitation. Finally, columns under «Snow depth» describe weighted windows for the current and 
following day’s snow depth.

Time period division Precipitation Snow depth

Period Starts Ends Prev. day Curr. day Curr. day Fol. day

1_night 22:00 (prev. day) 4:59 5/6 1/6 6/6 0/6

2_early_morning 5:00 8:59 4/6 2/6 5/6 1/6

3_morning 9:00 11:59 3/6 3/6 4/6 2/6

4_midday 12:00 14:59 2/6 4/6 3/6 3/6

5_afternoon 15:00 18:59 1/6 5/6 2/6 4/6

6_evening 19:00 21:59 0/6 6/6 1/6 5/6

https://adcaij.usal.es
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The environmental conditions have some effect on the behaviour of passenger traffic in public 
transport (Wang et al., 2020). Therefore, in order to enhance the data analysis and investigate the 
impact of different weather conditions, a weather dataset was incorporated from the Iowa Environmen-
tal Mesonet3. The specific weather station selected for this study was AMES 5 SE, identified by the 
code IA0203. The weather data, however, had a different level of granularity compared to the existing 
dataset, as it provided daily information instead of hourly data. To overcome this disparity, weather 
values for each hour range were inferred by considering the adjacent days as a moving window. Rather 
than simply retaining the daily value or using a fraction of it, this approach ensured a more accurate 
estimation. Such a value was derived from a sixth of the weighted total data from the previous and cur-
rent day. This methodology, as outlined in Table 1, under «Precipitation», accounted for precipitation 
trends and mitigated the impact of intense downpours.

On the other hand, for the snow depth variable, we considered the gradual melting of snow over 
time. A weighted average of the current day and the following day was calculated to estimate the snow 
depth value for each hour range. This approach is depicted in Table 1, under «Snow depth».

By incorporating the weather dataset and employing these inference techniques, the analysis could 
capture the influence of various meteorological conditions on the bus transportation system with 
greater accuracy and detail.

The final aggregation structure consists of the route as the first level, followed by the section, 
date, and time range, and includes the aforementioned information on onboadings, offboardings and 
weather conditions. Hence, the dataset and the description of each field can be seen in Table 2.

Table 2. Variable description. Onboarding-Offboarding dataset

Variable Description

hour Time range. See Table 1.

weekday Day of the week.

day Day of the month. Kept only to order the dataset.

month Month of the year.

year Kept only to order the dataset.

section Stops aggregation in each route.

route_name Identifier of the different lanes in Ames’ bus transport.

ons_yesterday Total onboarding during the previous day for a certain section within a certain route in a 
certain hour. Only for onboarding prediction.

ons_last_week Total onboarding during the previous week at the same weekday for a certain section 
within a certain route in a certain hour. Only for onboarding prediction.

offs_yesterday Total offboarding during the previous day for a certain section within a certain route in a 
certain hour. Only for offboarding prediction.

offs_last_week Total offboarding during the previous week at the same weekday for a certain section 
within a certain route in a certain hour. Only for offboarding prediction.

3 https://mesonet.agron.iastate.edu/request/coop/fe.phtml

https://adcaij.usal.es
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3. Model Training and Evaluation
The individuals in our data are treated as independent blocks without the context of previous time 

steps. However, considering real-world trends, we incorporate the daily and weekly boarding vari-
ables such as «ons_yesterday» and «ons_last_week» to provide contextual information on normal and 
periodic trends, respectively. The same process has been done for the offboarding models. We create 
separate models for each route to optimise efficiency rather than using a generalised model with a route 
variable decision-maker. This approach reduces convergence and prediction time.

For our approach, we employ Random Forest (RF), Support Vector Machine for Regression (SVR), 
and Neural Network (NN) techniques. It is also important to note that we also made tests with LSTM 
and GM models. However, the results are significantly worse than those of the other models, and we 
do not show them here. This is because the aggregations by time periods and sectors cause the data 
to lose autocorrelation. The selection of these three techniques over others was influenced by their 
proven track records in handling similar predictive modeling tasks across various domains, their ability 
to process and learn from large volumes of data, and their flexibility in modeling complex, nonlinear 
relationships inherent in public transportation systems. Additionally, these techniques were chosen 
because they demonstrated the best results in preliminary tests conducted before the full experimen-
tation, leading to the exclusion of other methods like GM and LSTM networks from the final experi-
mentation. These methods provide a comprehensive approach to accurately forecasting bus ridership, 
thus aiding in optimising bus routes and schedules to meet passenger demand efficiently. The main 
characteristics of each of these methods are summarised below.

Random Forest (Breiman, 2001; Liaw et al., 2002) stands out as an effective and flexible ensemble 
learning technique applicable for both regression and classification tasks. It builds numerous decision 
trees during the training phase and determines the outcome based on the most frequent class (classifi-
cation) or the average prediction (regression) across all trees. This method addresses the tendency of 
decision trees to overfit their training data, enhancing its reliability and accuracy. A distinctive attribute 
of Random Forest is its proficiency in processing large datasets with extensive dimensionality, capable 
of handling thousands of variables without the need for variable elimination. By averaging or aggregat-
ing the predictions from various decision trees, it minimizes the likelihood of overfitting.

The Support Vector Machine for Regression (Cortes and Vapnik, 1995; Drucker et al., 1996) rep-
resents an advanced machine learning technique that expands upon the foundational concepts of Sup-
port Vector Machines (SVM) (Vapnik, 2013), adapting them from classification scenarios to regression 

Variable Description

precip_mm Inferred total rain and melted snow precipitation during the same hour range of the 
previous day.

snow Inferred total snow precipitation during the same hour range of the previous day.

snow_d Inferred inches of accumulated snow for the same hour range of the previous day.

ons Target variable. Accumulated quantity of individuals that get on the bus at any stop of a 
certain section.

Offs Target variable. Accumulated quantity of individuals that get off the bus at any stop of a 
certain section.

Table 2. Variable description. Onboarding-Offboarding dataset (continued)

https://adcaij.usal.es
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contexts. Distinct from conventional regression approaches that focus solely on minimizing the dis-
crepancy between forecasted and observed values, SVR endeavours to maintain prediction errors 
within a predefined limit. This strategy endows SVR with significant resilience to outlier data and the 
proficiency to manage non-linear dependencies via kernel functions.

Neural Networks (Bishop, 1995; Haykin, 2009; Goodfellow et al., 2016) are inspired by the human 
brain, constructed with layers of nodes or «neurons» that simulate how our brain processes information. 
These networks are composed of an input layer that receives data, multiple hidden layers that perform 
computations and feature extraction, and an output layer that produces the final decision or prediction. 
The real power of NNs lies in the hidden layers, which can adjust their interconnected weights through 
learning, and optimizing the network’s predictions. Activation functions, such as the Rectified Linear 
Unit (ReLU), play a crucial role by introducing non-linearity, allowing the network to learn complex and 
abstract patterns in the data. Our specific NN design incorporates a dense structure with six hidden layers 
of varying sizes (64, 64, 32, 32, 16, 8), employing ReLU activation functions for the hidden layers and a 
linear function for the output layer. This configuration is tailored for tasks requiring continuous variable 
predictions, leveraging the dense connections and ReLU’s properties to efficiently model intricate data 
relationships and deliver accurate, nuanced outputs. The linear output layer ensures the network’s ability 
to produce a range of continuous values, making it versatile for various regression tasks and beyond.

The Grey Prediction Model (GM) (Liu and Forrest, 2010), particularly the GM(1,1) model, is 
a unique forecasting technique within the Grey System Theory framework (Julong et al., 1989), 
designed to handle systems with incomplete or uncertain information. Its strength lies in its ability to 
make accurate predictions with minimal and imprecise data, setting it apart from traditional statistical 
models that require large datasets to be effective. The core idea of GM revolves around the concept of 
«grey», which signifies the partial knowledge about a system, and it utilises this knowledge to model 
and predict future behaviour. GM operates by first converting the original sequence of data into a new 
sequence that reveals the inherent pattern of the system. This is achieved through an accumulation 
process, which smoothens the randomness in the data and highlights the underlying trend. Once the 
sequence is transformed, the GM (1,1) model applies a first-order differential equation to predict the 
future values. This approach makes GM particularly suitable for forecasting in fields where data is 
scarce or highly uncertain. Long Short-Term Memory (LSTM) (Schmidhuber and Hochreiter, 1997; 
Gers et al., 2000) networks are a specialised form of Recurrent Neural Networks (RNNs) (Elman, 
1990) designed to address the challenge of long-term dependencies in sequence data. LSTMs are 
particularly adept at tasks where understanding the context and relationships over extended sequences 
is crucial, such as natural language processing, speech recognition, and time series analysis. Unlike 
traditional RNNs that struggle with vanishing or exploding gradients—problems that make it difficult 
to learn and retain information over long sequences—LSTMs incorporate a unique architecture featur-
ing gates that regulate the flow of information. These gates—namely, the input gate, output gate, and 
forget gate—allow the network to selectively remember or forget information, making LSTMs capable 
of capturing long-range dependencies with greater precision. This gating mechanism enables LSTMs 
to maintain a balance between remembering important past information and forgetting irrelevant data, 
thus enhancing their learning capability and efficiency across tasks involving sequential data.

The experimental objective is to compare the performance of each model across different routes, 
regardless of the route’s specific context, as they may vary in magnitude. To address this, the R2 score 
evaluation metric has been developed, which measures the similarity between the predicted values and 
the actual values of the test set. The R2 score ranges from minus infinity to one, with a higher value 
indicating a better fit of the model to its route.

https://adcaij.usal.es
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When comparing models, it is preferable to use an absolute metric to gauge the overall perfor-
mance. For this, the mean absolute error (MAE) has been chosen since it calculates the absolute dif-
ference between each predicted value and its actual value and then takes the average of all these errors. 
This provides a comprehensive assessment of the model’s performance in terms of the absolute devi-
ation from the actual values.

The performance results for the onboarding models are summarised in Table 3, with the best model 
for each route highlighted in green. There is no clear winner among the regression models, as the best 
model varies depending on the criteria used. However, if both metrics agree on a specific model for a 
route, that should be the preferred choice. Routes 1 Red West, 2 Green East, 2 Green West, 3 Blue, 5 
Yellow, 7 Purple, 9 Plum, and 23 Orange exhibit R2 scores above 82 %, except for 5 Yellow, which 
stands at 70.2 %. For routes with similar R2 and MAE values, there is little difference in the metrics 
among the top models. So, it is better to select the model with the lowest MAE value. Routes 1 Red 
East and 14 Peach show negligible improvements (0.001 and 0.021, respectively), while route 11 
Cherry exhibits a significant difference of 0.504. Regarding overall performance, RF is the top model, 
achieving the most wins in both R2 score (8 wins) and MAE (7 wins). NN comes in second with 3 
wins in R2 score and 2 wins in MAE. SVR only emerges as the best model twice for the MAE metric.

The results for the offboarding models are presented in Table 4, with the best model for each route 
highlighted in green. Similar to Table 3, some routes exhibit different best models based on different 
criteria. However, there are routes where both metrics agree on the same model, including 1 Red East, 1 
Red West, 2 Green East, 2 Green West, 3 Blue, 5 Yellow, 9 Plum, 14 Peach, and 23 Orange. These routes 
achieve R2 scores above 85 %, except for 5 Yellow and 14 Plum, which stand at 61.2 % and 67.6 %,  
respectively. For routes with multiple best models, such as 14 Peach, the difference in R2 score is 
negligible, making it preferable to consider the model with the lower MAE value. In terms of overall 

Table 3. Onboarding metrics performance. Routes: (1E: 1 Red East, 1W: 1 Red West, 2E: 2 Green 
East, 2W: 2 Green West, 3: 3 Blue, 5: 5 Yellow, 7: 7 Purple, 9: 9 Plum, 11: 11 Cherry, 14: 14 Peach, 

23: 23 Orange)

Route NN RF SVR

R2 MAE R2 MAE R2 MAE

1E 0.831 5.216 0.856 4.818 0.833 4.817

1W 0.930 4.452 0.919 4.489 0.856 5.373

2E 0.830 2.479 0.872 2.311 0.853 2.350

2W 0.846 2.137 0.861 2.035 0.849 2.212

3 0.927 12.112 0.912 12.196 0.902 14.098

5 0.588 2.137 0.702 1.789 0.691 1.846

7 0.777 3.544 0.820 3.268 0.813 3.666

9 0.810 12.145 0.822 11.913 0.784 13.326

11 0.940 7.371 0.935 6.867 0.913 9.037

14 0.451 1.381 0.625 1.153 0.593 1.132

23 0.881 83.662 0.892 72.366 0.884 20.201

Wins 3 2 8 7 0 2
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performance, the RF model surpasses the rest with 7 wins in R2 score and 9 wins in MAE. The NN 
comes in second, being the best model for 4 routes in R2 score and 2 routes in MAE. The SVR model 
is not the best model for any route.

4. Experimental Results
Sections 2 and 3 have characterised a series of ML prediction models tailored to the public bus

transportation services of Ames, Iowa. In this section, the use of such models is illustrated through 
multi-agent simulation. The combination of ML prediction and agent-based simulation provides a 
system that enables the evaluation and tuning of transportation systems. The experimentation shown 
below analyses the performance of Ames’ bus routes. From the results of the different simulations, we 
can adjust the amount of resources dedicated to each route, thus achieving an improved operation of 
the service.

Following, Section 4.1 presents the simulation software employed in this research and describes 
the creation of the simulation scenarios taking into account the ML models’ outputs. Then, Section 4.2 
presents the baseline simulations, assessing the performance of the bus service in each of its routes and 
according to the predicted demand. Finally, Section 4.3 extends the experimentation focusing on three 
of the bus routes that present certain particularities.

4.1 Simulation Environment
To illustrate the use of the ML prediction models, different simulation scenarios are built and 

executed with the SimFleet (Palanca et al., 2019) multi-agent simulator. SimFleet is a transportation 

Table 4. Offboarding metrics performance. Routes: (1E: 1 Red East, 1W: 1 Red West, 2E: 2 Green 
East, 2W: 2 Green West, 3: 3 Blue, 5: 5 Yellow, 7: 7 Purple, 9: 9 Plum, 11: 11 Cherry, 14: 14 Peach, 

23: 23 Orange)

Route NN RF SVR

R2 MAE R2 MAE R2 MAE

1E 0.859 4.311 0.871 4.061 0.823 4.750

1W 0.880 4.785 0.887 4.540 0.829 5.554

2E 0.866 2.404 0.871 2.296 0.813 2.659

2W 0.847 2.168 0.866 2.076 0.841 2.324

3 0.916 12.075 0.891 12.956 0.869 14.494

5 0.424 2.262 0.612 1.850 0.608 1.869

7 0.813 3.155 0.788 3.088 0.772 3.472

9 0.855 11.033 0.853 11.138 0.824 11.854

11 0.944 8.246 0.943 8.007 0.922 10.335

14 0.528 1.317 0.676 1.144 0.667 1.148

23 0.875 67.697 0.883 66.726 0.860 79.404

Wins 4 2 7 9 0 0
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simulation platform that focuses on the creation and evaluation of agent strategic behaviours. Sim-
Fleet’s simulations are set on real-world road networks, allowing for a faithful reproduction of already 
existing transportation services. One of SimFleet’s key advantages is its ability to generate dynamic 
scenarios based on real-time traffic information and passenger demand, making it valuable for test-
ing new technologies and algorithms in data-driven settings. Finally, it is worth noting that SimFleet 
allows its users to define the metrics to be quantified during the simulation and exported upon its fin-
ishing, thus easing simulation data visualisation and analysis.

For the current work, the simulator was adapted to reproduce a public bus service, as depicted by 
Figure 2. That included the encoding of the behaviour of three different agents: bus stop agents, trans-
port agents representing buses, and customer agents representing passengers.

• Bus stop agents represent physical locations that enable the interaction between buses and 
customers. These agents keep an updated register of customers waiting at them and their de-
sired destination. Once a bus halts at a specific bus stop, such a bus stop informs the waiting 
customers of the bus’ route. Customers that have a destination stop within the bus route board 
the vehicle, as long as the bus has enough capacity.

• Transport agents represent buses. Each bus travels through the stops of its route, following a 
predefined order. Once a bus reaches the end of its route, it begins traversing its stops again, 
either in the same (circular route) or reversed (linear route) order. Transport agents keep an 
updated list of their passengers and their destination stops. Each time a transport agent halts at a 
stop, a process is initiated for passengers to get off the bus. Then, customers waiting at the stop 
may board the vehicle, provided there is enough space for them.

• Customer agents represent the users of the bus service. Customers have a predefined origin 
and destination stop. They spawn at their origin bus stop and wait for the right bus to ride to 
their destination. In addition, as SimFleet allows for the dynamic introduction of agents in its 
simulations, each customer has a timestamp determining the time they spawn in the scenar-
io. The set of all customers in the simulation conforms to the demand for the transportation 
service.

Figure 2. Visualisation of the public bus service of Ames through a SimFleet simulation
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SimFleet’s simulation scenarios are configured in a JSON file containing information about the 
agents’ location, goals and spawn times. The outputs of the different ML models presented in Section 
3 have been used to fill up a series of simulation configuration files that represent the Ames urban bus 
system. Specifically, one scenario per route is created, representing the bus service along it, between 
6:00 (the first time at which passengers appear) and 23:30 (end of service).

The Google Maps API4 is employed to extract the exact location of each bus stop agent. The num-
ber of transport agents in each simulation is extracted from the dataset. Transport agents are initially 
deployed and uniformly distributed along the route. Their capacity is set to 60 passengers, which was 
the most common value in the data. Finally, the ML models are used to generate the demand shape in 
each simulation.

The number of passengers is determined using prediction through the obtained ML models. The 
passenger load is spatially and temporally distributed among stops and time periods using cross-distri-
bution proportions calculated from historical onboarding data. The passenger offboarding, on the other 
hand, is determined with the Large Numbers Law (Erdös and Rényi, 1970), assigning a probability to 
each destination stop. The number of onboarding passengers assigned to each section and time period 
is predicted using the best model for each route.

Then, such a prediction is disaggregated to calculate the offboardings based on historical offboard-
ing distribution data to assign probabilities for each stop. Therefore, passengers’ destinations are ran-
domly selected based on these probabilities.

4.2 Route Performance Analysis
In this section, the performance of the urban bus fleet of Ames, Iowa, is assessed through several 

simulations that reproduce a typical service along some of its routes. The demand in each simulation, 
described by the number of users of the service and their origin/destination stops, is computed by the 
ML prediction models described in Section 3. Thus, one simulation per route is executed, and the 
results are subsequently analysed.

The performance of a transportation service is evaluated through the definition of specific metrics. 
During the simulation, agents gather data to quantify those metrics. With such a fine level of granular-
ity, we could pinpoint underperforming agents and readjust the distribution of resources in the fleet. 
Nevertheless, given the high number of agents in the simulations and considering the scope of the 
paper, we combine individual agent metrics into a single global metric, presenting its average value 
and standard deviation. With this, global results are obtained that permit the assessment of fleet perfor-
mance in each route. It must be noted, however, that the developed ML models allow for the creation 
of detailed scenarios, which may be used to compare fleet performance in a wide range of situations, 
such as specific days of the week or weather conditions.

Each simulation is characterised by its size in terms of number of agents. The performance metrics 
are divided into two groups: those indicating resource usage and those describing service quality. On 
the one hand, resource usage is shown by the distribution of passengers among the buses assigned to 
a route, referred to as ridership. A high standard deviation for the average ridership of the buses in a 
route indicates a poor distribution of the demand among the transports. In addition, if a bus has no 
passengers during the simulation, it is marked as an unused bus, generally indicating the route repre-
sented in the simulation has an excess of resources assigned to it. On the other hand, service quality 

4 https://developers.google.com/map
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metrics comprise the time needed by users, on average, to reach their destination. The portion of that 
time during which the user has been waiting at a bus stop is presented separately. Finally, we included 
the average distance driven by the buses assigned to a route as an extra metric of fleet performance in 
terms of fuel or energy consumption.

Table 5 presents the global results of all executed simulations. Simulations are identified by  
the route they represent and characterised by the amounts of stops, service users or pax, and buses. 
The number of unused buses is shown together with the average ridership in each bus, indicating the 
resource usage of the fleet. Then, average waiting and total times are presented, in minutes, giving a 
sense of the service quality along that route. Regarding resource usage, we observe that generally, the 
assigned number of transports is adequate for most routes. Routes 1 Red West and 5 Yellow break such 
a pattern by presenting 4 and 1 unused buses, respectively. The average ridership of the route’s buses, 
in terms of number of passengers, shows an interesting trend among all simulations. The standard 
deviation value is generally high, even surpassing the average for routes 1 Red West and 7 Purple, or 
matching it as in the cases of routes 1 Red West, 2 Green West and 14 Peach. The ridership of a bus 
is dependent on its position within the route at the times in which higher demand is present. As com-
mented in Section 4.1, customer agents are temporally distributed in the simulation based on the ML 
models’ predictions. Because of that, such a distribution is a generalisation of the real-world obser-
vation; the data used to train the models. Transportation demand tends to present both peak periods 
in which a higher than usual number of users want to make use of the service, and low periods where 
very few potential customers are present. With that inmind, the trend in the average ridership values 
is to be expected, as the transportation demand is not uniformly distributed throughout the simulation. 
Ultimately, these results indicate that neither average nor individual values of bus ridership provide 
sufficient information to assess the allocation of buses to a route, as this value is closely dependent on 
the spatial and temporal relationship between transport and demand.

Table 5: Description and global metrics of each simulation (one per row). The first four columns 
identify the simulation and describe its size in terms of number of agents. Stops may be shared 

between different routes. Routes: (1E: 1 Red East, 1W: 1 Red West, 2E: 2 Green East, 2W: 2 Green 
West, 3: 3 Blue, 5: 5 Yellow, 7: 7 Purple, 9: 9 Plum, 11: 11 Cherry, 14: 14 Peach, 23: 23 Orange)

Route Stops Pax Buses 
(unused)

Avg. ridership 
(num. of pax)

Avg. waiting 
(min.)

Avg. total 
(min.)

Avg. distance 
(km)

1E 40 959 30 (0) 32±31 2.2±1.9 21.3±12.8 222.7±0.4

1W 42 890 31 (4) 33±60 1.5±1.2 16.5±10.8 223.9±0.3

2E 40 295 19 (0) 16±10 2.3±2.1 20.6±10.0 239.3±0.5

2W 40 261 18 (0) 15±14 2.9±2.3 19.9±12.5 288.7±0.4

3 32 2122 20 (0) 106±80 2.9±3.0 13.5±8.9 226.1±0.3

5 21 23 5 (1) 6±2 4.9±3.3 17.9±9.3 187.2±0.2

7 20 324 6 (0) 54±74 4.2±2.9 14.0±4.9 174.0±0.1

9 30 634 10 (0) 64±46 5.0±4.8 15.4±10.5 270.8±1.0

11 31 1530 18 (0) 85±64 2.6±2.0 15.2±7.9 228.5±0.3

14 33 45 5 (0) 9±9 7.1±4.4 24.8±10.2 181.7±0.5

23 16 4300 33 (0) 130±81 1.4±1.5 13.7±6.7 164.9±2.0
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Furthermore, in terms of service quality, results show a generally acceptable user waiting time in 
all routes, ranging between 2 and 7 minutes. Route 1 Red West stands out as the route with the lowest 
waiting time at an average of 1.5 minutes. As commented above, this route also presents 4 unused 
buses. This points to the fact that the route has a number of buses allocated to it that do not match their 
predicted demand. Route 14 Peach presents the highest waiting times, on average. This route, however, 
presents low demand and number of buses, probably causing longer waiting periods. Route 9 Plum 
stands out as the middle-sized scenario (634 users and 10 buses) with the highest average waits, being 
around 5 minutes. The average total time values vary in a higher range than the waiting times, as the 
former is more related to the route’s length and its number of stops. This metric presents a higher stan-
dard deviation, which is to be expected as different combinations of origin/destination stops greatly 
affect a passenger’s trip. Finally, the distance travelled by the different buses of a route is very close, 
as the low standard deviation values reflect.

4.3 Effect of Fleet Configuration
The experimentation of Section 4.2 illustrates how ML prediction and multi-agent simulation can 

be combined to evaluate the performance of a transportation service. The flexibility of simulations, 
however, permits the tuning of the reproduced system through many iterations of changing its config-
uration, running the new simulation, and analysing the results. In this section, we focus our interest on 
three routes of the Ames urban bus system that showed some particularities in the performance assess-
ment results. With the following experimentation, we intend to exemplify how the proposed system 
can be used to advise on the configuration of transportation services adapted to their expected demand.

The routes selected for further experimentation are 1 Red West, 3 Blue and 9 Plum. Firstly, route 1 
Red West presents 4 unused buses and a very uneven distribution of passengers. Secondly, route 3 Blue 
presents the second highest demand in any route. Finally, route 9 Plum presents the highest waiting 
time for middle-sized simulations (in terms of the number of agents), as commented before. Moreover, 
we explore the global effects of bus fleet variation on resource usage and service quality at these routes.

Table 6 presents the most relevant configurations from all the varying configurations tested for 
the aforementioned routes. Simulations are identified by the route they reproduce and the number of 
transports that were added or subtracted from the baseline fleet. The number of transports varied in 
intervals of 5 buses for routes 1 Red West and 3 Blue, whereas route 9 Plum had smaller variations, as 
its original number of transports was only 10. The results of new configurations are presented next to 
the baseline configuration results, which are highlighted in italics. A global assessment of the results 
points towards the expected correlation between the number of buses servicing a route and lower 
waiting times. In terms of ridership, we observe the same trend as in Section 4.2. The mere addition or 
subtraction of transports to the fleet does not have a proportional effect on the average ridership val-
ues. If those values were to be improved, achieving a more uniform distribution of passengers among 
buses, the simulation should be analysed on a finer level, taking into account the temporal and physical 
distribution of the demand peaks.

Analysing the specific results of each route, it can be observed how, for route 1 Red West, a reduc-
tion in the number of buses does not immediately cause the expected disappearance of unused buses. 
In fact, 15 buses had to be subtracted from the fleet to achieve the first result with no unused buses. 
Moreover, the average waiting times do not severely worsen until 20 buses have been removed from 
the original fleet. These results show the general complexity of the dynamics of transportation systems. 
In particular, route 1 Red West seems to present particularities in its predicted demand that again war-
rant more detailed analysis to determine which of its buses are not performing adequately.

https://adcaij.usal.es
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Results for route 3 Blue show how a higher volume of demand causes a higher variation in the 
service quality metrics. The average waiting times in route 3 Blue simulations increase at greater 
steps with the reduction of the fleets than in other simulations. Similarly to what we observed in route 
1 Red West, however, the mere increase of fleet vehicles does not cause a proportional reduction of 
the average user waiting time, as the simulations with 5 and 10 extra transports reflect. This is likely 
caused due to the particularities of the predicted demand for that route, whose shape may cause the 
waiting times to stay the same for specific time periods even if more buses were added, thus affecting 
the global average.

Finally, route 9 Plum presents relatively uniform results with respect to the service quality, whose 
times increase and decrease relatively proportional to the excess or lack of buses. The average ridership 

Table 6: Global metrics of each simulation (one per row). Simulations are identified by the route they 
reproduce and the number of transports that were added or subtracted from the baseline fleet. The 

baseline simulation results are indicated in italics. The layout of stops and the demand of each route 
have been preserved as in the baseline simulation. The number of buses in each route varies along its 

simulations. Routes: (1W: 1 Red West, 3: 3 Blue, 9: 9 Plum).

Route Buses  
(unused)

Avg. 
assignments 
(num. of pax)

Avg. waiting 
(min.)

Avg. total 
(min.)

Avg. distance 
(km)

1W 31 (4) 33±60 1.5±1.2 16.5±10.8 223.9±0.3

1W -5 26 (3) 39±60 2.1±1.6 17.3±10.5 223.1±0.4

1W -10 21 (1) 45±62 2.2±1.6 17.4±10.7 223.8±0.4

1W -15 16 (0) 56±80 2.5±1.7 17.7±10.5 223.0±0.5

1W -20 11 (0) 81±100 5.4±4.1 20.7±10.8 224.0±0.6

3 +15 35 (0) 62±49 2.6±2.8 13.3±8.8 226.1±0.3

3 +10 30 (0) 71±56 3.1±3.5 13.8±9.0 226.0±0.4

3 +5 25 (0) 85±70 3.1±3.1 13.8±8.9 226.5±0.3

3 20 (0) 106±80 2.9±3.0 13.5±8.9 226.1±0.3

3-5 15 (0) 142±98 4.6±4.2 15.4±9.2 226.2±0.6

3-10 10 (0) 212±113 6.7±5.8 17.5±9.9 225.5±0.8

3-15 5 (0) 425±288 8.2±5.5 19.2±9.8 225.7±1.5

9 +5 15 (0) 42±37 2.7±2.3 13.2±9.3 271.0±0.9

9 +3 13 (0) 49±40 4.4±4.7 14.9±10.5 270.6±0.8

9 +1 11 (0) 58±38 4.7±4.9 15.1±10.5 271.1±0.9

9 10 (0) 64±46 5.0±4.8 15.4±10.5 270.8±1.0

9 -1 9 (0) 71±40 5.1±4.4 15.5±10.5 270.9±1.0

9 -3 7 (0) 91±74 5.7±4.9 16.2±10.4 271.5±1.0

9 -5 5 (0) 127±62 6.8±5.0 17.3±10.6 271.6±0.9
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presents the same behaviour, although its standard deviation is not reduced or augmented proportionally 
to the fleet vehicles, thus indicating, again, that a more even allocation of passengers is not achieved.

5. Discussion
Along Section 4, we have proved the utility of ML techniques together with agent-based simulation 

to assess the performance of transportation fleets. For this work, the experimentation was developed 
using data from the urban bus service of Ames, Iowa. Such a service was simulated to illustrate the use 
of our proposal. The results analysed in Sections 4.2 and 4.3 bring key insights into the global opera-
tion of the service in each of its routes. It is important, however, to contextualise the results and their 
scope, discussing the limitations of the used approaches.

The demand data in the simulations was generated by a series of ML prediction models, each devel-
oped specifically for a route. As explained in Section 2, the approach of an individual model per route 
was chosen given the inconsistencies in the available data. In addition, the transformations applied to 
the data before training the models have an evident effect on the model’s final outputs. Ideally, a single 
model considering all the dataset information would have been developed, leading to a better scenario 
for global performance assessments. As that was not the case, our global assessments are individual 
for each route and not the whole urban bus system. The biases of the ML models must be taken into 
account as they were used to generate the demand data for our simulations.

Agent simulation is a great tool to test modifications on real-world systems without actually imple-
menting those changes. For the case of transportation services, this is especially relevant, as changes in 
their configuration have a considerable impact. Nevertheless, the exact reproduction of a transportation 
system is hard to achieve, as

they generally have many involved actors and a high level of dynamism. Our simulation scenarios 
realistically represent the routes of Ames bus service geographically. However, the metrics chosen to 
evaluate simulations have been defined by us. The value of such metrics, in turn, is determined by the 
simulation execution and is therefore vulnerable to noise.

The above discussion evidences that one must be careful when drawing conclusions from the simula-
tion results. In our experimentation for this work, we must highlight that demand data was predicted by 
ML models, which, even though they accurately generalise the training data, may not be a close enough 
reproduction of the complexity and detail of real demand dynamics. Because of that, our results and their 
subsequent assessment should not be understood as direct recommendations for the improvement of the 
service. Nevertheless, a lack of precision does not imply a lack of usefulness. The analysis of a simula-
tion does reveal possible paths for a potential improvement of many aspects of the reproduced system. 
Our results expose trends regarding the ridership distribution and service quality in each route. Therefore, 
the proposed system could be used to help transportation operators make more informed decisions about 
the configuration of their services and even decide more specific directions of future research.

6. Conclusions
The improvement of transportation services poses unique challenges, as it involves complex 

dynamics among many moving parties. In this work, passenger flow prediction models have been 
developed to guide the enhancement of urban bus-based transportation systems. Data from the urban 
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bus service of Ames, Iowa, has been employed to train several ML prediction models. Before the 
training, the data was analysed, cleaned, and combined with historical precipitation and snow depth 
data to bring a more realistic perspective to the models’ predictions. Our approach to transportation 
improvement was completed through agent-based simulation. Specifically, the models were used to 
develop various scenarios, which, executed in SimFleet, allowed for the assessment of the global per-
formance of Ames’ bus service in each of its routes. The results of our various experiments illustrate 
the combined use of prediction models and simulation to analyse the performance of a transportation 
system and test modifications on its operation.

The presented approach aims to aid transportation service operators in their decision-making when 
it comes to the configuration of their systems. The simulations’ results can be assessed within their 
context to reveal specific trends and problems derived from aspects of the service, such as its resource 
allocation or service quality. In addition, the present global analysis of results is useful to discover and 
select more detailed paths of research for future transportation optimisation efforts.

In terms of contributing to machine learning applications, the current work is our first approach 
to realistic transportation demand generation based on forecasts. This line of research will continue 
with the intention of improving both the prediction models and the subsequent validation through 
simula-tion. The simulation scenarios developed for this paper fit the scope of illustrating the 
usefulness of the proposal but lack the necessary detail to extract specific instructions and improve 
a service such as the Ames urban bus. The developed ML predictors have the potential to predict 
demand data for far more specific scenarios than the ones analysed, thus being useful in reproducing 
demand patterns on different days of the week, different months, and even rainy or snowy weather. 
For future research, more detailed simulation scenarios will be set up and addressed. In addition, we 
are currently working on the creation of models for resource prediction, which would guide the 
creation of a transport fleet that better matches the requirements of each route.

Finally, regarding the simulations’ development, there have been limitations concerning the 
distri-bution of buses and their movement between stops on their routes. In future work, aspects such 
as the number of active buses per time period will be established, and, in addition, a more flexible 
movement of these buses within their assigned route will be allowed. We have a particular interest in 
demand-re-sponsive mobility and the improvement its application could bring to those lines with 
lower demand.
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